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Hydrologic Record Extension of Water-Level Data in
the Everglades Depth Estimation Network (EDEN) Using
Artificial Neural Network Models, 2000—-2006

By Paul A. Conrads and Edwin A. Roehl, Jr.!

Abstract

The Everglades Depth Estimation Network (EDEN) is
an integrated network of real-time water-level gaging stations,
ground-elevation models, and water-surface models designed
to provide scientists, engineers, and water-resource managers
with current (2000—present) water-depth information for the
entire freshwater portion of the greater Everglades. The U.S.
Geological Survey Greater Everglades Priority Ecosystem
Science provides support for EDEN and the goal of providing
quality assured monitoring data for the U.S. Army Corps of
Engineers Comprehensive Everglades Restoration Plan. To
increase the accuracy of the water-surface models, 25 real-
time water-level gaging stations were added to the network
of 253 established water-level gaging stations. To incorporate
the data from the newly added stations to the 7-year EDEN
database in the greater Everglades, the short-term water-level
records (generally less than 1 year) needed to be simulated
back in time (hindcasted) to be concurrent with data from
the established gaging stations in the database. A three-step
modeling approach using artificial neural network models
was used to estimate the water levels at the new stations. The
artificial neural network models used static variables that
represent the gaging station location and percent vegetation in
addition to dynamic variables that represent water-level data
from the established EDEN gaging stations. The final step of
the modeling approach was to simulate the computed error
of the initial estimate to increase the accuracy of the final
water-level estimate.

The three-step modeling approach for estimating water
levels at the new EDEN gaging stations produced satisfactory
results. The coefficients of determination (R?) for 21 of the
25 estimates were greater than 0.95, and all of the estimates
(25 of 25) were greater than 0.82. The model estimates showed
good agreement with the measured data. For some new EDEN
stations with limited measured data, the record extension
(hindcasts) included periods beyond the range of the data used

1Advanced Data Mining, LLC, Greenville, South Carolina.

to train the artificial neural network models. The comparison
of the hindcasts with long-term water-level data proximal to
the new EDEN gaging stations indicated that the water-level
estimates were reasonable. The percent model error (root
mean square error divided by the range of the measured data)
was less than 6 percent, and for the majority of stations (20 of
25), the percent model error was less than 1 percent.

Introduction

The Everglades Depth Estimation Network (EDEN) is
an integrated network of real-time water-level gaging stations,
ground-elevation models, and water-surface models designed
to provide scientists, engineers, and water-resource managers
with current (2000—present) water-depth information for the
entire freshwater portion of the greater Everglades (Telis,
2005, 2006). EDEN is presented on a 400-square-meter (m?)
grid, and EDEN offers a consistent and documented dataset
that can be used by scientists and managers to (1) guide
large-scale field operations, (2) integrate hydrologic and
ecological responses, and (3) support biological and ecological
assessments that measure ecosystem responses to the Compre-
hensive Everglades Restoration Plan (CERP; U.S. Army Corps
of Engineers, 1999). The target users of EDEN are biologists
and ecologists who can use the information to examine trophic
level responses to hydrodynamic changes in the Everglades.
The EDEN database establishes a 7-year dataset of baseline
conditions prior to the implementation of the CERP that offers
investigators a single repository for historic hourly water-level
data.

To estimate water depths in the greater Everglades,
geographic information system (GIS) models have been
developed to determine the ground elevation and water-surface
elevation for the freshwater portion of the Everglades. The
water-depth estimates are the differences between the two
surfaces. Data to support the ground-elevation model include
elevation measurements at over 50,000 sites (Desmond, 2003).
Data to support the water-surface model include continuous
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water levels at 253 stations, including 25 stations that were characteristics of each cell, such as centroid location, the area
added to the EDEN database in 2006 (fig. 1). of the Everglades it represents, elevation, and percent vegeta-
For the development of the ground-elevation model tion type (slough, prairie, sawgrass, upland, exotic, and other).
(Jones and Price, 2007), the EDEN domain was divided intoa  The large number of highly accurate elevation data allows for
large number of equal-sized squares (“cells”) that in total are refinement of the ground-elevation model. The geostatistical

referred to as the “grid.” The grid includes information on the  technique of kriging was selected for the EDEN ground-

EXPLANATION
A EDEN water-level stations
A New EDEN water-level stations
—— Canals and rivers
—— EDEN boundary
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Figure 1. Locations of Everglades Depth Estimation Network (EDEN) gaging stations in southern
Florida (modified from Pearlstine and others, 2007).
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elevation model following extensive testing of multiple inter- each water conservation area (WCA), the Everglades National
polation techniques. Kriging produced the lowest average error  Park (ENP), and portions of Big Cypress National Preserve
for validating elevation points and provides useful diagnostic (BCNP). These individual models were combined to create a
surfaces. To account for variations within subregions of the single, 400-m? resolution elevation model for the entire EDEN

EDEN area, individual geostatistical models were created for domain (fig. 2).
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Figure 2. The Everglades Depth Estimation Network (EDEN) digital elevation model for Water
Conservation Areas (1, 2A, 2B, 3AN, 3AS, 3B), Big Cypress National Preserve, and Everglades
National Park (from Pearlstine and others, 2007).
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A water-surface model was developed in GIS using the
EDEN grid described above. The EDEN water-surface model
interpolates measured water levels from the EDEN continuous
monitoring network to ungaged locations using radial basis
functions (RBF) with multiquadric regression (Pearlstine and
others, 2007). The model produces a continuous water surface
for any day within the period of record in the EDEN database.
An example of the water surface for a sample day is shown in
figure 3.

Twenty-five stations were added to EDEN in 2006 to
address water-level data gaps identified by scientists and
hydrologists in the original EDEN configuration and to
improve the continuous water-surface model. To incorporate
the additional data into the EDEN database, the water-level
records for the new stations needed to be extended back in
time (hindcasted) to be concurrent with the records in the
EDEN database. The U.S. Geological Survey (USGS) South
Carolina Water Science Center, as part of the EDEN project
team, developed artificial neural network (ANN) models to
hindcast data from the new EDEN stations. An ANN model
is a flexible mathematical structure capable of describing
complex nonlinear relations between input and output datasets.

The architecture of ANN models is loosely based on the
biological nervous system (Hinton, 1992).

Accurately hindcasting the hydrologic responses at the
new locations can be challenging due to the limited number
of reference gaging stations and a limited understanding of
complex interactions between hydrology and topography.
Techniques that often are used to hindcast hydrologic
responses at ungaged locations include combinations of linear
regression and interpolation; however, the dynamics between
hydrology, topography, and vegetation often are nonlinear.
This report presents the application of cascading ANN models
to predict water levels at 23 new EDEN stations that were
instrumented in 2006 and 2 EDEN stations in WCA1 with
periods of record beginning in 2001. The ANN models were
used to extend the 25 stations to be concurrent with the EDEN
database beginning in January 2000.

To meet the objectives of this study and previous
studies, the USGS entered into a Cooperative Research and
Development Agreement (CRADA) with Advanced Data
Mining (ADM) in 2002 to collaborate on applying data
mining and ANN models to water-resources investigations.
The emerging field of data mining addresses the issue of
extracting information from large databases (Weiss

EXPLANATION

Water stage, in centimeters, North
American Vertical Datum 1988
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Low: 10
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and Indurkhya, 1998). Data mining is a powerful tool
for converting large databases into knowledge for
solving problems that are otherwise imponderable
because of the large numbers of explanatory variables
or poorly understood process physics. This knowledge
encompasses understanding cause and effect relations
and predicting the consequences of alternative actions.
Data-mining methods come from different technical
fields, such as signal processing, statistics, artificial
intelligence, and advanced visualization. Data mining
is used extensively in financial services, banking,
advertising, manufacturing, and e-commerce to
classify the behaviors of organizations and individuals
and to predict future outcomes.

Purpose and Scope

This report documents the water-level record
extensions (hindcasts) of 25 stations in the freshwater
portion of the Everglades. The geographical extent
of the hindcasts includes gaging stations in WCAI,
WCA2, WCA3A, WCA3B, BCNP, and the ENP. An
important part of the USGS mission is to provide
scientific information for the effective water-resources
management of the Nation. To assess the quantity
and quality of the Nation’s surface water, the USGS
collects hydrologic and water-quality data from rivers,
lakes, estuaries, and wetlands using standardized

Figure 3. The Everglades Depth Estimation Network (EDEN) water

surface model for September 10, 2006 (modified from Pearlstine and others,

2007).

methods, and maintains the data from these stations
in a national database. The techniques presented in
this report demonstrate how valuable information can
be extracted from existing databases to assist local,



state, and Federal agencies.

The application of data-mining
techniques, including ANN
models, demonstrates how
empirical models can be devel-
oped to hindcast time series of
complex hydrologic systems and
how disparate databases can be
integrated.

