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Abstract
The Everglades Depth Estimation Network (EDEN) is 

an integrated network of real-time water-level gaging stations, 
ground-elevation models, and water-surface models designed 
to provide scientists, engineers, and water-resource managers 
with current (2000–present) water-depth information for the 
entire freshwater portion of the greater Everglades. The U.S. 
Geological Survey Greater Everglades Priority Ecosystem 
Science provides support for EDEN and the goal of providing 
quality assured monitoring data for the U.S. Army Corps of 
Engineers Comprehensive Everglades Restoration Plan. To 
increase the accuracy of the water-surface models, 25 real-
time water-level gaging stations were added to the network 
of 253 established water-level gaging stations. To incorporate 
the data from the newly added stations to the 7-year EDEN 
database in the greater Everglades, the short-term water-level 
records (generally less than 1 year) needed to be simulated 
back in time (hindcasted) to be concurrent with data from 
the established gaging stations in the database. A three-step 
modeling approach using artificial neural network models 
was used to estimate the water levels at the new stations. The 
artificial neural network models used static variables that 
represent the gaging station location and percent vegetation in 
addition to dynamic variables that represent water-level data 
from the established EDEN gaging stations. The final step of 
the modeling approach was to simulate the computed error 
of the initial estimate to increase the accuracy of the final 
water-level estimate. 

The three-step modeling approach for estimating water 
levels at the new EDEN gaging stations produced satisfactory 
results. The coefficients of determination (R2) for 21 of the 
25 estimates were greater than 0.95, and all of the estimates 
(25 of 25) were greater than 0.82. The model estimates showed 
good agreement with the measured data. For some new EDEN 
stations with limited measured data, the record extension 
(hindcasts) included periods beyond the range of the data used 

to train the artificial neural network models. The comparison 
of the hindcasts with long-term water-level data proximal to 
the new EDEN gaging stations indicated that the water-level 
estimates were reasonable. The percent model error (root 
mean square error divided by the range of the measured data) 
was less than 6 percent, and for the majority of stations (20 of 
25), the percent model error was less than 1 percent.

Introduction
The Everglades Depth Estimation Network (EDEN) is 

an integrated network of real-time water-level gaging stations, 
ground-elevation models, and water-surface models designed 
to provide scientists, engineers, and water-resource managers 
with current (2000–present) water-depth information for the 
entire freshwater portion of the greater Everglades (Telis, 
2005, 2006). EDEN is presented on a 400-square-meter (m2) 
grid, and EDEN offers a consistent and documented dataset 
that can be used by scientists and managers to (1) guide 
large-scale field operations, (2) integrate hydrologic and 
ecological responses, and (3) support biological and ecological 
assessments that measure ecosystem responses to the Compre-
hensive Everglades Restoration Plan (CERP; U.S. Army Corps 
of Engineers, 1999). The target users of EDEN are biologists 
and ecologists who can use the information to examine trophic 
level responses to hydrodynamic changes in the Everglades. 
The EDEN database establishes a 7-year dataset of baseline 
conditions prior to the implementation of the CERP that offers 
investigators a single repository for historic hourly water-level 
data.

To estimate water depths in the greater Everglades, 
geographic information system (GIS) models have been 
developed to determine the ground elevation and water-surface 
elevation for the freshwater portion of the Everglades. The 
water-depth estimates are the differences between the two 
surfaces. Data to support the ground-elevation model include 
elevation measurements at over 50,000 sites (Desmond, 2003). 
Data to support the water-surface model include continuous 
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the Everglades Depth Estimation Network (EDEN) Using 
Artificial Neural Network Models, 2000–2006

By Paul A. Conrads and Edwin A. Roehl, Jr.1
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Figure 1. Locations of Everglades Depth Estimation Network (EDEN) gaging stations in southern 
Florida (modified from Pearlstine and others, 2007).

water levels at 253 stations, including 25 stations that were 
added to the EDEN database in 2006 (fig. 1). 

For the development of the ground-elevation model 
(Jones and Price, 2007), the EDEN domain was divided into a 
large number of equal-sized squares (“cells”) that in total are 
referred to as the “grid.” The grid includes information on the 

characteristics of each cell, such as centroid location, the area 
of the Everglades it represents, elevation, and percent vegeta-
tion type (slough, prairie, sawgrass, upland, exotic, and other). 
The large number of highly accurate elevation data allows for 
refinement of the ground-elevation model. The geostatistical 
technique of kriging was selected for the EDEN ground- 
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elevation model following extensive testing of multiple inter-
polation techniques. Kriging produced the lowest average error 
for validating elevation points and provides useful diagnostic 
surfaces. To account for variations within subregions of the 
EDEN area, individual geostatistical models were created for 

each water conservation area (WCA), the Everglades National 
Park (ENP), and portions of Big Cypress National Preserve 
(BCNP). These individual models were combined to create a 
single, 400-m2 resolution elevation model for the entire EDEN 
domain (fig. 2).

Figure 2. The Everglades Depth Estimation Network (EDEN) digital elevation model for Water 
Conservation Areas (1, 2A, 2B, 3AN, 3AS, 3B), Big Cypress National Preserve, and Everglades 
National Park (from Pearlstine and others, 2007).
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A water-surface model was developed in GIS using the 
EDEN grid described above. The EDEN water-surface model 
interpolates measured water levels from the EDEN continuous 
monitoring network to ungaged locations using radial basis 
functions (RBF) with multiquadric regression (Pearlstine and 
others, 2007). The model produces a continuous water surface 
for any day within the period of record in the EDEN database. 
An example of the water surface for a sample day is shown in 
figure 3. 

Twenty-five stations were added to EDEN in 2006 to 
address water-level data gaps identified by scientists and 
hydrologists in the original EDEN configuration and to 
improve the continuous water-surface model. To incorporate 
the additional data into the EDEN database, the water-level 
records for the new stations needed to be extended back in 
time (hindcasted) to be concurrent with the records in the 
EDEN database. The U.S. Geological Survey (USGS) South 
Carolina Water Science Center, as part of the EDEN project 
team, developed artificial neural network (ANN) models to 
hindcast data from the new EDEN stations. An ANN model 
is a flexible mathematical structure capable of describing 
complex nonlinear relations between input and output datasets. 

The architecture of ANN models is loosely based on the 
biological nervous system (Hinton, 1992). 

Accurately hindcasting the hydrologic responses at the 
new locations can be challenging due to the limited number 
of reference gaging stations and a limited understanding of 
complex interactions between hydrology and topography. 
Techniques that often are used to hindcast hydrologic 
responses at ungaged locations include combinations of linear 
regression and interpolation; however, the dynamics between 
hydrology, topography, and vegetation often are nonlinear. 
This report presents the application of cascading ANN models 
to predict water levels at 23 new EDEN stations that were 
instrumented in 2006 and 2 EDEN stations in WCA1 with 
periods of record beginning in 2001. The ANN models were 
used to extend the 25 stations to be concurrent with the EDEN 
database beginning in January 2000.

To meet the objectives of this study and previous 
studies, the USGS entered into a Cooperative Research and 
Development Agreement (CRADA) with Advanced Data 
Mining (ADM) in 2002 to collaborate on applying data 
mining and ANN models to water-resources investigations. 
The emerging field of data mining addresses the issue of 

extracting information from large databases (Weiss 
and Indurkhya, 1998). Data mining is a powerful tool 
for converting large databases into knowledge for 
solving problems that are otherwise imponderable 
because of the large numbers of explanatory variables 
or poorly understood process physics. This knowledge 
encompasses understanding cause and effect relations 
and predicting the consequences of alternative actions. 
Data-mining methods come from different technical 
fields, such as signal processing, statistics, artificial 
intelligence, and advanced visualization. Data mining 
is used extensively in financial services, banking, 
advertising, manufacturing, and e-commerce to 
classify the behaviors of organizations and individuals 
and to predict future outcomes. 

Purpose and Scope 

This report documents the water-level record 
extensions (hindcasts) of 25 stations in the freshwater 
portion of the Everglades. The geographical extent 
of the hindcasts includes gaging stations in WCA1, 
WCA2, WCA3A, WCA3B, BCNP, and the ENP. An 
important part of the USGS mission is to provide 
scientific information for the effective water-resources 
management of the Nation. To assess the quantity 
and quality of the Nation’s surface water, the USGS 
collects hydrologic and water-quality data from rivers, 
lakes, estuaries, and wetlands using standardized 
methods, and maintains the data from these stations 
in a national database. The techniques presented in 
this report demonstrate how valuable information can 
be extracted from existing databases to assist local, 

Figure 3. The Everglades Depth Estimation Network (EDEN) water 
surface model for September 10, 2006 (modified from Pearlstine and others, 
2007).
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state, and Federal agencies. 
The application of data-mining 
techniques, including ANN 
models, demonstrates how 
empirical models can be devel-
oped to hindcast time series of 
complex hydrologic systems and 
how disparate databases can be 
integrated.

