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Current and predicted energy use
Current use 13 TW

Global Primary Energy Supply by Fuel*:
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Potential of carbon-free energy sources
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~26,000 km? of photovoltaic
devices would meet US energy
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Combustion of biomass provides
carbon neutral energy
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Overview of Brazil sugarcane

2007-08 harvest 528 MMT
~8 M Ha planted by 2008
~20 B liters ethanol, 2007
~80-120 T/Ha

~6400 L ethanol/Ha

~333 mills, 200 planned

Plantings last 5y, cut one per
year
Large mill

- 22,000 tons/day

- 1500 truck loads/day




US Biofuel Production has Expanded Rapidly

NCGA

www.ncga.com

AS OF: March 2006
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Fermentation of glucose to ethanol
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Cellulosic fuels are expected to become the
dominant source of biofuels
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90,000 TW of energy arrives on the earths
surface from the sun

Water
70.9%

Land
29.0%

Amount of land needed for 13 TW at 1% efficiency
5% of land
650 MHa



Land Usage
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>27% yield is feasible

Yield of 26.5 tons/acre observed by Young &
colleagues in Illinois, without irrigation

Courtesy of Steve Long et al







Perennials have more photosynthesis
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Harvesting Miscanthus
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http://bioenergy.ornl.gov/gallery/index.html



Annual precipitation

Annual Average Precipitation

United States of America
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Limiting factors for global NPP
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Steps in cellulosic ethanol production
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Plants are mostly composed of sugars

$3 nm

Section of a pine board Polymerized glucose



Possible routes to improved catalysts

- Explore the enzyme systems
used by termites (and
ruminants) for digesting
lignocellulosic material

+ Compost heaps and forest
floors are poorly explored

» Invitro protein engineering of
promising enzymes
* Develop synthetic organic

catalysts (for polysaccharides
and lignin)




Dissolution of cellulose in an ionic liquid

(novel pretreatment methods may create fundamental changes)

Untreated
H,C
=/
1-Butyl-3-methylimidazolium chloride
Treated

Swatloski, Spear, Holbrey, Rogers J. Am. Chem. Soc., 124 (18), 4974 -4975, 2002



Fermentation of all sugars is essential
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Saccharification & Fermentation

Fermentation Yield Cost Impact

$2.10 70%

$1.80 | O2060

Minimum Ethanol Selling Price ($/gal)

$1.50 95%
$1.33 $1.28 6123
$1.20 ‘
glucose only add 85% xylose add 85% arabinose all other sugars

85%
NREL



Steps in cellulosic ethanol production
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Nature offers many alternatives to
ethanol

* Plants, algae, and bacteria
synthesize alkanes,
alcohols, waxes

* Production of hydrophobic

O
\,/\\/\/\//\/\//\//\/)LOH
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compounds would reduce l 0
toxicity and decrease the W\AH
energy required for l

dehydration

n-Alkane (Cop-1)
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The “hydrogen economy”

Electricity Grid

Enhanced oijl
recovery:
permanent COz <
storage in rock
formation

Justin Adams, BP




1000 M

The Sleipner Experiment

1 million tons/y; capacity 600 B tons
7000 such sites needed
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Summary of priorities

» Develop energy crops and associated
agronomic practices

» Identify or create more active catalysts
for conversion of biomass to sugars

» Develop industrial microorganisms that
ferment all sugars

+ Develop new types of microorganisms that
produce and secrete hydrophobic
compounds



A vision of the Future

ORNL 98-746B/abh

Fuel/Power/
Heat and New
Bioproducits

Agricultural
Residues

i

http://genomicsgtl.energy.gov/biofuels/index.shtml



Global grain production with and
without yield enhancements
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Economics of Perennials are Favorable

CROP Yield | Value | Cost | Profit
per Acre| $ $ $
Corn ($4.2/bu) |[160bu |[672 |193* |479
($150/1)
Switchgrass 10 tons |[BO0 |138** | 362
($50/1)
Miscanthus 15 tons |750 |138** 612
($50/1)

*USDA economic research service 2004
**50% as much fertilizer, no chemicals




2004 $/BARREL
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Some plants accumulate oil

(B) Triacylglycerol




Biodiesel has been expanding rapidly

Figure 2. World Biodiesel Production, 1991-2005
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Billion gallons

Limited potential of biodiesel
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65 biodiesel companies in operation, 50 in construction 2006



Use of algae could enable saline cultivation

Greenfuel bioreactor

http://news.com.com/Photos+Betting+big+on+biodiesel/2009-1043_3-5714336.html?tag=st.prev



How Much Ethanol Could the Municipal Solid
Waste from a City With 1 Million People Produce?

The average person in the United States generates approximately 1.8 kilograms
of municipal solid waste (MSW) every day. Of this, typically about 75 percent is
predominantly cellulosic organic material, including waste paper, wood wastes,
cardboard, and waste food scraps. Thus, a city with 1 million people produces
around 1,800 tonnes of MSW in total, or about 1,300 tonnes per day of organic
material. Using technology that could convert organic waste to ethanol, roughly
330 liters of ethanol could be produced per tonne of organic waste. Thus,
organic waste from a city with 1 million people would be enough feedstock to
produce about 150 million liters per year. This is enough fuel to meet the needs
of more than 58,000 people in the United States; 360,000 people in France; or
nearly 2.6 million people in China at current rates of per capita fuel use.

Worldwatch, 2006