7° - Location of

study area in
Florida

Description of Study Area

The study area is within the
greater Everglades area, which
extends from south of Lake
Okeechobee to the southern part
of the ENP (fig. 4) This area is
a wetlands system that is about
50 miles (mi) wide and about
100 mi long. The Everglades %°—
is regarded as unique in the

world because it is not primarily EXPLANATION
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82° 81° 80°
I I I
Lake
Okeechobee
WCA1
WCA2
WCA3

associated with a natural river
system but is itself a wide and
shallow “river” that transports
water by sheet flow from Lake
Okeechobee to the Gulf of
Mexico. The slopes with this

Big Cypress National Preserve

Everglades System

Loxahatchee National Wildlife
Refuge

Canal

Everglades National Park boundary

Water conservation area boundary

Everglades
National Park

shallow “river” are generally less
than about 0.2 foot per mile (ft/

. Gul
mi; German, 2000). ff Atlanti
The Everglades contains 0 10 20 30MIES o Hantie
1 ¢ . Mexico Ocean
several types of environments, sl 0 10 20 30KLOMETERS |

including freshwater marshes,

WCA-3 Identifier for water conservation area

tree islands, pinelands, mangrove
swamps, and shallow coastal
marine waters. This study is
concerned with freshwater marshes,
the predominant Everglades
ecosystem. These marshes are characterized by sawgrass
stands of varying density and height, ranging from 2 to 3 feet
(ft) above land surface to 9 ft in some northern areas. Other
common emergent plants in the freshwater marshes include
spike rush, muhly grass, and, in some areas, cattails. Typical
topographic and vegetative features include ridge and slough,
tree islands, wet prairie, sawgrass, and marl prairie (German,
2000).

The annual rainfall in the Everglades generally is
between 50 and 60 inches (in.), depending on location, with
substantially more rainfall along the eastern edge (Lodge,
1994). The rainfall has a distinct seasonal pattern, with a wet
season from May or June through September or October, that

accounts for about 75 percent of the annual total. Water depths

in the freshwater marshes range from 0 to 3 ft during the wet
season. Minimum seasonal water levels generally occur in

Figure 4. Greater Everglades, Florida (modified from German, 2000).

May before onset of the wet season. In particularly dry

years, large portions of the Everglades may become dry and
subject to wildfires. Heavy rainfall associated with tropical
depressions, storms, and hurricanes can have a large effect on
water levels. A single such event can increase water levels by
a foot or more over large parts of the Everglades and because
of the slow runoff rates, this can effect water levels for months
(German, 2000).

Previous Studies

Estimating hydrologic and water-quality conditions at
ungaged sites by using data-mining techniques and ANN
models has been used in the Everglades, western Oregon,
and Wisconsin. Conrads and others (2006) used data-mining
techniques in a snail kite study in WCA3A to hindcast
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short-term (less than 5 years) daily water-depth datasets using
long-term (greater than 15 years) daily water-level data. The
principal objective of the snail kite study was to separate
plant community response resulting from typical seasonal and
inter-annual variances in hydrologic regimes. The vegetative
community structure of these sites is an expression of present
and historic hydrologic conditions. A critical element of

the study was to determine how the vegetative communities
respond to temporal and spatial changes in hydrology.
Artificial neural network models were developed to hindcast
hydrologic histories at 17 transects dating back to 1991 to
help ecologists in analyzing the water depth and hydroperiods
over a large range of hydrologic conditions and to integrate
long-term ecological data.

Artificial neural network models have been applied in
western Oregon to estimate stream temperature at ungaged
sites (Risley and others, 2003). In that study, a dynamic
clustering technique (Roehl and others, 2006) was used to
subset 142 temperature stations from first-, second-, and
third-order streams into three groups of similar dynamic
behaviors. Using categorical (static) variables and time-series
variables, water-temperature models were developed for
ungaged sites. Critical input variables included riparian shade,
station elevation, and percentage of forested area of the basin.
Coefficients of determination (R?) and root mean square errors
(RMSE) for the models ranged from 0.88 to 0.99 and 0.05 to
0.59 degrees Celsius (°C), respectively.

Stewart and others (2006) describe a modeling applica-
tion in Wisconsin that, like the Oregon modeling, predicts
stream temperatures from climate signals, such as ambient
temperature and rainfall, and categorical station attributes,
such as land cover and drainage area. The application’s ANNs
were trained on data, including summer-month daily average
stream temperature time series, from 254 stations. This work
was conceptually different from the Oregon application,
which used concurrently measured signals. The Wisconsin
stream temperatures were measured during different summers
over 13 years. This required that an alternative time series
clustering algorithm be developed that would still segment
the signals according to their dynamic behaviors. The R?
and RMSE for the predictions at 31 test stations not used in
ANN training ranged from 0.62 to 0.75 and 1.7 °C to 2.4 °C,
respectively. The ANN predictions accurately tracked the
day-to-day variability at the different stations, but the primary
source of error was offset station-to-station baseline (mean
summer) temperatures. The predicted baselines depend largely
on the ANN’s categorical input variables, suggesting that the
42 variables used can only provide a partial explanation of the
causes of station-to-station variability or, more likely, that the
measurements provided for them are quite noisy.

An approach similar to that used in Oregon was tested to
predict water depths at ungaged locations in a subdomain of
EDEN (Conrads and Roehl, 2006b). Using a combination of
static and dynamic variables, predictions were generated in
two modeling steps. The dynamic variables were 30-month
time series of daily water depths at 16 stations and water

levels at 3 other stations. Static variables were obtained from
the EDEN 400-m? grid. Values included coordinates of cell
centroids and percentage vegetation types (slough, prairie,
sawgrass, or upland) for approximately 2,300 cells, covering
370 square kilometers. The first ANN model simulated water
depths using static (categorical) input variables to predict a
constant baseline water depth (mean for the period of record).
The second ANN model predicted day-to-day variability about
the water-depth baseline by using a combination of static

and dynamic variable inputs. A complete estimation of water
depth at a given cell was computed by summing the outputs of
the two models. Five of the water-depth gaging stations were
withheld from model development to validate model accuracy.
Using this methodology, prediction accuracy was improved,
resulting in an average RMSE prediction error at validation
gaging stations of only 0.1 ft (3 centimeters), or 4 percent of
the dynamic range.

Approach

The majority of the hindcasts estimated for this study
used a modification of the two-step modeling approach using
static and dynamic data described in Conrads and Roehl
(2006b). The modification was the addition of a third step
error-correction model. The general approach for estimating
water levels at a new station was to

1. Identify the EDEN stations that have similar hydro-
logic responses in a particular area,

2.  Build databases for the static and dynamic variables,
3. Decorrelate time-series inputs,
4. Train the static and dynamic ANN models,

5. Compute initial water-level estimates and residual
error from the measured data,

6.  Train error-correction ANN models, and

7. Make final water-level estimates.

The process was then repeated for subsequent stations and
areas in the Everglades. For a few stations (3 of the 25) with
limited data and(or) limited data at nearby stations, a simpler
single model approach was used.

Data-Collection Network

The water-level record extensions (hindcasts) use static
and dynamic data from the EDEN monitoring network.
The EDEN monitoring network includes ground-elevation
measurements and continuous water-level data. Highly
accurate ground-surface elevation data, collected by the USGS
(Desmond, 2003), cover nearly the entire greater Everglades
area. The elevation data were collected at over 50,000 points



with an approximate spacing of 400 meters (m) to the North
American Vertical Datum of 1988 (NAVD 88). The static
variables were derived from the GIS cell attribute data of the
400-m EDEN grid. Attributes include location of the centroid
of the cell and percent vegetation type (slough, prairie,
sawgrass, upland, exotic, and other).

The EDEN database is composed of hourly water-level
data from 253 gaging stations and includes freshwater
marsh stations, boundary stations on canals, and coastal
stations operated by the BCNP, ENP, the South Florida
Water Management District (SFWMD), and the USGS. In
this report, the names of the EDEN stations may follow the
naming convention of the agency that maintains the stations.
Stations with “site” in the name, such as Site 64 or Site 99,
will be referenced with an uppercase S. All other references to
a specific station will use a lowercase, such as site W2 or site
North_CAL.

The dynamic variables (time series) were obtained from
the marsh gaging stations of EDEN. The period of record for
the EDEN water-level network is from October 1, 1999, to
September 30, 2006. The periods of record for the new EDEN
gaging station vary from approximately 4 months to 5 years.
To extend the water-level record at the new EDEN station, a
subset of 35 of the EDEN stations was used as inputs to the

Table 1.
for hindcast and index stations used in this study.

Data-Collection Network 7

model for estimating water levels (referred to as “index” sta-
tions in this report). The locations and periods of record of the
new EDEN stations and the index stations are listed in table 1.
The stations in WCA3A were separated into two groups.

Limitation of the Datasets

As with any modeling effort, empirical or deterministic,
the reliability of the model is dependent on the completeness
of the datasets and on the quality of the data and range of
measured conditions used for training and calibrating the
model. Estimated data were not used in model develop-
ment; thus, the majority of the time series used were less
than 100 percent complete. The available period of record,
especially the hindcasted stations, can limit the range of water
level that the ANN model can accurately simulate. For the
new EDEN stations, the period of record for the measured data
often is a year or less (table 1). Many of the time series of the
new EDEN stations provided a range of water-level behaviors
corresponding to low and high water of the dry and wet
seasons but did not provide a history of inter-annual vari-
ability. Some stations with limited periods of record and(or)
missing data, only described a limited portion of the expected
water-level range.