Description of Study Area 

The study area is within the 
greater Everglades area, which 
extends from south of Lake 
Okeechobee to the southern part 
of the ENP (fig. 4) This area is 
a wetlands system that is about 
50 miles (mi) wide and about 
100 mi long. The Everglades 
is regarded as unique in the 
world because it is not primarily 
associated with a natural river 
system but is itself a wide and 
shallow “river” that transports 
water by sheet flow from Lake 
Okeechobee to the Gulf of 
Mexico. The slopes with this 
shallow “river” are generally less 
than about 0.2 foot per mile (ft/
mi; German, 2000).

The Everglades contains 
several types of environments, 
including freshwater marshes, 
tree islands, pinelands, mangrove 
swamps, and shallow coastal 
marine waters. This study is 
concerned with freshwater marshes, 
the predominant Everglades 
ecosystem. These marshes are characterized by sawgrass 
stands of varying density and height, ranging from 2 to 3 feet 
(ft) above land surface to 9 ft in some northern areas. Other 
common emergent plants in the freshwater marshes include 
spike rush, muhly grass, and, in some areas, cattails. Typical 
topographic and vegetative features include ridge and slough, 
tree islands, wet prairie, sawgrass, and marl prairie (German, 
2000).

The annual rainfall in the Everglades generally is 
between 50 and 60 inches (in.), depending on location, with 
substantially more rainfall along the eastern edge (Lodge, 
1994). The rainfall has a distinct seasonal pattern, with a wet 
season from May or June through September or October, that 
accounts for about 75 percent of the annual total. Water depths 
in the freshwater marshes range from 0 to 3 ft during the wet 
season. Minimum seasonal water levels generally occur in 

May before onset of the wet season. In particularly dry 
years, large portions of the Everglades may become dry and 
subject to wildfires. Heavy rainfall associated with tropical 
depressions, storms, and hurricanes can have a large effect on 
water levels. A single such event can increase water levels by 
a foot or more over large parts of the Everglades and because 
of the slow runoff rates, this can effect water levels for months 
(German, 2000).

Previous Studies 

Estimating hydrologic and water-quality conditions at 
ungaged sites by using data-mining techniques and ANN 
models has been used in the Everglades, western Oregon, 
and Wisconsin. Conrads and others (2006) used data-mining 
techniques in a snail kite study in WCA3A to hindcast 

Figure 4. Greater Everglades, Florida (modified from German, 2000).
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short-term (less than 5 years) daily water-depth datasets using 
long-term (greater than 15 years) daily water-level data. The 
principal objective of the snail kite study was to separate 
plant community response resulting from typical seasonal and 
inter-annual variances in hydrologic regimes. The vegetative 
community structure of these sites is an expression of present 
and historic hydrologic conditions. A critical element of 
the study was to determine how the vegetative communities 
respond to temporal and spatial changes in hydrology. 
Artificial neural network models were developed to hindcast 
hydrologic histories at 17 transects dating back to 1991 to 
help ecologists in analyzing the water depth and hydroperiods 
over a large range of hydrologic conditions and to integrate 
long-term ecological data. 

Artificial neural network models have been applied in 
western Oregon to estimate stream temperature at ungaged 
sites (Risley and others, 2003). In that study, a dynamic 
clustering technique (Roehl and others, 2006) was used to 
subset 142 temperature stations from first-, second-, and 
third-order streams into three groups of similar dynamic 
behaviors. Using categorical (static) variables and time-series 
variables, water-temperature models were developed for 
ungaged sites. Critical input variables included riparian shade, 
station elevation, and percentage of forested area of the basin. 
Coefficients of determination (R2) and root mean square errors 
(RMSE) for the models ranged from 0.88 to 0.99 and 0.05 to 
0.59 degrees Celsius (°C), respectively.

Stewart and others (2006) describe a modeling applica-
tion in Wisconsin that, like the Oregon modeling, predicts 
stream temperatures from climate signals, such as ambient 
temperature and rainfall, and categorical station attributes, 
such as land cover and drainage area. The application’s ANNs 
were trained on data, including summer-month daily average 
stream temperature time series, from 254 stations. This work 
was conceptually different from the Oregon application, 
which used concurrently measured signals. The Wisconsin 
stream temperatures were measured during different summers 
over 13 years. This required that an alternative time series 
clustering algorithm be developed that would still segment 
the signals according to their dynamic behaviors. The R2 
and RMSE for the predictions at 31 test stations not used in 
ANN training ranged from 0.62 to 0.75 and 1.7 °C to 2.4 °C, 
respectively. The ANN predictions accurately tracked the 
day-to-day variability at the different stations, but the primary 
source of error was offset station-to-station baseline (mean 
summer) temperatures. The predicted baselines depend largely 
on the ANN’s categorical input variables, suggesting that the 
42 variables used can only provide a partial explanation of the 
causes of station-to-station variability or, more likely, that the 
measurements provided for them are quite noisy.

An approach similar to that used in Oregon was tested to 
predict water depths at ungaged locations in a subdomain of 
EDEN (Conrads and Roehl, 2006b). Using a combination of 
static and dynamic variables, predictions were generated in 
two modeling steps. The dynamic variables were 30-month 
time series of daily water depths at 16 stations and water 

levels at 3 other stations. Static variables were obtained from 
the EDEN 400-m2 grid. Values included coordinates of cell 
centroids and percentage vegetation types (slough, prairie, 
sawgrass, or upland) for approximately 2,300 cells, covering 
370 square kilometers. The first ANN model simulated water 
depths using static (categorical) input variables to predict a 
constant baseline water depth (mean for the period of record). 
The second ANN model predicted day-to-day variability about 
the water-depth baseline by using a combination of static 
and dynamic variable inputs. A complete estimation of water 
depth at a given cell was computed by summing the outputs of 
the two models. Five of the water-depth gaging stations were 
withheld from model development to validate model accuracy. 
Using this methodology, prediction accuracy was improved, 
resulting in an average RMSE prediction error at validation 
gaging stations of only 0.1 ft (3 centimeters), or 4 percent of 
the dynamic range.

Approach

The majority of the hindcasts estimated for this study 
used a modification of the two-step modeling approach using 
static and dynamic data described in Conrads and Roehl 
(2006b). The modification was the addition of a third step 
error-correction model. The general approach for estimating 
water levels at a new station was to

Identify the EDEN stations that have similar hydro-1. 
logic responses in a particular area, 

Build databases for the static and dynamic variables, 2. 

Decorrelate time-series inputs, 3. 

Train the static and dynamic ANN models, 4. 

Compute initial water-level estimates and residual 5. 
error from the measured data, 

Train error-correction ANN models, and 6. 

Make final water-level estimates. 7. 

The process was then repeated for subsequent stations and 
areas in the Everglades. For a few stations (3 of the 25) with 
limited data and(or) limited data at nearby stations, a simpler 
single model approach was used. 

Data-Collection Network 
The water-level record extensions (hindcasts) use static 

and dynamic data from the EDEN monitoring network. 
The EDEN monitoring network includes ground-elevation 
measurements and continuous water-level data. Highly 
accurate ground-surface elevation data, collected by the USGS 
(Desmond, 2003), cover nearly the entire greater Everglades 
area. The elevation data were collected at over 50,000 points 
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with an approximate spacing of 400 meters (m) to the North 
American Vertical Datum of 1988 (NAVD 88). The static 
variables were derived from the GIS cell attribute data of the 
400-m EDEN grid. Attributes include location of the centroid 
of the cell and percent vegetation type (slough, prairie, 
sawgrass, upland, exotic, and other). 

The EDEN database is composed of hourly water-level 
data from 253 gaging stations and includes freshwater 
marsh stations, boundary stations on canals, and coastal 
stations operated by the BCNP, ENP, the South Florida 
Water Management District (SFWMD), and the USGS. In 
this report, the names of the EDEN stations may follow the 
naming convention of the agency that maintains the stations. 
Stations with “site” in the name, such as Site 64 or Site 99, 
will be referenced with an uppercase S. All other references to 
a specific station will use a lowercase, such as site W2 or site 
North_CA1. 

The dynamic variables (time series) were obtained from 
the marsh gaging stations of EDEN. The period of record for 
the EDEN water-level network is from October 1, 1999, to 
September 30, 2006. The periods of record for the new EDEN 
gaging station vary from approximately 4 months to 5 years. 
To extend the water-level record at the new EDEN station, a 
subset of 35 of the EDEN stations was used as inputs to the 

model for estimating water levels (referred to as “index” sta-
tions in this report). The locations and periods of record of the 
new EDEN stations and the index stations are listed in table 1. 
The stations in WCA3A were separated into two groups.