Everglades Depth Estimation Network (EDEN) stations, types, periods of record, and percent complete record

[USGS, U.S. Geological Survey; SFWMD, South Florida Water Management District; BCNP, Big Cypress National Preserve; ENP, Ever-

glades National Park]

Period of record

. Operating . . Number of data Percent
Station Station type Begin date End date . complete
agency points

record

Water Conservation Area 1 (fig. 15)
South_CAl USGS Hindcast 6/20/2001 9/30/2006 46,571 75.9
North_CA1 USGS Hindcast 5/11/2001 9/30/2006 45,026 73.4
Site 7 USGS Index 10/1/1999 9/30/2006 59,531 97.0
Site 8T USGS Index 10/1/1999 9/30/2006 60,632 98.8
Site 9 USGS Index 10/1/1999 9/30/2006 61,055 99.5
WCAIME SFWMD Index 10/1/1999 9/30/2006 60,315 98.3

Water Conservation Area 2 (fig. 17)
EDENI11 USGS Hindcast 6/9/2006 9/30/2006 2,723 4.4
EDEN13 USGS Hindcast 6/8/2006 9/30/2006 2,747 4.5
WCA2F1 SFWMD Index 10/1/1999 9/30/2006 51,177 83.4
WCA2E1 SFWMD Index 10/1/1999 9/30/2006 54,573 88.9
Site 99 USGS Index 10/1/1999 9/30/2006 60,645 98.8
S142H SFWMD Index 10/1/1999 9/30/2006 57,037 92.9

Water Conservation Area 3A (fig. 20)

Group 1

3A-5 USGS Hindcast 6/6/2006 9/30/2006 2,797 4.6
EDEN4 USGS Hindcast 6/9/2006 9/30/2006 2,728 4.4
EDENS USGS Hindcast 6/7/2006 9/30/2006 2,771 4.5
EDEN9 USGS Hindcast 6/9/2006 9/30/2006 925 1.5
EDENI12 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
w2 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
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Table 1. Everglades Depth Estimation Network (EDEN) stations, types, periods of record, and percent complete record
for hindcast and index stations used in this study. — Continued

[USGS, U.S. Geological Survey; SFWMD, South Florida Water Management District; BCNP, Big Cypress National Preserve; ENP, Ever-
glades National Park]

Period of record

. Operating . . Number of data Percent
Station Station type Begin date End date . complete
agency points
record
Water Conservation Area 3A (fig. 20) Group 1— Continued
W5 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
W11 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
Wwi4 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
W15 USGS Hindcast 1/25/2006 9/30/2006 4,991 8.1
W18 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
Site 64 USGS Index 10/1/1999 9/30/2006 60,636 98.8
Site 63 USGS Index 10/1/1999 9/30/2006 60,402 98.4
3AS3W1 SFWMD Index 10/1/1999 9/30/2006 52,186 85.0
Site 65 USGS Index 10/1/1999 9/30/2006 61,368 100.0
3ASW? SFWMD Index 10/1/1999 9/30/2006 60,407 98.4
Group 2
EDEN 5 USGS Hindcast 6/5/2006 9/30/2006 1,657 2.7
EDEN 14 USGS Hindcast 7/26/2006 9/30/2006 1,534 2.5
Site 62 USGS Index 10/1/1999 9/30/2006 59,847 97.5
3A9 SFWMD Index 10/1/1999 9/30/2006 58,027 94.5
3A12 SFWMD Index 10/1/1999 9/30/2006 53,915 87.8
Water Conservation Area 3B (fig. 26)
TI-8 USGS Hindcast 1/23/2006 9/30/2006 6,013 9.8
TI-9 USGS Hindcast 1/23/2006 9/30/2006 6,014 9.8
EDEN7 USGS Hindcast 6/8/2006 9/30/2006 2,748 4.5
EDEN10 USGS Hindcast 6/8/2006 9/30/2006 2,748 4.5
Site 69 USGS Index 10/1/1999 9/30/2006 61,277 99.8
Site 71 USGS Index 10/1/1999 9/30/2006 60,457 98.5
Site 76 USGS Index 10/1/1999 9/30/2006 61,059 99.4
SRS1° USGS Index 10/1/1999 9/30/2006 60,989 99.3
Big Cypress National Preserve (fig. 29)
EDENI1 BCNP Hindcast 1/13/2006 9/30/2006 4,389 7.1
EDENG6 BCNP Hindcast 7/10/2006 9/30/2006 1,974 3.2
BCA9 BCNP Index 10/1/1999 9/30/2006 60,236 98.1
LOOPIT SFWMD Index 10/1/1999 9/30/2006 56,688 92.3
LOOP2T SFWMD Index 10/1/1999 9/30/2006 56,093 91.4
BCAI10 BCNP Index 10/1/1999 9/30/2006 60,084 97.8
BCA5S BCNP Index 10/1/1999 9/30/2006 57,800 94.1
3ASW SFWMD Index 10/1/1999 9/30/2006 60,407 98.4
L28GAP SFWMD Index 10/1/1999 9/30/2006 53,515 87.1
Everglades National Park (fig. 31)

EDEN3 USGS Hindcast 12/12/2005 9/30/2006 6,981 11.4
Metl USGS Hindcast 8/7/2006 9/30/2006 1,312 2.1
P34 ENP Index 10/1/1999 9/30/2006 58,307 95.0
oT ENP Index 10/1/1999 9/30/2006 57,106 93.0
TMC ENP Index 10/1/1999 9/30/2006 59,178 96.4
P35 ENP Index 10/1/1999 9/30/2006 58,954 96.0
P36 ENP Index 10/1/1999 9/30/2006 59,223 96.4
NE1 USGS Index 10/1/1999 9/30/2006 61,316 99.9
SRS1 USGS Index 10/1/1999 9/30/2006 60,989 99.4
NP201 ENP Index 10/1/1999 9/30/2006 59,252 96.6
NE2 USGS Index 10/1/1999 9/30/2006 58,024 94.5
NESRS3 SFWMD Index 10/1/1999 9/30/2006 52,855 86.1

4 Station also used for hindcasts in Big Cypress National Preserve.

® Station also used for hindcasts in Everglades National Park.



Estimating Water Levels

The following section describes how the water levels
were estimated for the new EDEN stations using ANN
models. Hydrologic systems, such as the Everglades, exhibit
random, chaotic, and multiple periodic behaviors that are
driven by gravity flow, weather, and manmade disturbances,
such as controlled flow releases. Modeling these behaviors
on a large scale is challenging because of discontinuities in
behaviors both spatially and temporally. Modeling requires
calibration and validation data that represent the diversity
of causes and effects. Subdividing a complex modeling
problem into subproblems and addressing each subproblem
is an effective means of achieving the best possible results.
The creation of the various water conservation areas (WCA)
in the Everglades transformed the system from a continuous
“shallow” river from Lake Okeechobee to the Gulf of Mexico
into a series of discontinuous compartments. The WCAs are
logical boundaries to subdivide the EDEN into a subnetwork
of water-level gaging stations to model the new EDEN
water-level stations separately for WCA1, WCA2, WCA3A,
WCA3B, BCNP, and ENP.

Within the compartments, water levels respond to
large-scale, hydraulic gradients of the “shallow” river and
small-scale changes in topography and vegetation. As water
levels change, the restrictions (impedances) to flow change
as more vegetation is inundated during rising and high water
levels or as more water is channelized during falling and low
water levels. The three-step modeling approach presented in
this report uses information about vegetation and topography
in addition to time-series
data to generate accurate
estimates of water levels. This
section describes ANN models,
statistical measures of prediction X
accuracy, the decorrelation of
input variables, and an example
that describes how to estimate
water levels at a new EDEN
station. X,

)

X

X3
Artificial Neural X
Networks X

X
Models generally fall '
into one of two categories—
deterministic (mechanistic) or X5
empirical. Deterministic models 2] %
are created from first-principle
equations, and empirical models
adapt generalized mathematical
functions to fit a line or surface
through data from two or more
variables. The most common
empirical approach is ordinary
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least squares (OLS), which relates variables using straight
lines, planes, or hyper-planes, whether the actual relations
are linear or not. Techniques such as OLS and physics-based
finite-difference models prescribe the functional form of the
model’s fit of the calibration data. Machine-learning tech-
niques, like ANNs, synthesize a best fit of the calibration data.
The calibration of deterministic and empirical models
attempts to optimally synthesize a line or surface through the
measured data. Calibrating models is difficult when data have
substantial measurement error or are incomplete, and the vari-
ables for which data are available may only be able to provide
a partial explanation of the causes of variability. The principal
advantages that empirical models have over deterministic
models are they can be developed much faster and are more
accurate when the modeled systems are well characterized
by data. Empirical models, however, are prone to problems
when poorly applied. Overfitting and multicollinearity caused
by correlated input variables can lead to invalid mappings
between input and output variables (Roehl and others, 2003).
Although there are numerous types of ANNS, the most
commonly used type of ANN is the multilayer perceptron
(MLP; Rosenblatt, 1958). As shown in figure 5, MLP ANNs
are constructed from layers of interconnected processing
elements called neurons, each executing a simple “transfer
function.” All input layer neurons are connected to every
hidden layer neuron (HLN), and every HLN is connected to
every output neuron. There can be multiple hidden layers, but
a single hidden layer is sufficient for most problems.
Typically, linear transfer functions are used to scale input
values to fall within the range that corresponds to the most

“Weights”
control
connections

Output

[

Yq

N
>
I Vi
t+2

t+1

t
(Output examples)

Neurons with nonlinear
transfer functions

Figure 5. Multiperceptron artificial neural network architecture.