Limitation of the Datasets 

As with any modeling effort, empirical or deterministic, 
the reliability of the model is dependent on the completeness 
of the datasets and on the quality of the data and range of 
measured conditions used for training and calibrating the 
model. Estimated data were not used in model develop-
ment; thus, the majority of the time series used were less 
than 100 percent complete. The available period of record, 
especially the hindcasted stations, can limit the range of water 
level that the ANN model can accurately simulate. For the 
new EDEN stations, the period of record for the measured data 
often is a year or less (table 1). Many of the time series of the 
new EDEN stations provided a range of water-level behaviors 
corresponding to low and high water of the dry and wet 
seasons but did not provide a history of inter-annual vari-
ability. Some stations with limited periods of record and(or) 
missing data, only described a limited portion of the expected 
water-level range.

Table 1. Everglades Depth Estimation Network (EDEN) stations, types, periods of record, and percent complete record 
 for hindcast and index stations used in this study. — Continued

[USGS, U.S. Geological Survey; SFWMD, South Florida Water Management District; BCNP, Big Cypress National Preserve; ENP, Ever-
glades National Park]

Period of record

Station
Operating 
 agency

Station type Begin date End date
Number of data 

points

Percent  
complete 

record
Water Conservation Area 1 (fig. 15)

South_CA1 USGS Hindcast 6/20/2001 9/30/2006 46,571 75.9
North_CA1 USGS Hindcast 5/11/2001 9/30/2006 45,026 73.4
Site 7 USGS Index 10/1/1999 9/30/2006 59,531 97.0
Site 8T USGS Index 10/1/1999 9/30/2006 60,632 98.8
Site 9 USGS Index 10/1/1999 9/30/2006 61,055 99.5
WCA1ME SFWMD Index 10/1/1999 9/30/2006 60,315 98.3

Water Conservation Area 2 (fig. 17)
EDEN11 USGS Hindcast 6/9/2006 9/30/2006 2,723 4.4
EDEN13 USGS Hindcast 6/8/2006 9/30/2006 2,747 4.5
WCA2F1 SFWMD Index 10/1/1999 9/30/2006 51,177 83.4
WCA2E1 SFWMD Index 10/1/1999 9/30/2006 54,573 88.9
Site 99 USGS Index 10/1/1999 9/30/2006 60,645 98.8
S142H SFWMD Index 10/1/1999 9/30/2006 57,037 92.9

Water Conservation Area 3A (fig. 20)
Group 1

3A-5 USGS Hindcast 6/6/2006 9/30/2006 2,797 4.6
EDEN4 USGS Hindcast 6/9/2006 9/30/2006 2,728 4.4
EDEN8 USGS Hindcast 6/7/2006 9/30/2006 2,771 4.5
EDEN9 USGS Hindcast 6/9/2006 9/30/2006 925 1.5
EDEN12 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
W2 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
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Table 1. Everglades Depth Estimation Network (EDEN) stations, types, periods of record, and percent complete record 
 for hindcast and index stations used in this study. — Continued

[USGS, U.S. Geological Survey; SFWMD, South Florida Water Management District; BCNP, Big Cypress National Preserve; ENP, Ever-
glades National Park]

Period of record

Station
Operating 
 agency

Station type Begin date End date
Number of data 

points

Percent  
complete 

record
Water Conservation Area 3A (fig. 20) Group 1  — Continued

W5 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
W11 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
W14 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
W15 USGS Hindcast 1/25/2006 9/30/2006 4,991 8.1
W18 USGS Hindcast 10/1/2005 9/30/2006 8,760 14.3
Site 64 USGS Index 10/1/1999 9/30/2006 60,636 98.8
Site 63 USGS Index 10/1/1999 9/30/2006 60,402 98.4
3AS3W1 SFWMD Index 10/1/1999 9/30/2006 52,186 85.0
Site 65 USGS Index 10/1/1999 9/30/2006 61,368 100.0
3ASWa SFWMD Index 10/1/1999 9/30/2006 60,407 98.4

Group 2
EDEN 5 USGS Hindcast 6/5/2006 9/30/2006 1,657 2.7
EDEN 14 USGS Hindcast 7/26/2006 9/30/2006 1,534 2.5
Site 62 USGS Index 10/1/1999 9/30/2006 59,847 97.5
3A9 SFWMD Index 10/1/1999 9/30/2006 58,027 94.5
3A12 SFWMD Index 10/1/1999 9/30/2006 53,915 87.8

Water Conservation Area 3B (fig. 26)
TI-8 USGS Hindcast 1/23/2006 9/30/2006 6,013 9.8
TI-9 USGS Hindcast 1/23/2006 9/30/2006 6,014 9.8
EDEN7 USGS Hindcast 6/8/2006 9/30/2006 2,748 4.5
EDEN10 USGS Hindcast 6/8/2006 9/30/2006 2,748 4.5
Site 69 USGS Index 10/1/1999 9/30/2006 61,277 99.8
Site 71 USGS Index 10/1/1999 9/30/2006 60,457 98.5
Site 76 USGS Index 10/1/1999 9/30/2006 61,059 99.4
SRS1b USGS Index 10/1/1999 9/30/2006 60,989 99.3

Big Cypress National Preserve (fig. 29)
EDEN1 BCNP Hindcast 1/13/2006 9/30/2006 4,389 7.1
EDEN6 BCNP Hindcast 7/10/2006 9/30/2006 1,974 3.2
BCA9 BCNP Index 10/1/1999 9/30/2006 60,236 98.1
LOOP1T SFWMD Index 10/1/1999 9/30/2006 56,688 92.3
LOOP2T SFWMD Index 10/1/1999 9/30/2006 56,093 91.4
BCA10 BCNP Index 10/1/1999 9/30/2006 60,084 97.8
BCA5 BCNP Index 10/1/1999 9/30/2006 57,800 94.1
3ASW SFWMD Index 10/1/1999 9/30/2006 60,407 98.4
L28GAP SFWMD Index 10/1/1999 9/30/2006 53,515 87.1

Everglades National Park (fig. 31)
EDEN3 USGS Hindcast 12/12/2005 9/30/2006 6,981 11.4
Met1 USGS Hindcast 8/7/2006 9/30/2006 1,312 2.1
P34 ENP Index 10/1/1999 9/30/2006 58,307 95.0
OT ENP Index 10/1/1999 9/30/2006 57,106 93.0
TMC ENP Index 10/1/1999 9/30/2006 59,178 96.4
P35 ENP Index 10/1/1999 9/30/2006 58,954 96.0
P36 ENP Index 10/1/1999 9/30/2006 59,223 96.4
NE1 USGS Index 10/1/1999 9/30/2006 61,316 99.9
SRS1 USGS Index 10/1/1999 9/30/2006 60,989 99.4
NP201 ENP Index 10/1/1999 9/30/2006 59,252 96.6
NE2 USGS Index 10/1/1999 9/30/2006 58,024 94.5
NESRS3 SFWMD Index 10/1/1999 9/30/2006 52,855 86.1

a Station also used for hindcasts in Big Cypress National Preserve.
b Station also used for hindcasts in Everglades National Park.
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Estimating Water Levels 
The following section describes how the water levels 

were estimated for the new EDEN stations using ANN 
models. Hydrologic systems, such as the Everglades, exhibit 
random, chaotic, and multiple periodic behaviors that are 
driven by gravity flow, weather, and manmade disturbances, 
such as controlled flow releases. Modeling these behaviors 
on a large scale is challenging because of discontinuities in 
behaviors both spatially and temporally. Modeling requires 
calibration and validation data that represent the diversity 
of causes and effects. Subdividing a complex modeling 
problem into subproblems and addressing each subproblem 
is an effective means of achieving the best possible results. 
The creation of the various water conservation areas (WCA) 
in the Everglades transformed the system from a continuous 
“shallow” river from Lake Okeechobee to the Gulf of Mexico 
into a series of discontinuous compartments. The WCAs are 
logical boundaries to subdivide the EDEN into a subnetwork 
of water-level gaging stations to model the new EDEN 
water-level stations separately for WCA1, WCA2, WCA3A, 
WCA3B, BCNP, and ENP. 

Within the compartments, water levels respond to 
large-scale, hydraulic gradients of the “shallow” river and 
small-scale changes in topography and vegetation. As water 
levels change, the restrictions (impedances) to flow change 
as more vegetation is inundated during rising and high water 
levels or as more water is channelized during falling and low 
water levels. The three-step modeling approach presented in 
this report uses information about vegetation and topography 
in addition to time-series 
data to generate accurate 
estimates of water levels. This 
section describes ANN models, 
statistical measures of prediction 
accuracy, the decorrelation of 
input variables, and an example 
that describes how to estimate 
water levels at a new EDEN 
station.

Artificial Neural 
Networks 

Models generally fall 
into one of two categories—
deterministic (mechanistic) or 
empirical. Deterministic models 
are created from first-principle 
equations, and empirical models 
adapt generalized mathematical 
functions to fit a line or surface 
through data from two or more 
variables. The most common 
empirical approach is ordinary 

least squares (OLS), which relates variables using straight 
lines, planes, or hyper-planes, whether the actual relations 
are linear or not. Techniques such as OLS and physics-based 
finite-difference models prescribe the functional form of the 
model’s fit of the calibration data. Machine-learning tech-
niques, like ANNs, synthesize a best fit of the calibration data.

The calibration of deterministic and empirical models 
attempts to optimally synthesize a line or surface through the 
measured data. Calibrating models is difficult when data have 
substantial measurement error or are incomplete, and the vari-
ables for which data are available may only be able to provide 
a partial explanation of the causes of variability. The principal 
advantages that empirical models have over deterministic 
models are they can be developed much faster and are more 
accurate when the modeled systems are well characterized 
by data. Empirical models, however, are prone to problems 
when poorly applied. Overfitting and multicollinearity caused 
by correlated input variables can lead to invalid mappings 
between input and output variables (Roehl and others, 2003). 

Although there are numerous types of ANNs, the most 
commonly used type of ANN is the multilayer perceptron 
(MLP; Rosenblatt, 1958). As shown in figure 5, MLP ANNs 
are constructed from layers of interconnected processing 
elements called neurons, each executing a simple “transfer 
function.” All input layer neurons are connected to every 
hidden layer neuron (HLN), and every HLN is connected to 
every output neuron. There can be multiple hidden layers, but 
a single hidden layer is sufficient for most problems.

Typically, linear transfer functions are used to scale input 
values to fall within the range that corresponds to the most 

Figure 5. Multiperceptron artificial neural network architecture.

Estimating Water Levels   9

Output
layer

Input
layer

(Input examples)

(Output examples)

x1

x3

x2

x4

x5

x1

x3

x2

x4

x5

x1

x3

x2

x4

x5

y1

y1

y1

t

t+1

t+2

t

t+1

t+2

wi

wi+n

“Weights”
control

connections

Neurons with 
linear 

transfer
functions

Neurons with nonlinear
transfer functions

Hidden
layer

Figure 5.  



linear part of the s-shaped sigmoid transfer functions used in 
the hidden layers. Each connection has a “weight,” w

i
, associ-

ated with it, which scales the output received by a neuron 
from a neuron in an antecedent layer. The output of a neuron 
is a simple combination of the values it receives through its 
input connections and their weights, and the neuron’s transfer 
function. 

An ANN is “trained” by iteratively adjusting its weights 
to minimize the error by which it maps inputs to outputs for 
a dataset composed of “input/output vector pairs.” Prediction 
accuracy during and after training can be measured by a 
number of metrics, including R2 and RMSE. An algorithm that 
is commonly used to train MLP ANNs is the back error propa-
gation (BEP) training algorithm (Rumelhart and others, 1986). 
Jensen (1994) describes the details of the MLP ANN, the type 
of ANN used in this study. Multilayer perceptron ANNs can 
synthesize functions to fit high-dimension, nonlinear multi-
variate data. Devine and Roehl (2003) and Conrads and Roehl 
(2005) describe their use of ANNs in multiple applications to 
model and control combined manmade and natural systems, 
including disinfection by-product formation, industrial air 
emissions monitoring, and surface-water systems, affected by 
point and nonpoint-source pollution. 

Experimentation with a number of ANN architectural and 
training parameters is a normal part of the modeling process. 
For correlation analysis or predictive modeling applications, 
a number of candidate ANNs are trained and evaluated for 
their statistical accuracy and their representation of process 
physics. Interactions between combinations of variables also 
are considered. Input variables to the models are selected to 
minimize correlation between variables (typically Pearson 
coefficient R of less than 0.5). Finally, a satisfactory model 
can be configured for end-user deployment. In general, a 
high-quality, predictive model can be obtained when

The data are well distributed throughout the behavioral •	
range of interest,

The input variables selected by the modeler share •	
“mutual information” about the output variables, and

The functional form “prescribed” or “synthesized” for •	
the model used to “map” (correlate) input variables 
to output variables is a good one. Techniques, such 

as OLS and physics-based finite-difference models, 
prescribe the functional form of the model’s fit of the 
calibration data. Machine-learning techniques like 
ANNs synthesize a best fit to the data.

Decorrelation of Variables 

Often, explanatory variables share information about the 
behavior of a response variable. It is difficult, if not impos-
sible, to understand the individual effects of these variables 
(sometime known as confounded or correlated variables), on a 
response variable. Using correlated inputs to the models also 
can spuriously increase the model accuracy statistics, such 
as R2. Empirical models have no notion of process physics, 
nor the nature of interrelations between input variables. To 
clearly analyze the effects of confounded variables, the unique 
informational content of each variable must be determined by 
“decorrelation.” Decorrelation is accomplished by ordering 
confounded variables according to a criterion. For example, 
the relative independence of the correlated variables is 
determined and then empirical functions (ANN models) of 
the less independent variables are developed using the more 
independent variables as inputs. The empirical function’s 
residual error is computed by subtracting its predicted values 
from the actual measurements. The residual error manifests 
the “unshared” information between the model’s more 
independent input variables and its less independent output 
variable. The residual error is the decorrelated version of the 
output variable (decorrelated variable) and can be used in 
water-level models. For example, in WCA3A, there are five 
existing EDEN stations that could be used to predict the water 
levels at the new stations—Site 63, Site 64, Site 65, 3AS3W1, 
and 3ASW. Four of the stations, Site 63, Site 65, 3AS3W1, 
and 3ASW, are systematically decorrelated from Site 64, 
using cascading models (fig. 6). Note that the residual error 
(decorrelated variable) from each anteceding model becomes 
an input to a subsequent model. The input variables and 
statistical summaries for the decorrelation models are listed in 
Appendixes 1 and 2 at the back of the report.

In this study, the decorrelation order was determined by 
minimizing the incomplete record of the decorrelated variable. 
A model cannot compute an output value when an input has 

Figure 6. Decorrelation models.
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a missing value. For example, if three time series needing to 
be decorrelated and the time series are 90, 75, and 50 percent 
complete records, respectively, and the decorrelation order was 
the third, second, and first datasets, all the decorrelated vari-
ables would be 50 percent complete or less (missing data may 
not be concurrent between datasets). Using the third dataset in 
the first decorrelation model (the 50 and 75 percent complete 
datasets) would result in a decorrelated variable only 37.5 
percent complete. Subsequent decorrelation models would 
produce a decorrelated variable that is 34 percent complete (90 
percent x 37.5 percent = 34 percent). The better decorrelation 
order would be the 90-percent, 75-percent, and 50-percent 
datasets. The decorrelation model (the 90- and 75- percent 
datasets) would result in a decorrelated variable 68 percent 
complete. The subsequent decorrelation model would, like the 
first decorrelation order, result in a decorrelated variable that is 
34 percent complete (68 percent x 50 percent = 34 percent). 

Statistical Measures of Prediction Accuracy 

Statistical measures of prediction accuracy were 
computed for the final water-level estimates and for the decor-
relation, static, dynamic, and error-correction models. The 
statistics for the final water-level estimates capture the ability 
of the three-step modeling approach to accurately estimate 
the water levels at the station. The statistics for the decor-
relation models and individual step models (static, dynamic, 
and error-correction models) document these intermediate 
models. Because several models are used, the statistics for the 
individual models may not be an indication of the quality of 
the final water-level estimates. For example, the static models 
generally have very low R2, especially in the test dataset, as 
would be expected when static variables are used to predict a 
dynamic time series. Ultimately, the hindcasts should be evalu-
ated by the statistics for the final estimates. The decorrelation 
models typically have high R2 values, but the results from the 
model used in the dynamic models are the residuals which 
have a low R2.

The R2, mean error (ME), RMSE, and percent model 
error (PME) were computed for the training and testing 
datasets for each model and are listed in Appendix 2. 
Model accuracy commonly is reported in terms of R2 and is 
interpreted as the “goodness of the fit” of a model. A second 
interpretation may answer the question, “How much informa-
tion does one variable or a group of variables provide about 
the behavior of another variable?” In the first context,  
an R2 = 0.6 might be disappointing, whereas in the latter, it is 
merely an accounting of how much information is shared by 
the variables being used. 