10 Hydrologic Record Extension of Water-Level Data in the EDEN Using Artificial Neural Network Models, 2000-2006

linear part of the s-shaped sigmoid transfer functions used in
the hidden layers. Each connection has a “weight,” Wi, associ-
ated with it, which scales the output received by a neuron
from a neuron in an antecedent layer. The output of a neuron
is a simple combination of the values it receives through its
input connections and their weights, and the neuron’s transfer
function.

An ANN is “trained” by iteratively adjusting its weights
to minimize the error by which it maps inputs to outputs for
a dataset composed of “input/output vector pairs.” Prediction
accuracy during and after training can be measured by a
number of metrics, including R> and RMSE. An algorithm that
is commonly used to train MLP ANN:Ss is the back error propa-
gation (BEP) training algorithm (Rumelhart and others, 1986).
Jensen (1994) describes the details of the MLP ANN, the type
of ANN used in this study. Multilayer perceptron ANNs can
synthesize functions to fit high-dimension, nonlinear multi-
variate data. Devine and Roehl (2003) and Conrads and Roehl
(2005) describe their use of ANNSs in multiple applications to
model and control combined manmade and natural systems,
including disinfection by-product formation, industrial air
emissions monitoring, and surface-water systems, affected by
point and nonpoint-source pollution.

Experimentation with a number of ANN architectural and
training parameters is a normal part of the modeling process.
For correlation analysis or predictive modeling applications,

a number of candidate ANNs are trained and evaluated for
their statistical accuracy and their representation of process
physics. Interactions between combinations of variables also
are considered. Input variables to the models are selected to
minimize correlation between variables (typically Pearson
coefficient R of less than 0.5). Finally, a satisfactory model
can be configured for end-user deployment. In general, a
high-quality, predictive model can be obtained when

* The data are well distributed throughout the behavioral
range of interest,

* The input variables selected by the modeler share
“mutual information” about the output variables, and

¢ The functional form “prescribed” or “synthesized” for
the model used to “map” (correlate) input variables
to output variables is a good one. Techniques, such

First Decorrelation Model

as OLS and physics-based finite-difference models,
prescribe the functional form of the model’s fit of the
calibration data. Machine-learning techniques like
ANNSs synthesize a best fit to the data.

Decorrelation of Variables

Often, explanatory variables share information about the
behavior of a response variable. It is difficult, if not impos-
sible, to understand the individual effects of these variables
(sometime known as confounded or correlated variables), on a
response variable. Using correlated inputs to the models also
can spuriously increase the model accuracy statistics, such
as R%. Empirical models have no notion of process physics,
nor the nature of interrelations between input variables. To
clearly analyze the effects of confounded variables, the unique
informational content of each variable must be determined by
“decorrelation.” Decorrelation is accomplished by ordering
confounded variables according to a criterion. For example,
the relative independence of the correlated variables is
determined and then empirical functions (ANN models) of
the less independent variables are developed using the more
independent variables as inputs. The empirical function’s
residual error is computed by subtracting its predicted values
from the actual measurements. The residual error manifests
the “unshared” information between the model’s more
independent input variables and its less independent output
variable. The residual error is the decorrelated version of the
output variable (decorrelated variable) and can be used in
water-level models. For example, in WCA3A, there are five
existing EDEN stations that could be used to predict the water
levels at the new stations—Site 63, Site 64, Site 65, 3AS3W1,
and 3ASW. Four of the stations, Site 63, Site 65, 3AS3W1,
and 3ASW, are systematically decorrelated from Site 64,
using cascading models (fig. 6). Note that the residual error
(decorrelated variable) from each anteceding model becomes
an input to a subsequent model. The input variables and
statistical summaries for the decorrelation models are listed in
Appendixes 1 and 2 at the back of the report.

In this study, the decorrelation order was determined by
minimizing the incomplete record of the decorrelated variable.
A model cannot compute an output value when an input has

WL Site 64

measured

WL Site 64

pred1

= F,[ WL Site 3ASW1 |

— © —> | WL Site 64

residual

Second Decorrelation Model

\ 4

WL Site 64

measured

WL Site 64, = F,[WL Site 65 and WL Site 3ASW1

—> O—>

WL Site 64

decorrelated] residual

Figure 6. Decorrelation models.



a missing value. For example, if three time series needing to
be decorrelated and the time series are 90, 75, and 50 percent
complete records, respectively, and the decorrelation order was
the third, second, and first datasets, all the decorrelated vari-
ables would be 50 percent complete or less (missing data may
not be concurrent between datasets). Using the third dataset in
the first decorrelation model (the 50 and 75 percent complete
datasets) would result in a decorrelated variable only 37.5
percent complete. Subsequent decorrelation models would
produce a decorrelated variable that is 34 percent complete (90
percent x 37.5 percent = 34 percent). The better decorrelation
order would be the 90-percent, 75-percent, and 50-percent
datasets. The decorrelation model (the 90- and 75- percent
datasets) would result in a decorrelated variable 68 percent
complete. The subsequent decorrelation model would, like the
first decorrelation order, result in a decorrelated variable that is
34 percent complete (68 percent x 50 percent = 34 percent).

Statistical Measures of Prediction Accuracy

Statistical measures of prediction accuracy were
computed for the final water-level estimates and for the decor-
relation, static, dynamic, and error-correction models. The
statistics for the final water-level estimates capture the ability
of the three-step modeling approach to accurately estimate
the water levels at the station. The statistics for the decor-
relation models and individual step models (static, dynamic,
and error-correction models) document these intermediate
models. Because several models are used, the statistics for the
individual models may not be an indication of the quality of
the final water-level estimates. For example, the static models
generally have very low R2, especially in the test dataset, as
would be expected when static variables are used to predict a
dynamic time series. Ultimately, the hindcasts should be evalu-
ated by the statistics for the final estimates. The decorrelation
models typically have high R? values, but the results from the
model used in the dynamic models are the residuals which
have a low R%.

The R?, mean error (ME), RMSE, and percent model
error (PME) were computed for the training and testing
datasets for each model and are listed in Appendix 2.

Model accuracy commonly is reported in terms of R and is
interpreted as the “goodness of the fit” of a model. A second
interpretation may answer the question, “How much informa-
tion does one variable or a group of variables provide about
the behavior of another variable?” In the first context,

an R? = 0.6 might be disappointing, whereas in the latter, it is
merely an accounting of how much information is shared by
the variables being used.

The ME and RMSE statistics provide a measure of the
prediction accuracy of the ANN models. The ME is a measure
of the bias of model predictions—whether the model over
or under predicts the measured data. The ME is presented as
the adjustment of the simulated values to equal the measured
values; therefore, positive and negative MEs indicate an over

Estimating Water Levels 1"

or under prediction bias by the model, respectively. Mean
errors near zero may be misleading because negative and
positive discrepancies in the simulations can cancel each other.
Root mean square errors address the limitations of ME by
computing the magnitude, rather than the direction (sign) of
the discrepancies. The units of the ME and RMSE statistics
are the same as the variable simulated by the model.

The minimum and maximum values of the measured
output are listed in Appendix 2. The accuracy of the models,
as given by RMSE, should be evaluated with respect to the
range of the output variable. A model may have a low RMSE,
but if the range of the output variable is small, the model may
only be accurate for a limited range of conditions and the
model error may be a relatively large percentage of the model
response. Likewise, a model may have a large RMSE, but if
the range of the output variable is large, the model error may
be a relatively small percentage of the total model response.
The PME is computed by dividing the RMSE by the range of
the measured data.

Example of Estimating Water Level Using Three-
Step Modeling Approach

Generally, the same modeling approach for estimating
water levels at a new EDEN site was used in all six areas.
The three-step modeling approach is described in this section
along with a detailed example of estimating the water level
at W2 in WCA3A. Variable inputs for the models used in the
W2 example are listed in table 2, and summary statistics for
the models are listed in table 3. The input variables, summary
statistics, and variable descriptions for all the models are
listed in Appendixes 1, 2, and 3, respectively, at the back of
the report (tables 2 and 3 are excerpts of Appendixes 1 and
2, respectively). (The summary statistics for 25 hindcasts are
listed in table 4, p. 19.) The ANN models and plots discussed
in this report were developed using the iQuest™ data-mining
software! (Version 2.03C DM Rev31).

The three-step modeling approach was developed to
estimate water levels at the new EDEN stations. The approach
uses output from the first model as input to the second and
output from the second model as input to the third model.