The ME and RMSE statistics provide a measure of the 
prediction accuracy of the ANN models. The ME is a measure 
of the bias of model predictions—whether the model over 
or under predicts the measured data. The ME is presented as 
the adjustment of the simulated values to equal the measured 
values; therefore, positive and negative MEs indicate an over 

or under prediction bias by the model, respectively. Mean 
errors near zero may be misleading because negative and 
positive discrepancies in the simulations can cancel each other. 
Root mean square errors address the limitations of ME by 
computing the magnitude, rather than the direction (sign) of 
the discrepancies. The units of the ME and RMSE statistics 
are the same as the variable simulated by the model.

 The minimum and maximum values of the measured 
output are listed in Appendix 2. The accuracy of the models, 
as given by RMSE, should be evaluated with respect to the 
range of the output variable. A model may have a low RMSE, 
but if the range of the output variable is small, the model may 
only be accurate for a limited range of conditions and the 
model error may be a relatively large percentage of the model 
response. Likewise, a model may have a large RMSE, but if 
the range of the output variable is large, the model error may 
be a relatively small percentage of the total model response. 
The PME is computed by dividing the RMSE by the range of 
the measured data.

Example of Estimating Water Level Using Three-
Step Modeling Approach

Generally, the same modeling approach for estimating 
water levels at a new EDEN site was used in all six areas. 
The three-step modeling approach is described in this section 
along with a detailed example of estimating the water level 
at W2 in WCA3A. Variable inputs for the models used in the 
W2 example are listed in table 2, and summary statistics for 
the models are listed in table 3. The input variables, summary 
statistics, and variable descriptions for all the models are 
listed in Appendixes 1, 2, and 3, respectively, at the back of 
the report (tables 2 and 3 are excerpts of Appendixes 1 and 
2, respectively). (The summary statistics for 25 hindcasts are 
listed in table 4, p. 19.) The ANN models and plots discussed 
in this report were developed using the iQuest™ data-mining 
software1 (Version 2.03C DM Rev31). 

The three-step modeling approach was developed to 
estimate water levels at the new EDEN stations. The approach 
uses output from the first model as input to the second and 
output from the second model as input to the third model. 
A schematic of the three-step modeling approach is shown 
in figure 7. The first model (F

1
) predicts the water level 

(WL-Site
pred1

) using inputs for only the static variables of 
cell location (cell_x and cell_y) of the gaging station and the 
percent vegetation types (pctslough, pctprairie, pctsawgrass, 
pctupland, pctexotic, and pctother). Although, this model (also 
called the “static” model) is not able to predict the dynamic 
variability of the water level, it is able to discriminate general 
station-to-station differences based on location and percent 
vegetation. 

1 The iQuest™ software is exclusively distributed by Advanced Data Min-
ing, LLC, 3620 Pelham Road, PMB 351, Greenville, SC 29615-5044 Phone: 
(864) 201-8679, email: info@advdatamining.com, http://www.advdatamining.
com.
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Table 2. Model type, model name, input variables, model prediction variables, and variables used to estimate water levels at site 
W2. 

Model type Model name Input variablesa
Model  

prediction  
variable

Variable used  
from model

Comment

static cluster1static CELL_Y WLSITE RES_WLSITE Static model for Group 1 stations in 
WCA3a—Water-level prediction  
(WLSITE) used for initial water-level es-
timate and residual (RES_WLSITE) used 
for model for dynamic model.

PCTEXOTICS

PCTSLOUGH

PCTPRAIRIE

PCTOTHER

dynamic cluster1dynamic SITE_63DEC RES_WLSITE RES_WLSITE Dynamic model for Group 1 stations in 
WCA3a—RES_WLSITE prediction from 
dynamic model and WLSITE prediction 
from static model used for initial water-
level estimate. 

SITE_64

3AS3W1DEC

CELL_Y

PCTSLOUGH

PCTEXOTICS

PCTOTHER

decorrelation 3as3w1dec 3AS3W1 SITE_64 3as3w1dec Model to decorrelate 3AS3W1 from 
SITE_64.

decorrelation 65dec SITE_65 SITE_64 65dec Model to decorrelate Site_65 from SITE_64 
and 3AS3W. 3AS3W1DEC 

decorrelation 63decr1 3AS3W1DEC SITE_64  63decr Model to decorrelate Site_63 from SITE_64, 
3AS3W1, and Site_65.SITE_65DEC

SITE63

decorrelation 3aswdec 3AS3W1DEC SITE_64 3aswdec Model to decorrelate 3ASW from SITE_64, 
3AS3W1, Site_65, and Site_63.SITE_65DEC

SITE_63DEC

3ASW

error correction w2res SITE_63DEC WLESTERR WLESTERR Model to estimate error between initial water-
level estimate and measured data  
for site W2.

SITE_64

3AS3W1DEC   
a Descriptions of variables are provided in Appendix 3.
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Figure 7. Three-step modeling approach to make final water-level estimates at a station.

To train and test the static model, a “stacked” dataset 
(Roehl and others, 2006) was generated that included the 
time series and static variables from the index EDEN gaging 
stations (fig. 8). For example, in WCA3A, five index EDEN 
stations were used as inputs (explanatory variables) to develop 
the models to hindcast water-level data at the new stations. 
The static model used in WCA3A uses 5 index stations for 
predicting water levels at 11 of the new EDEN stations. 
The index stations are Site 63, Site 64, Site 65, 3AS3W, 
and 3ASW. The static model uses five static variables: 
CELL_Y, PCTEXOTICS, PCTSLOUGH, PCTPRAIRIE, and 
PCTOTHER (table 2). The static model uses two hidden layer 
neurons (HLN). The R2 of the training and testing datasets 
are 1.0 and 0.44, respectively (cluster1static, table 3). The 
water-level predictions from the static model for five stations 
in WCA3A are shown in figure 9. The apparent baseline shifts 
(“steps”) in the simulated time series represent a different sta-
tion used in the static model. The model is able to discriminate 
relative differences in water levels between the stations using 
only the static variables of location and percent vegetation.

Using the water-level predictions and the measured data 
at the five index stations, the residual error (the difference 

between the predicted and measured water level),  
WL-Site

residual
, is computed for each station. The residual 

error manifests the dynamic variability at the station that 
was not simulated by the static model and is simulated by 
a second model (F

2, 
fig. 7). The second model (also called 

the “dynamic” model) uses time series of water level in 
addition to static variables to predict WL-Site

residual
. For the 

WCA3A example, the dynamic model uses three dynamic 
input variables (Site_64, Site_63dec, 3AS3W1dec; table 2) 
and four static input variables (CELL_Y, PCTSLOUGH, 
PCTEXOTICS, and PCTOTHER; table 2). The input variables 
and summary statistics for the decorrelation models are listed 
in tables 2 and 3, respectively. The dynamic model uses three 
HLNs, and the R2 of the training and testing datasets are 
0.969 and 0.960, respectively (cluster1dynamic, table 3). The 
measured and predicted residual water levels are shown in 
figure 10. The dynamic model uses the same “stacked” dataset 
as the static model. 

To compute the initial estimate of water level at a new 
EDEN station, the static variables are used in the static (F

1
) 

and dynamic (F
2
) models. The initial prediction is the sum 

of the water-level predictions from the static model and the 
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Figure 7.

Static Model WL-Sitemeasured

Initial estimate at a new EDEN site

Final estimate at new site

Dynamic Model

WL-Sitepred1 = F1[Static variable] WL-Siteresidual

WL-Newpred1 = WL-Sitepred1 + WL-Siteresidual-pred2

WL-Newpred2 = WL-Newpred1 + WL-Newresidual-pred3

WL-Newresidual 

WL-Siteresidual-pred2 = F2[Static and Dynamic Variables]

Models developed from
“old” EDEN sites and 
static data from EDEN grids

WL-Newmeasured

Error Correction Model

WL-Newresidual-pred3 = F3 [Dynamic Variables]



Figure 8. Example of a stacked dataset used to train the static and dynamic models. Each block represents a limited number of rows 
for each index site in the dataset. Note the dynamic variables are in columns 3–8 (WLSITE to 3ASWDEC) and static variables begin in 
column 9 (CELL_X). Not all variables in the dataset are shown.

Figure 9. Measured (blue trace) and simulated (red trace) water levels from the static model for Water Conservation  
Area 3A. The “steps” in the simulated water level indicate a different site.
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Figure 10. Measured (blue trace) and simulated (red trace) residual water levels from the dynamic model for Water 
Conservation Area 3A. The residual water levels were computed from the water-level prediction from the static model. 
The training dataset is shown. There are approximately 325 observations from each of the five index sites.

residual from the dynamic model. For example, to compute 
the initial water-level prediction for site W2 in WCA3A 
(WL-New

pred1
, fig. 7), the static variables for the new station 

are used in the static and dynamic models (CELL-Y,  
PCTEXOTICS, PCTSLOUGH, PCTPRAIRIE, AND 
PCTOTHER) to compute WL-Site

pred1
 and WL-Site

residual-pred2
 

(fig. 7). The results from the static and dynamic models, and 
the initial water-level predictions and measured data for site 

W2 are shown in figure 11. Although the initial water-level 
estimates capture the dynamic variability of the measured data, 
the absolute predictions are in error by approximately 1 to 2 ft. 

To improve the accuracy of the water-level predictions, 
a third-step model (F

3
, error correction model, fig. 7) is used 

to estimate the residual error between the initial water-level 
estimate and the measured data at the new EDEN station. The 
residual error is computed by subtracting the initial water-level 

Figure 11. Initial water-level estimates for site W2. Results from the static and dynamic models are shown with the measured data. 
Breaks in the water-level estimates are caused by incomplete time series for one or more of the model inputs.
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estimates from the measured data (fig. 12). The error- 
correction model uses a set of dynamic variables to predict the 
residual error from the initial water-level estimate. The time 
series of computed and predicted error is shown in figure 13. 
The error-correction model for site W2 (W2res) uses three 
dynamic variables: Site_63DEC, Site_64, and 3AS3W1DEC 
(table 2) and two HLNs. The R2 for the training and testing 

datasets for the error-correction model is 0.976 and 0.974, 
respectively (table 3). 

The final water-level estimate at a new EDEN station is 
the sum of the initial water-level estimate and the predicted 
residual from the error-correction model (WL-New

residual-pred3
, 

fig. 7). The results of the error-correction model and final 
water-level estimates for site W2 are shown in figure 14. The 

Figure 12. Measured water levels, initial water-level estimates, and residual time series (difference between 
the measured and initial water-level estimates) for site W2. Breaks in the water-level estimates are caused by 
incomplete time series for one or more of the model inputs.

Figure 13. Residual time series between the measured and initial estimates of water levels for site W2. Breaks in the 
water-level estimates are caused by incomplete time series for one or more of the model inputs.
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R2 and PME for the final water-level estimate are 0.995 and 
0.1 percent, respectively (table 4). Water levels for Site 64 also 
are plotted to show the general hydrologic response concurrent 
with the record extension for W2.

Empirical and mechanistic models perform best when 
interpolating within the range of data used for training or  
calibration. Although the statistics of the final water-level 

estimate are good, the hindcasts should be evaluated for peri-
ods when the model extrapolates to estimate the hydrologic 
response. The range of interpolation of water-level estimation 
model for site W2 (fig. 14) shows that the model estimates 
were extrapolated only for a brief period of low-water condi-
tions. The breaks in the water-level estimates are caused by 
incomplete time series for one or more of the model inputs.

Figure 14. Measured and record extension (predicted) water levels at site W2 and water levels for Site 64. The range of 
measured water levels at W2 is shown with two dashed lines and used as an indication of when the W2 model is interpolating 
within conditions the model was trained. Breaks in the water-level estimates are caused by incomplete time series for one or 
more of the model inputs.
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Table 4. Summary statistics for water-level estimates for new Everglades Depth Estimation Network (EDEN) stations.

[n, number of data values; R, Pearson coefficient; R2, coefficient of determination; Min, minimum; ft, feet; Max, maximum; ME, mean error; RMSE, 
root mean square  error; PME, percent model error]

Site n R R2
Data range

ME RMSE PMEMin,  
in ft

Max,  
in ft

Water Conservation Area 1 (fig. 15)

North_CA1 41,721 0.943 0.889 13.82 16.38 -0.046 0.134 5.2

South_CA1 43,409 0.991 0.983 12.85 15.90 0.008 0.088 2.9

Water Conservation Area 2 (fig. 17)

EDEN11 2,637 0.950 0.902 10.97 13.19 -0.054 0.044 2.0

EDEN13 1,968 0.955 0.912 7.07 7.69 -0.018 0.006 1.0

Water Conservation Area 3A (fig. 20)

3A-5 5,684 0.998 0.995 8.15 10.10 0.002 0.001 0.1

EDEN4 2,399 0.999 0.998 6.96 10.30 0.001 0.002 0.1

EDEN5 1,653 0.999 0.999 8.01 10.20 0.004 0.001 0.1

EDEN8 2,442 0.999 0.999 6.79 9.19 0.001 0.001 0.0

EDEN9 925 0.999 0.998 7.69 10.55 -0.006 0.004 0.1

EDEN12 7,648 0.999 0.998 6.84 9.59 -0.002 0.001 0.0

EDEN14 969 0.906 0.821 8.66 9.59 0.011 0.010 1.1

W2 7,648 0.998 0.995 6.86 9.42 0.008 0.003 0.1

W5 7,648 0.999 0.998 6.84 9.59 -0.001 0.001 0.0

W11 7,628 0.999 0.998 7.08 10.08 -0.012 0.002 0.1

W14 7,628 0.998 0.997 7.00 10.00 -0.013 0.003 0.1

W15 3,859 0.999 0.998 7.47 9.67 -0.001 0.001 0.0

W18 7,628 0.998 0.996 7.92 10.21 -0.000 0.002 0.1

Water Conservation Area 3B (fig. 26)

TI-8 5,684 0.996 0.993 4.59 6.16 0.002 0.001 0.1

TI-9 5,684 0.996 0.992 5.29 6.42 0.009 0.001 0.1

EDEN7 2,419 0.998 0.996 5.24 6.96 0.008 0.001 0.1

EDEN10 2,419 0.995 0.990 5.06 6.32 0.007 0.002 0.1

Big Cypress National Preserve (fig. 29)

EDEN1 3,864 0.960 0.921 7.13 7.82 0.018 0.003 0.4

EDEN6 1,591 0.984 0.968 8.76 10.73 0.030 0.007 0.4

Everglades National Park (fig. 31)

EDEN3 5,294 0.989 0.978 0.07 1.75 -0.042 0.006 0.4

Met1 1,238 0.994 0.989 5.23 5.76 0.000 0.000 0.0
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Extension of Water-Level Records 
for the Everglades Depth Estimation 
Network (EDEN)

The water-level record extensions for six areas of the 
Everglades are summarized in the following sections of the 
report. The hindcast and index stations for each area are shown 
in a figure followed by the measured and estimated time 
series. Water levels for one of the index stations in each area 
are also plotted to show the general hydrologic response of the 
area for the 7 years concurrent with the record extension. The 
datasets with the record extensions are available on the EDEN 
Web page on the South Florida Information Access (SOFIA) 
Web site (http://sofia.usgs.gov/eden/index.php).

Water Conservation Area 1 (WCA1)

For WCA1, water-level records were extended for two 
stations—North_CA1 and South_CA1—with four stations 
being used as index stations—Site 7, Site 8T, Site 9, and 
WCA1ME (fig. 15; table 1). The static and dynamic models 
used three static-input variables (CELL_Y, PCTPRAIRIE, and 
PCTEXOTICS). The dynamic models also used four water-
level input variables (SITE_7, SITE8DEC2, WCA1MEDEC, 
and SITE9DEC). The measured and estimated water levels for 
the two stations are shown in figure 16. Site 7 also is plotted 
to show the general water-level behavior through the record 
extension. The water-level estimates for the South_CA1 
gaging station are more accurate than those for the North_CA1 
gaging station with R2 values of 0.98 and 0.89, respectively, 
and PME values of 2.9 and 5.2, respectively (table 4). Both 
sets of water-level estimates capture the full range of the 
measured data.

Figure 15. Index 
and hindcast 
stations for Water 
Conservation Area 1.
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Figure 16. Water-level record extensions for sites North_CA1 and South_CA1 in Water Conservation Area 1 for the period 
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more 
of the model inputs.
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Water Conservation Area 2 (WCA2)

For WCA2, water-level records were extended for two 
stations—EDEN11 and EDEN13. The two new EDEN stations 
had very limited periods of record of approximately 4 months 
(table 1). For EDEN11, the water-level estimates were made 
using the three-step model described previously. The static and 
dynamic models used four static-input variables (CELL_X, 
PCTPRAIRIE, PCTEXOTICS, and PCTUPLAND). Two 
index stations were used in the models—WCA2E1 and 
WCA2F1 (fig. 17; table 1). The measured and estimated 
water levels for the EDEN11 station are shown in figure 18. 
WCA2E1 is also plotted with the hindcast to show the general 
water-level behavior through the record extension. The R2 

Figure 17. Index and hindcast stations for Water Conservation Area 2.

for the estimates is 0.90 with a PME of 2.0 percent (table 4). 
The measured data cover a large range of water levels, and 
there are only a few periods where the models extrapolated to 
estimate low and high water-level periods.