A schematic of the three-step modeling approach is shown

in figure 7. The first model (F,) predicts the water level
(WL-Site_ ) using inputs for only the static variables of

cell location (cell_x and cell_y) of the gaging station and the
percent vegetation types (pctslough, pctprairie, pctsawgrass,
pctupland, pctexotic, and pctother). Although, this model (also
called the “static” model) is not able to predict the dynamic
variability of the water level, it is able to discriminate general
station-to-station differences based on location and percent
vegetation.

' The iQuest™ software is exclusively distributed by Advanced Data Min-
ing, LLC, 3620 Pelham Road, PMB 351, Greenville, SC 29615-5044 Phone:
(864) 201-8679, email: info@advdatamining.com, http://www.advdatamining.
com.
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Table 2. Model type, model name, input variables, model prediction variables, and variables used to estimate water levels at site

Wa2.
que.l Variable used
Model type Model name Input variables® pred_lctlon from model Comment
variable
static clusterlstatic CELL_Y WLSITE RES_WLSITE Static model for Group 1 stations in
PCTEXOTICS WCA3a—Water-level prediction
PCTSLOUGH (WLSITE) used for initial water-level es-
im nd residual (RE LSITE
PCTPRAIRIE tfor ?;de?f(isdi;‘;rfﬁc 11818?121.5 e
PCTOTHER
dynamic clusterldynamic  SITE_63DEC RES_WLSITE RES_WLSITE Dynamic model for Group 1 stations in
SITE_64 WCA3a—RES_WLSITE prediction from
3AS3WIDEC ?ynamtict .mode(lj alnd VZI}SITEtprlediction
rom static model used for initial water-
CELL_Y level estimate.
PCTSLOUGH
PCTEXOTICS
PCTOTHER
decorrelation 3as3wldec 3AS3W1 SITE_64 3as3wldec Model to decorrelate 3AS3W1 from
SITE_64.
decorrelation 65dec SITE_65 SITE_64 65dec Model to decorrelate Site_65 from SITE_64
3AS3WIDEC and 3AS3W.
decorrelation 63decrl 3AS3WIDEC SITE_64 63decr Model to decorrelate Site_63 from SITE_64,
SITE_65DEC 3AS3W1, and Site_65.
SITE63
decorrelation 3aswdec 3AS3WIDEC SITE_64 3aswdec Model to decorrelate 3ASW from SITE_64,
SITE_65DEC 3AS3W1, Site_65, and Site_63.
SITE_63DEC
3ASW
error correction w2res SITE_63DEC WLESTERR WLESTERR Model to estimate error between initial water-
SITE_64 level estimate and measured data
3AS3WIDEC for site W2.

* Descriptions of variables are provided in Appendix 3.
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Static Model

WL-Siteneasured

WL-Siteoq1 = Fy[Static variable]

~O

WL-Siteegidyal

I
Dynamic Model
I

Y

Models developed from
“old” EDEN sites and

WL-Sitegsiqyal-pred2 = Fo[Static and Dynamic

Variables]

static data from EDEN grids

Initial estimate at a new EDEN site

Y

\

WL-Neweasured
/

WL-New,¢q1 = WL-Siteeq1 + WL-Siteeigual-pred2

WL-New qiqyal

—»@—»

\

[

Error Correction Model

WL-New,¢siqyal-pred3 = F3 [Dynamic Variables]

Final estimate at new site

Y

WL-New 4y = WL-New 41 + WL-New ¢gigual-preds

Figure 7. Three-step modeling approach to make final water-level estimates at a station.

To train and test the static model, a “stacked” dataset
(Roehl and others, 2006) was generated that included the
time series and static variables from the index EDEN gaging
stations (fig. 8). For example, in WCA3A, five index EDEN
stations were used as inputs (explanatory variables) to develop
the models to hindcast water-level data at the new stations.
The static model used in WCA3A uses 5 index stations for
predicting water levels at 11 of the new EDEN stations.
The index stations are Site 63, Site 64, Site 65, 3AS3W,
and 3ASW. The static model uses five static variables:
CELL_Y, PCTEXOTICS, PCTSLOUGH, PCTPRAIRIE, and
PCTOTHER (table 2). The static model uses two hidden layer
neurons (HLN). The R? of the training and testing datasets
are 1.0 and 0.44, respectively (clusterlstatic, table 3). The
water-level predictions from the static model for five stations
in WCA3A are shown in figure 9. The apparent baseline shifts
(“steps”) in the simulated time series represent a different sta-
tion used in the static model. The model is able to discriminate
relative differences in water levels between the stations using
only the static variables of location and percent vegetation.

Using the water-level predictions and the measured data
at the five index stations, the residual error (the difference

between the predicted and measured water level),

WL-Site ., .. is computed for each station. The residual
error manifests the dynamic variability at the station that

was not simulated by the static model and is simulated by

a second model (Fz’ fig. 7). The second model (also called

the “dynamic” model) uses time series of water level in
addition to static variables to predict WL-Site ., . For the
WCA3A example, the dynamic model uses three dynamic
input variables (Site_64, Site_63dec, 3AS3W ldec; table 2)
and four static input variables (CELL_Y, PCTSLOUGH,
PCTEXOTICS, and PCTOTHER; table 2). The input variables
and summary statistics for the decorrelation models are listed
in tables 2 and 3, respectively. The dynamic model uses three
HLNS, and the R? of the training and testing datasets are

0.969 and 0.960, respectively (clusterldynamic, table 3). The
measured and predicted residual water levels are shown in
figure 10. The dynamic model uses the same “stacked” dataset
as the static model.

To compute the initial estimate of water level at a new
EDEN station, the static variables are used in the static (F))
and dynamic (F,) models. The initial prediction is the sum
of the water-level predictions from the static model and the
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RT DATETIME WLSITE SITE_83DEC SITE_84 SITE_85DEC 3AS3WIDEC| 3ASWDEC| CELL_X | CELL_Y PCTSLOUGHFCTPRAIRIEPCTSAWGRASS PCTEXCTICS|I

776 386557500 9.48  -0.27 .12 001 £.03 016 5470000 2896800.0 0.0 0.0 26.0 30
1778 366558750 946 027 s.19 001 0.02 017 5470000 2896800.0 0.0 0.0 26.0 3.0
. 1777)  36655.0000 946  -0.23 9.8 002 0,03 017 5470000 2896800.0 0.0 0.0 26.0 3.0
Site 63 1778|  3sebs.az6o 946 023 9.8 002 0,03 017 5470000 2896800.0 0.0 0.0 9.0 30
1779 396652600 946  0.23 9.18 002 003 017 5470000 2E96600.0 0.0 0.0 9.0 30
1780 356653760 946  0.23 9.8 001 003 017 5470000 2E96600.0 0.0 0.0 9.0 30
1781 35655.5000 9.46 0.23 318 0.01 -0.03 0.16 547000.0 2E96E00.0 0.0 0a 96.0 3.0
1782 356556250 9.46 0.23 318 0.02 L.02 0.16 547000.0 2E96E00.0 0.0 0a 96.0 3.0
2302 366535000 9.20 .23 920 001 003 047 5330000 28730000 10 30 82,0 4.0
2303 366556250 9.20  0.23 920 001 0.02 048 5330000 28730000 1.0 30 220 40
2304 366537500 9.19 0.7 919 001 003 048 533000.0 28730000 1.0 30 82,0 4.0
Site 64 k2305 66538750 9.19 .27 919 001 002 047 5330000 28730000 1.0 30 82,0 4.0
2308 366580000 9.18 .23 9.18 002 003 047 5330000 28730000 1.0 30 82,0 4.0
2307  36654.1250 9.18 .23 9.18 002 003 047 5330000 28730000 1.0 30 82,0 4.0
2308 366582500 9.18  0.23 9.18 002 003 047 5330000 28730000 1.0 30 82,0 4.0
42331  396E66000 ET3 028 920 00 003 047 5282000 23654000 1.0 20 850 2.0
42332 396666260 ET2 028 920 001 002 075 5282000 23654000 1.0 20 850 2.0
42333 386E67500 ET2 0.7 9.9 001 003 045 282000 23654000 1.0 20 8.0 2.0
Site 65 42834  3seE6876D ET1 027 9.9 001 002 047 5282000 23654000 1.0 20 850 2.0
42335 36686.0000 ET1 028 2.8 002 003 07 5282000 23554000 11.0 2.0 85.0 2.0
42336 36686.1250 ET1 028 2.8 002 003 07 5282000 23554000 11.0 2.0 85.0 2.0
42337 356E62500 ET1 028 o8 002 003 07 5282000 23554000 11.0 2.0 850 2.0
53350  26666.5000 743 0.2 820 001 0.03 047 E23000.0 2B59800.0 1.0 10 830
53351  36666.5260 742  0.28 820 001 0.02 045 B28000.0 28598000 1.0 10 830
53352 26E66.7600 742 0.7 813 01 0.03 075 E23000.0 2B59800.0 1.0 10 830
JAQ3\Y EEE  eseaTe0 741 027 813 01 0.02 017 £23000.0 28598000 1.0 10 830
53354 26666.0000 741 0.2 818 02 0.03 047 E23000.0 2B59800.0 1.0 10 830
53386  36666.1260 741 0.8 918 02 0.03 047 B23000.0 2B59800.0 1.0 10 830
53356 26666.2600 741 0.8 818 02 0.03 047 E23000.0 2B59800.0 1.0 10 830
53357  26666.3760 741 0.2 818 001 0.03 047 E23000.0 2B59800.0 1.0 10 830
83383  3AG555000 810 026 820 001 003 047 E16E00.0 28746000 17.0 10 610 130
83390 366556230 8.09 026 920 .01 0.02 045 5165000 28746000 17.0 1.0 610 13.0
83391 386557500 8.038 027 949 001 0.03 048 5168000 2874600.0 17.0 1.0 610 13.0
JAQYY 2 eewerio sn 027 279 001 0.02 047 B16800.0 2874600.0 17.0 1.0 610 13.0
83393 386560000 8.03 026 9.8 002 0.03 047 B16800.0 2874600.0 17.0 1.0 610 13.0
B3394 366661250 803 026 918 002 0.03 047 E16800.0 ZBT4600.0 170 1.0 810 130
B339E 3E66E.2600 8.03 028 918 .02 £.03 L.A7 E16E00.0 28746000 17.0 1.0 &1.0 180
B3396 3E65E.3750 8.03 <12E 918 0.01 0.03 D17 S16E00.0 28746000 17.0 1.0 61.0 130