For EDEN13, the water-level estimates using the three-
step modeling approach produced an unsatisfactory result, 
probably due to the limited number and spatial extent of index 
stations. An approach used in the snail kite study (Conrads 
and others, 2006) was used to extend the water levels for this 
station. Highly correlated data, by definition, are dynamically 
similar. The modeling challenge is not how the time series are 
similar but how they are dynamically different. The difference 
between EDEN13 and Site 99 (the index station closest to 
the station, fig. 17) was computed (fig.19A) to emphasize the 
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Figure 18. Water-level record extensions for site EDEN11 in Water Conservation Area 2 for the period October 1, 1999, to 
September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more of the model 
inputs.

dynamic difference between the two stations. The difference 
between Site 99 and EDEN13 was modeled using Site 99 
and S142H as inputs. The final prediction is the sum of the 
EDEN13 difference and the Site 99 water level, which is 
shown in figure 19B with the Site 99 measured data. The R2 
for the estimates is 0.91, and the PME is 1.0 percent (table 4). 

Although these statistics indicate a good model, it should be 
noted that because of missing data at index station S142H, 
the range of EDEN13 water-level estimates was limited to 
approximately half of the hindcasted range. Water levels 
beyond this range require an extrapolation of the model. 
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Figure 19. Difference in (A) water levels between Site 99 and site EDEN13 and (B) water-level record extensions for 
site EDEN13 in Water Conservation Area 2 for the period October 1, 1999, to September 30, 2006. Breaks in the water-
level estimates are caused by incomplete time series for one or more of the model inputs.
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Water Conservation Area 3A (WCA3A)

For WCA3A, water-level records were extended for 
13 stations. The large number of index stations was separated 
into groups of similar hydrologic behaviors. Previous cluster 
analysis of the EDEN stations in the area indicated two groups 
of stations that had similar water-level behaviors (Conrads 
and Roehl, 2006a). Water-level data for EDEN, including 
WCA3A, manifests short-term variability and long-term 
hydrologic behavior. A dynamic clustering technique (Roehl 
and others, 2006) was used to cluster stations with similar 
long-term behavior. The hourly data were converted to daily 
values of 7-day moving-window averages, and a cross- 
correlation matrix of the Pearson 
coefficient of selected water-level 
time series was generated. The 
Pearson coefficient provides a 
numerical value of the amount 
of information that is shared 
between two time series, or 
signals. The cluster analysis 
of the cross-correlation matrix 
grouped together time series 
of similar behaviors. The rows 
were clustered using a k-means 
algorithm. The number of classes 
was determined by the sensitivity 
of the mean square error to k. 
The analysis showed two classes 
(groups) of stations of similar 
behavior in WCA3A (fig. 20). 

Of the two groups of index 
and hindcast stations in WCA3A, 
11 of the new EDEN stations are 
in group 1, and 2 are in group 2 
(table 1; fig. 20). For all of the 
new EDEN stations in WCA3A, 
the three-step modeling 
approach was used for making 
the water-level estimates. For 
the WCA3A group 1 stations, 
five stations were used as 
index stations: Site 63, Site 64, 
Site 65, 3ASW, and 3AS3W1. 
The static and dynamic models 
used five static-input variables 
(CELL_X, PCTEXOTICS, 
PCTSLOUTH, PCTPRAIRIE, 
and PCTOTHER). The R2 for the 
water-level estimates for the 11 
new EDEN stations in group 1 
were all above 0.99, and the 
PME were all 0.1 percent or less 
(table 4). The measured  
and estimated water levels for the 

11 stations in group 1 are shown in figures 21–24. Site 64 also 
is plotted with the hindcasts for group 1 to show the general 
water-level behavior through the record extension. For the 
majority of the stations, the water-level estimation models 
cover a large range of the data and do not have to extrapolate 
over large portions of the range of the hindcasted data. The 
exception is EDEN9 (fig. 22) for which there was less than 
40 days of measured data (tables 1 and 4).

For group 2 in WCA3A, there are two hindcast stations 
(EDEN5 and EDEN14) and three index stations (Site 62, 3A9, 
and 3A12) (fig. 20). The static model used three static-input 
variables (CELL_X, CELL_Y, and PCTPRAIRIE) and the 
dynamic model used two static-input variables (CELL_Y and 

Figure 20. Index and hindcast stations for Water Conservation Area 3A.
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Figure 21. Water-level record extensions for sites 3A-5, EDEN4, and EDEN8 in Water Conservation Area 3A for the 
period October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time 
series for one or more of the model inputs.

26  Hydrologic Record Extension of Water-Level Data in the EDEN Using Artificial Neural Network Models, 2000–2006

13

12

11

10

9

8

7

W
AT

ER
 L

EV
EL

, I
N

 F
EE

T

13

12

11

10

9

8

7

6

W
AT

ER
 L

EV
EL

, I
N

 F
EE

T

13

12

11

10

9

8

7

6

W
AT

ER
 L

EV
EL

, I
N

 F
EE

T

0 10,000 20,000 30,000 40,000 50,000 60,000
HOURLY OBSERVATIONS

Figure 21.

EDEN4

EDEN8

3A-5 extension

3A-5
Site 64 

measured

3A-5
measured

EDEN4 extension

Site 64 measured
EDEN4 measured

EDEN8 extension

Site 64 measured
EDEN8

measured



Figure 22. Water-level record extensions for sites EDEN9, EDEN12, and W2 in Water Conservation Area 3A for the 
period October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series 
for one or more of the model inputs.
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Figure 23. Water-level record extensions for sites W5, W11, and W14 in Water Conservation Area 3A for the period 
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for 
one or more of the model inputs.
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Figure 24. Water-level record extensions for sites W15 and W18 in Water Conservation Area 3A for the period October 1, 1999, to 
September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more of the model inputs.
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PCTPRAIRIE) in addition to the dynamic input variables from 
the three index stations. The measured and estimated water 
levels for the group 2 hindcasts are shown in figure 25. Similar 
to EDEN9 in the group 1 stations, EDEN5 and EDEN14 
have short periods of record. EDEN5 has less than 4 months 
of data, and EDEN14 has 2 months of data. The measured 
data for EDEN5 is at the extremes of the measured range of 
data with a large data gap in the mid-range of the data. The 
water-level estimates capture the overall trend of the high and 

low water levels as evident in the R2 of 0.99 (table 4). Because 
the measured water levels are during periods of the low and 
high water levels, the model only has to extrapolate for a few 
high and low water periods. The measured data for EDEN14 
are limited to the mid and lower water levels. The R2 for the 
water-level estimate for EDEN14 is 0.82, the lowest of all the 
water-level estimates. The model has to extrapolate to estimate 
all of the high-water conditions.

Figure 25. Water-level record extensions for sites EDEN5 and EDEN14 in Water Conservation Area 3A for the period 
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one 
or more of the model inputs.
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Water Conservation Area 3B (WCA3B)

For WCA3B, water-level records were extended for four 
stations—TI-8, TI-9, EDEN7, and EDEN10 (fig. 26; table 1). 
The static and dynamic models used three static-input vari-
ables (pctprairie, pctsawgrass, and pctupland). The dynamic 
models used dynamic-input variables from four index stations. 
The measured and estimated water levels for the WCA3B 

hindcasts are shown in figures 27 and 28 in addition to water 
levels for index station Site 69. All of the final estimates were 
able to accurately simulate the measured data (R2 above 0.99), 
but only one station, EDEN7 (fig. 28), had measured data with 
a range similar to the range of the hindcasts. The other three 
stations did not have data in the higher water-level range, and 
the model had to extrapolate to estimate high-water conditions 
at these stations. 

Figure 26. Index and hindcast stations for Water Conservation Area 3B.

Extension of Water-Level Records for the Everglades Depth Estimation Network (EDEN)  31

0 1 2 3 4 5
Miles

 

0 1 2 3 4 5 MILES

0 1 2 3 4 5 KILOMETERS
Base from U.S. Geological Survey digital data,
6-meter DOQ mosaic of south Florida, 2000,
Florida East, Zone 0901
Transverse Mercator projection
NAD 83 datum

2605’

2555’

2550’

2545’

26

8040’ 8035’ 8030’ 8025’

Water Conservation Area 3B

EXPLANATION
Hindcast station and number

Index station and number

EDEN7

Site 76

EDEN7

Site 76

Site 69

Site 71

TI-9
TI-8

EDEN10

SRS1

W
at

er
 C

on
se

rv
at

io
n A

re
a b

ou
nd

ar
y

Figure 26.