Figure 8. Example of a stacked dataset used to train the static and dynamic models. Each block represents a limited number of rows
for each index site in the dataset. Note the dynamic variables are in columns 3-8 (WLSITE to SASWDEC) and static variables begin in
column 9 (CELL_X). Not all variables in the dataset are shown.
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Figure 9. Measured (blue trace) and simulated (red trace) water levels from the static model for Water Conservation
Area 3A. The “steps” in the simulated water level indicate a different site.
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Figure 10. Measured (blue trace) and simulated (red trace) residual water levels from the dynamic model for Water
Conservation Area 3A. The residual water levels were computed from the water-level prediction from the static model.
The training dataset is shown. There are approximately 325 observations from each of the five index sites.

residual from the dynamic model. For example, to compute
the initial water-level prediction for site W2 in WCA3A
(WL-Newpre 41 fig. 7), the static variables for the new station
are used in the static and dynamic models (CELL-Y,
PCTEXOTICS, PCTSLOUGH, PCTPRAIRIE, AND
PCTOTHER) to compute WL-Site and WL-Site_ .

predl residual-pred2
(fig. 7). The results from the static and dynamic models, and
the initial water-level predictions and measured data for site

W2 are shown in figure 11. Although the initial water-level
estimates capture the dynamic variability of the measured data,
the absolute predictions are in error by approximately 1 to 2 ft.
To improve the accuracy of the water-level predictions,
a third-step model (F3, error correction model, fig. 7) is used
to estimate the residual error between the initial water-level
estimate and the measured data at the new EDEN station. The
residual error is computed by subtracting the initial water-level

1" T T T T T
: Static mode] results

WATER LEVEL, IN FEET
w

Y S e el I SR e

Dynamic model
results
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HOURLY OBSERVATIONS
Figure 11. Initial water-level estimates for site W2. Results from the static and dynamic models are shown with the measured data.

Breaks in the water-level estimates are caused by incomplete time series for one or more of the model inputs.



estimates from the measured data (fig. 12). The error-
correction model uses a set of dynamic variables to predict the
residual error from the initial water-level estimate. The time
series of computed and predicted error is shown in figure 13.
The error-correction model for site W2 (W2res) uses three
dynamic variables: Site_63DEC, Site_64, and 3AS3W1DEC
(table 2) and two HLNSs. The R? for the training and testing

Estimating Water Levels 17

datasets for the error-correction model is 0.976 and 0.974,
respectively (table 3).

The final water-level estimate at a new EDEN station is
the sum of the initial water-level estimate and the predicted
residual from the error-correction model (WL-Newresi dual-pred?’
fig. 7). The results of the error-correction model and final
water-level estimates for site W2 are shown in figure 14. The
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Figure 12. Measured water levels, initial water-level estimates, and residual time series (difference between
the measured and initial water-level estimates) for site W2. Breaks in the water-level estimates are caused by

incomplete time series for one or more of the model inputs.
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Figure 13. Residual time series between the measured and initial estimates of water levels for site W2. Breaks in the
water-level estimates are caused by incomplete time series for one or more of the model inputs.
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R? and PME for the final water-level estimate are 0.995 and
0.1 percent, respectively (table 4). Water levels for Site 64 also
are plotted to show the general hydrologic response concurrent
with the record extension for W2.

Empirical and mechanistic models perform best when
interpolating within the range of data used for training or
calibration. Although the statistics of the final water-level

estimate are good, the hindcasts should be evaluated for peri-
ods when the model extrapolates to estimate the hydrologic
response. The range of interpolation of water-level estimation
model for site W2 (fig. 14) shows that the model estimates
were extrapolated only for a brief period of low-water condi-
tions. The breaks in the water-level estimates are caused by
incomplete time series for one or more of the model inputs.

13
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L Range of model
interpolation
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Site 64
measured
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W2record measured —

extension

30,000
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Figure 14. Measured and record extension (predicted) water levels at site W2 and water levels for Site 64. The range of
measured water levels at W2 is shown with two dashed lines and used as an indication of when the W2 model is interpolating
within conditions the model was trained. Breaks in the water-level estimates are caused by incomplete time series for one or

more of the model inputs.



Table 4. Summary statistics for water-level estimates for new Everglades Depth Estimation Network (EDEN) stations.

[n, number of data values; R, Pearson coefficient; R?, coefficient of determination; Min, minimum; ft, feet; Max, maximum; ME, mean error; RMSE,
root mean square error; PME, percent model error]

Estimating Water Levels

Data range
Site n R R? Min, Max, ME RMSE PME
in ft in ft
Water Conservation Area 1 (fig. 15)
North_CAl 41,721 0.943 0.889 13.82 16.38 -0.046 0.134 5.2
South_CA1 43,409 0.991 0.983 12.85 15.90 0.008 0.088 2.9
Water Conservation Area 2 (fig. 17)
EDENI11 2,637 0.950 0.902 10.97 13.19 -0.054 0.044 2.0
EDEN13 1,968 0.955 0.912 7.07 7.69 -0.018 0.006 1.0
Water Conservation Area 3A (fig. 20)
3A-5 5,684 0.998 0.995 8.15 10.10 0.002 0.001 0.1
EDEN4 2,399 0.999 0.998 6.96 10.30 0.001 0.002 0.1
EDENS 1,653 0.999 0.999 8.01 10.20 0.004 0.001 0.1
EDENS 2,442 0.999 0.999 6.79 9.19 0.001 0.001 0.0
EDEN9 925 0.999 0.998 7.69 10.55 -0.006 0.004 0.1
EDEN12 7,648 0.999 0.998 6.84 9.59 -0.002 0.001 0.0
EDEN14 969 0.906 0.821 8.66 9.59 0.011 0.010 1.1
w2 7,648 0.998 0.995 6.86 9.42 0.008 0.003 0.1
W5 7,648 0.999 0.998 6.84 9.59 -0.001 0.001 0.0
W11 7,628 0.999 0.998 7.08 10.08 -0.012 0.002 0.1
W14 7,628 0.998 0.997 7.00 10.00 -0.013 0.003 0.1
W15 3,859 0.999 0.998 7.47 9.67 -0.001 0.001 0.0
W18 7,628 0.998 0.996 7.92 10.21 -0.000 0.002 0.1
Water Conservation Area 3B (fig. 26)
TI-8 5,684 0.996 0.993 4.59 6.16 0.002 0.001 0.1
TI-9 5,684 0.996 0.992 5.29 6.42 0.009 0.001 0.1
EDEN7 2,419 0.998 0.996 5.24 6.96 0.008 0.001 0.1
EDENI10 2,419 0.995 0.990 5.06 6.32 0.007 0.002 0.1
Big Cypress National Preserve (fig. 29)
EDENI1 3,864 0.960 0.921 7.13 7.82 0.018 0.003 0.4
EDENG6 1,591 0.984 0.968 8.76 10.73 0.030 0.007 0.4
Everglades National Park (fig. 31)
EDEN3 5,294 0.989 0.978 0.07 1.75 -0.042 0.006 0.4
Metl 1,238 0.994 0.989 5.23 5.76 0.000 0.000 0.0

19
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Extension of Water-Level Records
for the Everglades Depth Estimation
Network (EDEN)

The water-level record extensions for six areas of the
Everglades are summarized in the following sections of the
report. The hindcast and index stations for each area are shown
in a figure followed by the measured and estimated time
series. Water levels for one of the index stations in each area
are also plotted to show the general hydrologic response of the
area for the 7 years concurrent with the record extension. The
datasets with the record extensions are available on the EDEN
Web page on the South Florida Information Access (SOFIA)
Web site (http://sofia.usgs.gov/eden/index.php).
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Hydrologic Record Extension of Water-Level Data in the EDEN Using Artificial Neural Network Models, 2000-2006

Water Conservation Area 1 (WCA1)

For WCA1, water-level records were extended for two
stations—North_ CA1 and South_ CA1—with four stations
being used as index stations—Site 7, Site 8T, Site 9, and
WCAIME (fig. 15; table 1). The static and dynamic models
used three static-input variables (CELL_Y, PCTPRAIRIE, and
PCTEXOTICS). The dynamic models also used four water-
level input variables (SITE_7, SITESDEC2, WCAIMEDEC,
and SITE9DEC). The measured and estimated water levels for
the two stations are shown in figure 16. Site 7 also is plotted
to show the general water-level behavior through the record
extension. The water-level estimates for the South. CA1
gaging station are more accurate than those for the North_CA1
gaging station with R? values of 0.98 and 0.89, respectively,
and PME values of 2.9 and 5.2, respectively (table 4). Both
sets of water-level estimates capture the full range of the
measured data.
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Transverse Mercator projection

NAD 83 datum

stations for Water
Conservation Area 1.



Extension of Water-Level Records for the Everglades Depth Estimation Network (EDEN)
17
North_CA1
- North_CA1
North_CA1
= 16 | North_CA1 extension
e measured
= L
0
SR LES
o
oc L
i
<§t L Site 7 measured ——
13 1 1 1 1 1 1 1 1 1 1 1
17
South_CA1
i South_CA1
Site 7 measured
16 1 measured —
i i
=
Z 15¢
)
L L
=
=
oc 14 I
L
= | /
= South_CA1
13 T extension
12 Il Il Il Il Il Il Il Il Il Il Il
0 10,000 20,000 30,000 40,000 50,000 60,000
HOURLY OBSERVATIONS

Figure 16. Water-level record extensions for sites North_CA1 and South_CA1 in Water Conservation Area 1 for the period
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more

of the model inputs.
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Water Conservation Area 2 (WCA2)

For WCAZ2, water-level records were extended for two
stations—EDENI11 and EDEN13. The two new EDEN stations
had very limited periods of record of approximately 4 months
(table 1). For EDEN11, the water-level estimates were made
using the three-step model described previously. The static and
dynamic models used four static-input variables (CELL_X,
PCTPRAIRIE, PCTEXOTICS, and PCTUPLAND). Two
index stations were used in the models—WCA2E]1 and
WCAZ2F]1 (fig. 17; table 1). The measured and estimated
water levels for the EDEN11 station are shown in figure 18.
WCAZ2E] is also plotted with the hindcast to show the general
water-level behavior through the record extension. The R?

EDEN Using Artificial Neural Network Models, 2000-2006

for the estimates is 0.90 with a PME of 2.0 percent (table 4).
The measured data cover a large range of water levels, and
there are only a few periods where the models extrapolated to
estimate low and high water-level periods.

For EDEN13, the water-level estimates using the three-
step modeling approach produced an unsatisfactory result,
probably due to the limited number and spatial extent of index
stations. An approach used in the snail kite study (Conrads
and others, 2006) was used to extend the water levels for this
station. Highly correlated data, by definition, are dynamically
similar. The modeling challenge is not how the time series are
similar but how they are dynamically different. The difference
between EDEN13 and Site 99 (the index station closest to
the station, fig. 17) was computed (fig.19A) to emphasize the
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dynamic difference between the two stations. The difference Although these statistics indicate a good model, it should be
between Site 99 and EDEN13 was modeled using Site 99 noted that because of missing data at index station S142H,
and S142H as inputs. The final prediction is the sum of the the range of EDEN13 water-level estimates was limited to
EDEN13 difference and the Site 99 water level, which is approximately half of the hindcasted range. Water levels
shown in figure 19B with the Site 99 measured data. The R? beyond this range require an extrapolation of the model.

for the estimates is 0.91, and the PME is 1.0 percent (table 4).
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Figure 18. Water-level record extensions for site EDEN11 in Water Conservation Area 2 for the period October 1, 1999, to
September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more of the model
inputs.
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Figure 19. Difference in (A) water levels between Site 99 and site EDEN13 and (B) water-level record extensions for
site EDEN13 in Water Conservation Area 2 for the period October 1, 1999, to September 30, 2006. Breaks in the water-
level estimates are caused by incomplete time series for one or more of the model inputs.
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Extension of Water-Level Records for the Everglades Depth Estimation Network (EDEN)

Water Conservation Area 3A (WCA3A)

For WCA3A, water-level records were extended for
13 stations. The large number of index stations was separated
into groups of similar hydrologic behaviors. Previous cluster
analysis of the EDEN stations in the area indicated two groups
of stations that had similar water-level behaviors (Conrads
and Roehl, 2006a). Water-level data for EDEN, including
WCA3A, manifests short-term variability and long-term
hydrologic behavior. A dynamic clustering technique (Roehl
and others, 2006) was used to cluster stations with similar
long-term behavior. The hourly data were converted to daily
values of 7-day moving-window averages, and a cross-

correlation matrix of the Pearson -
T

25

11 stations in group 1 are shown in figures 21-24. Site 64 also
is plotted with the hindcasts for group 1 to show the general
water-level behavior through the record extension. For the
majority of the stations, the water-level estimation models
cover a large range of the data and do not have to extrapolate
over large portions of the range of the hindcasted data. The
exception is EDENO (fig. 22) for which there was less than
40 days of measured data (tables 1 and 4).

For group 2 in WCA3A, there are two hindcast stations
(EDENS and EDEN14) and three index stations (Site 62, 3A9,
and 3A12) (fig. 20). The static model used three static-input
variables (CELL_X, CELL_Y, and PCTPRAIRIE) and the
dynamic model used two static-input variables (CELL_Y and

coefficient of selected water-level

80°40° 80°30°
T T

time series was generated. The
Pearson coefficient provides a
numerical value of the amount
of information that is shared
between two time series, or

w20k EXPLANATION
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Q. Hindcast station and number, group 2

B2 A Index station and number, group 2

signals. The cluster analysis
of the cross-correlation matrix
grouped together time series
of similar behaviors. The rows
were clustered using a k-means
algorithm. The number of classes
was determined by the sensitivity
of the mean square error to k.
The analysis showed two classes
(groups) of stations of similar
behavior in WCA3A (fig. 20).
Of the two groups of index
and hindcast stations in WCA3A,
11 of the new EDEN stations are
in group 1, and 2 are in group 2
(table 1; fig. 20). For all of the
new EDEN stations in WCA3A,
the three-step modeling
approach was used for making
the water-level estimates. For
the WCA3A group 1 stations,
five stations were used as
index stations: Site 63, Site 64,
Site 65, 3ASW, and 3AS3W1.
The static and dynamic models
used five static-input variables
(CELL_X, PCTEXOTICS,
PCTSLOUTH, PCTPRAIRIE,
and PCTOTHER). The R? for the
water-level estimates for the 11
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Figure 21. Water-level record extensions for sites 3A-5, EDEN4, and EDENS in Water Conservation Area 3A for the
period October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time
series for one or more of the model inputs.
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for one or more of the model inputs.

27



28 Hydrologic Record Extension of Water-Level Data in the EDEN Using Artificial Neural Network Models, 2000-2006

13 T T T T T T T T T T T T

121 Site 64 measured b
L ] 4
1"

104 4

WATER LEVEL, IN FEET

i T W5 extension WS5 measured g

12 Site 64 measured b

WATER LEVEL, IN FEET

Tt W11 .

— .
i W11 extension measured -

—_
N
T

Site 64 measured b

L | i

—_ —_
o —_
T T
1 1

WATER LEVEL, IN FEET

7k —— W14 extension / i

W14 measured

30,000 40,000 50,000 60,000

HOURLY OBSERVATIONS

0 10,000 20,000

Figure 23. Water-level record extensions for sites W5, W11, and W14 in Water Conservation Area 3A for the period
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for
one or more of the model inputs.
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Figure 24. Water-level record extensions for sites W15 and W18 in Water Conservation Area 3A for the period October 1, 1999, to
September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more of the model inputs.
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PCTPRAIRIE) in addition to the dynamic input variables from
the three index stations. The measured and estimated water
levels for the group 2 hindcasts are shown in figure 25. Similar
to EDENDO in the group 1 stations, EDEN5 and EDEN14

have short periods of record. EDENS has less than 4 months
of data, and EDEN14 has 2 months of data. The measured
data for EDENS is at the extremes of the measured range of
data with a large data gap in the mid-range of the data. The
water-level estimates capture the overall trend of the high and

low water levels as evident in the R? of 0.99 (table 4). Because
the measured water levels are during periods of the low and
high water levels, the model only has to extrapolate for a few
high and low water periods. The measured data for EDEN14
are limited to the mid and lower water levels. The R? for the
water-level estimate for EDEN14 is 0.82, the lowest of all the
water-level estimates. The model has to extrapolate to estimate
all of the high-water conditions.
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Figure 25. \Water-level record extensions for sites EDEN5 and EDEN14 in Water Conservation Area 3A for the period

October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one

or more of the model inputs.
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Water Conservation Area 3B (WCA3B)

For WCA3B, water-level records were extended for four
stations—TI1-8, TI-9, EDEN7, and EDEN10 (fig. 26; table 1).
The static and dynamic models used three static-input vari-
ables (pctprairie, pctsawgrass, and pctupland). The dynamic
models used dynamic-input variables from four index stations.
The measured and estimated water levels for the WCA3B

31

hindcasts are shown in figures 27 and 28 in addition to water
levels for index station Site 69. All of the final estimates were
able to accurately simulate the measured data (R? above 0.99),
but only one station, EDEN7 (fig. 28), had measured data with
a range similar to the range of the hindcasts. The other three
stations did not have data in the higher water-level range, and
the model had to extrapolate to estimate high-water conditions
at these stations.
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Figure 26.