Figure 27. Water-level record extensions for sites TI-8 and TI-9 in Water Conservation Area 3B for the period October 1, 
1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more of the 
model inputs.
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Figure 28. Water-level record extensions for sites EDEN7 and EDEN10 in Water Conservation Area 3B for the period 
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one 
or more of the model inputs.
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Big Cypress National Preserve (BCNP)

For BCNP, water-level records were extended for two 
stations—EDEN1 and EDEN6 (fig. 29; table 1). The initial 
three-step model produced satisfactory water-level estimates 
for EDEN1 but not for EDEN6. To improve the water-level 
estimates for EDEN6, the same three-step modeling approach 
was used but with a different combination of static- and 
dynamic-input variables. The dynamic model for EDEN6 also 
used water-level data from 3ASW in WCA3A (fig. 20). As 
with the other areas, the measured data from the new EDEN 
station were not used until computing the residual error of 
the initial water-level estimates. The static model for EDEN1 
used five static-input variables, whereas the static model for 
EDEN6 used two static-input variables. The dynamic model 

for EDEN1 used four static-input variables and four dynamic-
input variables, whereas the dynamic model for EDEN6 used 
two static variables and three dynamic variables. 

The measured and estimated water levels for the two 
stations are shown in figure 30. The R2 for the water-level 
estimates for EDEN1 and EDEN6 are 0.92 and 0.97, 
respectively (table 4). Water levels for BCA9 also are shown 
with the hindcasts for EDEN1, and water levels for BCA5 are 
shown with the hindcasts for EDEN6 (fig. 30). The measured 
data for the two new EDEN stations in BCNP are limited to 
the mid- and high-water ranges. The measured data range for 
EDEN1 is less than a foot, whereas the range of the hindcasts 
is more than 3 ft. For EDEN6, the range of the measured data 
is about 2 ft, and the range of the hindcasts is about 5 ft.

Figure 29. Index and hindcast stations 
for Big Cypress National Preserve.
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Figure 30. Water-level record extensions for sites EDEN1 and EDEN6 in Big Cypress National Preserve for the period 
October 1, 1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or 
more of the model inputs.
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Everglades National Park (ENP)

For the ENP, water-level records were extended for two 
stations—EDEN3 and Met1 (fig. 31; table 1). Similar to the 
two new EDEN stations in BCNP, the stations were modeled 
separately with the three-step modeling approach. Both 
static models used four static-input variables. Three of the 
static-input variables were the same (CELL_Y, pctsawgrass, 
and pctSLOUGH) for both models. The static model for Met1 
included percent upland (PCTUPLAND), and the static model 
for EDEN3 included percent prairie (PCTPRAIRIE). Both 

dynamic models used four static variables but used two dif-
ferent combinations of five dynamic variables. The measured 
and estimated water levels for the two stations are shown in 
figure 32. The R2 for the water-level estimates for EDEN3 and 
Met1 is 0.98 and 0.99, respectively (table 4). Water levels for 
P34 also are shown with the hindcasts for EDEN3, and water 
levels for NE1 are shown with the hindcasts for Met1. The 
range of the measured data for EDEN3 covers the majority 
of the range of the hindcasts (fig. 32). The range of measured 
data for Met1 is less than 0.5 ft, and the model must extrapo-
late to estimate annual high and low water.

Figure 31. Index and hindcast stations for Everglades National Park.
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Figure 32. Water-level record extensions for sites EDEN3 and Met1 in the Everglades National Park for the period October 1, 
1999, to September 30, 2006. Breaks in the water-level estimates are caused by incomplete time series for one or more of the model 
inputs.
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Summary and Discussion
The Everglades Depth Estimation Network (EDEN) is 

an integrated network of real-time water-level gaging stations, 
ground-elevation models, and water-surface models. The 
network provides scientists, engineers, and water-resource 
managers with current (2000–present) water-depth information 
for the entire freshwater portion of the greater Everglades. 
To increase the accuracy of the water-surface models, 25 
real-time gaging stations were added to EDEN. To incorporate 
the newly added stations to the 7-year EDEN database of 253 
water-level gaging stations in the greater Everglades, the short-
term water-level records (generally less than 1 year) needed to 
be simulated back in time (hindcasted) to be concurrent with 
data from the established gaging stations. A three-step model-
ing approach using artificial neural networks (ANN) models 
was used to estimate the water levels at the new stations. The 
ANN models used static variables of gaging station location 
and percent vegetation in addition to dynamic variables of 
water-level data from the established EDEN gaging stations. 
The final step of the modeling approach was to simulate the 
computed error of the initial estimate to increase the accuracy 
of the final water-level estimate. 

The three-step modeling approach for estimating water 
levels produced satisfactory results, with coefficients of 
determination for 21 of the 25 for the new EDEN stations 
greater than 0.95 and all of the estimates greater than 0.82. 
For some new EDEN stations having limited data, the record 
extension (hindcasts) included periods beyond the range of 
data used to train the water-level estimate models. A compari-
son of the hindcasts from these models with long-term water 
levels proximal to the new EDEN station indicated that the 
water-level estimates showed a similar hydrologic response to 
the long-term water levels.

 There are opportunities to improve the completeness 
and accuracy of the hindcasts of the new EDEN stations. The 
completeness of the hindcasts could be improved by filling 
in the missing data for the established EDEN stations using 
similar techniques as presented in this report, which in turn 
would provide more complete input time series to the water-
level estimation models for the new stations. 

For the majority of the new EDEN stations, there 
was 1 year or less of data to train and test the water-level 
estimation models. Over time, a greater record of hydrologic 
behaviors at the new EDEN stations will be collected, 
including inter-annual variability. Retraining the water-level 
estimation ANN models will improve the ability of the models 
to predict the behaviors at the new EDEN stations. Additional 
cell attribute data for the EDEN grid and enhancements to the 
existing attribute data will also improve the models.
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Variables Description

3A12  water level at site 3A12

3A12DEC decorrelated water level at site 3A12

3A9 water level at site 3A9

3A9DEC decorrelated water level at site 3AS3W1

3AS3W1DEC decorrelated water level at site 3A10

3ASW water level at site 3ASW

3ASWDEC decorrelated water level at site 3ASW

BCA10 water level at site BCA10

BCA10DEC decorrelated water level at site BCA11

BCA5 water level at site BCA5

BCA9 water level at site BCA9

CELL_X UTM Easting of cell center

CELL_Y UTM Northing of cell center

L28GAP water level at site L28GAP

L28GAPDEC decorrelated water level at site L28GAP

LOOP1T water level at site LOOP1T

LOOP1TDEC decorrelated water level at site LOOP1T

LOOP2T water level at site LOOP2T

NE1 water level at site NE1

NE2  water level at site NE2

NE2DEC decorrelated water level at site NE2

NESRS3 water level at site NESRS3

NESRS3DEC decorrelated water level at site NESRS3

NP201 water level at site NP201

NP201DEC decorrelated water level at site NP201

OT water level at site OT

OTDEC decorrelated water level at site OT

P34 water level at site P34

P35 water level at site P35

P35DEC decorrelated water level at site P35

P36 water level at site P36

P36DEC decorrelated water level at site P36

PCTEXOTICS percent exotics

PCTOTHER percent other

PCTPRAIRIE percent prairie

Variables Description

PCTSAWGRASS percent sawgrass

PCTSLOUGH percent slough

PCTUPLAND percent upland

S142H  water level at site S142H

SITE_62 water level at Site 62

SITE_63 water level at Site 63

SITE_63DEC decorrelated water level at Site 63

SITE_64 water level at Site 64

SITE_65 water level at Site 65

SITE_65DEC decorrelated water level at Site 65

SITE_69C water level at Site 69 adjusted to NAVD88

SITE_7 water level at Site 7

SITE_71C water level at Site 71 adjusted to NAVD88

SITE_76 water level at Site 76

SITE_8T water level at Site 8T

SITE_9 water level at Site 9

SITE_99 water level at Site 99

SITE71DEC decorrelated water level at Site 71

SITE76DEC decorrelated water level at Site 76

SITE8TDEC decorrelated water level at Site 8T

SITE8TDEC2 decorrelated water level at Site 8T-second 
version

SITE9DEC decorrelated water level at Site 9

SRS1 water level at site SRS1

SRS1C water level at site SRS1adjusted to NAVD88

SRS1DEC decorrelated water level at site SRS1

TMC water level at site TMC

TMCDEC decorrelated water level at site TMC

WCA1ME water level at site WCA1ME

WCA1MEDEC decorrelated water level at site WCA1ME

WCA1MEDEC2 decorrelated water level at site WCA1ME-
second version

WCA2E1 water level at site WCA2E1

WCA2F1 water level at site WCA2F1

WCA2F1DEC   decorrelated water level at site WCA2F1

Appendix 3. Variables used in the artificial neural network models.

[NAVD88, North American Vertical Datum of 1988]
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