Index and hindcast stations for Water Conservation Area 3B.
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Figure 27.
1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more of the
model inputs.
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Water-level record extensions for sites TI-8 and TI-9 in Water Conservation Area 3B for the period October 1,
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Figure 28. Water-level record extensions for sites EDEN7 and EDEN10 in Water Conservation Area 3B for the period
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one

or more of the model inputs.
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Big Cypress National Preserve (BCNP)

For BCNP, water-level records were extended for two
stations—EDENT1 and EDENG (fig. 29; table 1). The initial
three-step model produced satisfactory water-level estimates
for EDEN1 but not for EDEN6. To improve the water-level
estimates for EDENG, the same three-step modeling approach
was used but with a different combination of static- and
dynamic-input variables. The dynamic model for EDENG also
used water-level data from 3ASW in WCA3A (fig. 20). As
with the other areas, the measured data from the new EDEN
station were not used until computing the residual error of
the initial water-level estimates. The static model for EDEN1
used five static-input variables, whereas the static model for
EDENG used two static-input variables. The dynamic model

81°05' 81° 80°55" 80°50"
T T

for EDEN1 used four static-input variables and four dynamic-
input variables, whereas the dynamic model for EDENG6 used
two static variables and three dynamic variables.

The measured and estimated water levels for the two
stations are shown in figure 30. The R? for the water-level
estimates for EDEN1 and EDENG6 are 0.92 and 0.97,
respectively (table 4). Water levels for BCA9 also are shown
with the hindcasts for EDEN1, and water levels for BCAS are
shown with the hindcasts for EDENG (fig. 30). The measured
data for the two new EDEN stations in BCNP are limited to
the mid- and high-water ranges. The measured data range for
EDENI is less than a foot, whereas the range of the hindcasts
is more than 3 ft. For EDENG, the range of the measured data
is about 2 ft, and the range of the hindcasts is about 5 ft.
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Figure 29. Index and hindcast stations
for Big Cypress National Preserve.
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Figure 30. Water-level record extensions for sites EDEN1 and EDENG in Big Cypress National Preserve for the period
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or

more of the model inputs.
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Everglades National Park (ENP)

For the ENP, water-level records were extended for two
stations—EDEN3 and Metl (fig. 31; table 1). Similar to the
two new EDEN stations in BCNP, the stations were modeled
separately with the three-step modeling approach. Both
static models used four static-input variables. Three of the
static-input variables were the same (CELL_Y, pctsawgrass,
and pctSLOUGH) for both models. The static model for Met1
included percent upland (PCTUPLAND), and the static model
for EDEN3 included percent prairie (PCTPRAIRIE). Both

80°50"
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dynamic models used four static variables but used two dif-
ferent combinations of five dynamic variables. The measured
and estimated water levels for the two stations are shown in
figure 32. The R? for the water-level estimates for EDEN3 and
Metl is 0.98 and 0.99, respectively (table 4). Water levels for
P34 also are shown with the hindcasts for EDEN3, and water
levels for NE1 are shown with the hindcasts for Metl. The
range of the measured data for EDEN3 covers the majority
of the range of the hindcasts (fig. 32). The range of measured
data for Metl is less than 0.5 ft, and the model must extrapo-
late to estimate annual high and low water.
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Figure 31.

Index and hindcast stations for Everglades National Park.
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Figure 32. Water-level record extensions for sites EDEN3 and Met1 in the Everglades National Park for the period October 1,
1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more of the model
inputs.
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Summary and Discussion

The Everglades Depth Estimation Network (EDEN) is
an integrated network of real-time water-level gaging stations,
ground-elevation models, and water-surface models. The
network provides scientists, engineers, and water-resource
managers with current (2000—present) water-depth information
for the entire freshwater portion of the greater Everglades.

To increase the accuracy of the water-surface models, 25
real-time gaging stations were added to EDEN. To incorporate
the newly added stations to the 7-year EDEN database of 253
water-level gaging stations in the greater Everglades, the short-
term water-level records (generally less than 1 year) needed to
be simulated back in time (hindcasted) to be concurrent with
data from the established gaging stations. A three-step model-
ing approach using artificial neural networks (ANN) models
was used to estimate the water levels at the new stations. The
ANN models used static variables of gaging station location
and percent vegetation in addition to dynamic variables of
water-level data from the established EDEN gaging stations.
The final step of the modeling approach was to simulate the
computed error of the initial estimate to increase the accuracy
of the final water-level estimate.

The three-step modeling approach for estimating water
levels produced satisfactory results, with coefficients of
determination for 21 of the 25 for the new EDEN stations
greater than 0.95 and all of the estimates greater than 0.82.
For some new EDEN stations having limited data, the record
extension (hindcasts) included periods beyond the range of
data used to train the water-level estimate models. A compari-
son of the hindcasts from these models with long-term water
levels proximal to the new EDEN station indicated that the
water-level estimates showed a similar hydrologic response to
the long-term water levels.

There are opportunities to improve the completeness
and accuracy of the hindcasts of the new EDEN stations. The
completeness of the hindcasts could be improved by filling
in the missing data for the established EDEN stations using
similar techniques as presented in this report, which in turn
would provide more complete input time series to the water-
level estimation models for the new stations.

For the majority of the new EDEN stations, there
was 1 year or less of data to train and test the water-level
estimation models. Over time, a greater record of hydrologic
behaviors at the new EDEN stations will be collected,
including inter-annual variability. Retraining the water-level
estimation ANN models will improve the ability of the models
to predict the behaviors at the new EDEN stations. Additional
cell attribute data for the EDEN grid and enhancements to the
existing attribute data will also improve the models.
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1. Summary of artificial neural network models used in the study.
2. Summary statistics for the models used in the study.

3. Variables used in the artificial neural network models.
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Appendix 3. Variables used in the artificial neural network models.

[NAVDS8S, North American Vertical Datum of 1988]

Variables Description Variables Description
3A12 water level at site 3A12 PCTSAWGRASS  percent sawgrass
3A12DEC decorrelated water level at site 3A12 PCTSLOUGH percent slough
3A9 water level at site 3A9 PCTUPLAND percent upland
3A9DEC decorrelated water level at site 3AS3W1 S142H water level at site S142H
3AS3WIDEC decorrelated water level at site 3A10 SITE_62 water level at Site 62
3ASW water level at site 3ASW SITE_63 water level at Site 63
3ASWDEC decorrelated water level at site 3ASW SITE_63DEC decorrelated water level at Site 63
BCA10 water level at site BCA10 SITE_64 water level at Site 64
BCA10DEC decorrelated water level at site BCA11 SITE_65 water level at Site 65
BCAS water level at site BCAS SITE_65DEC decorrelated water level at Site 65
BCA9 water level at site BCA9 SITE_69C water level at Site 69 adjusted to NAVD88
CELL_X UTM Easting of cell center SITE_7 water level at Site 7
CELL_Y UTM Northing of cell center SITE_71C water level at Site 71 adjusted to NAVD88
L28GAP water level at site L28GAP SITE_76 water level at Site 76
L28GAPDEC decorrelated water level at site L28§GAP SITE_8T water level at Site 8T
LOOPIT water level at site LOOPIT SITE_9 water level at Site 9
LOOPITDEC decorrelated water level at site LOOP1T SITE_99 water level at Site 99
LOOP2T water level at site LOOP2T SITE71DEC decorrelated water level at Site 71
NEI1 water level at site NE1 SITE76DEC decorrelated water level at Site 76
NE2 water level at site NE2 SITESTDEC decorrelated water level at Site 8T
NE2DEC decorrelated water level at site NE2 SITESTDEC2 decorrelated water level at Site 8T-second
NESRS3 water level at site NESRS3 version
NESRS3DEC decorrelated water level at site NESRS3 SITESDEC decorrelated water level at Site 9
NP201 water level at site NP201 SRSI water level at site SRS1
NP201DEC decorrelated water level at site NP201 SRSIC water level at site SRSladjusted to NAVD8S
oT water level at site OT SRS1DEC decorrelated water level at site SRS1
OTDEC decorrelated water level at site OT ™C water level at site TMC
P34 water level at site P34 TMCDEC decorrelated water level at site TMC
P35 water level at site P35 WCAIME water level at sitt WCAIME
P35DEC decorrelated water level at site P35 WCAIMEDEC decorrelated water level at site WCAIME
P36 water level at site P36 WCAIMEDEC2  decorrelated water level at sitt WCAIME-
second version
P36DEC decorrelated water level at site P36 WCAEL water level at site WCA2EL
PCTEXOTICS  percent exotics WCA2FI water level at site WCA2FI
PCTOTHER percent other WCA2F1DEC decorrelated water level at site WCA2F1
PCTPRAIRIE percent prairie
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