

Assessment of Instream Habitat in the Oregon Coast Coho ESU

Habitat	Harvest	Disease & Predation	Regulatory Mechanisms	Other Natural or Human
Channel form	Marine	Disease	NW Forest Plan	Drought
Substrate	Recreational	Predation	Forest Practices	Floods
Roughness	Scientific		Dredge and Fill	Ocean Conditions
Estuaries			Water Quality	Artificial Propagation
Wetlands			Ag Practices	
Riparian Areas			Urban Growth	
Water Quality				
Streamflows				
Passage				
Habitat Elimination				

- ODFW random, spatially balanced habitat surveys
 - 1st through 3rd order streams within range of coho
 - 1998 2003 summer surveys
 - ~ 45 sites per Monitoring Area per year
 - Each site 500 1,000 meters long (usually 1,000)
 - Standard ODFW habitat survey protocols

DRAFT Salmon & watersbeds **DRAFT** Survey Parameters Used In This Analysis

Decline Factor: Substrate

% Gravel in riffles% Fines in riffles

Salmon & watersbeds **DRAFT** Survey Parameters Used In This Analysis

Decline Factor: Channel Form

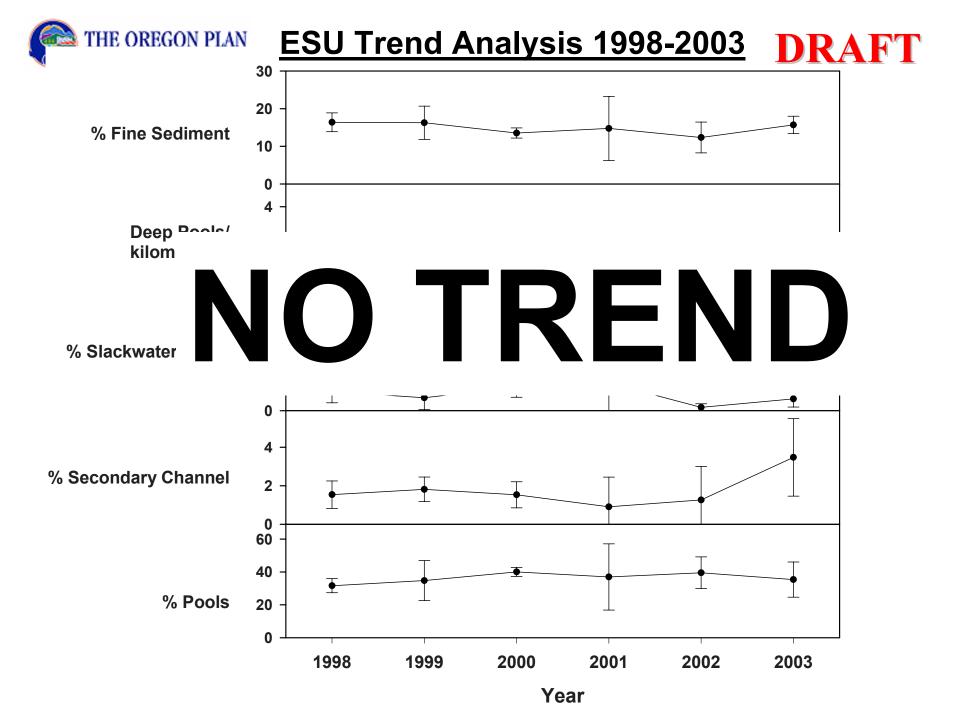
- ≻% pools
- ≻% deep pools
- >% slack water pools
- >% side channel
- Channel morphology index

DRAFT Survey Parameters Used In This Analysis

Decline Factor: Roughness

>Wood volume
>Wood pieces
>Wood key pieces
>% bedrock



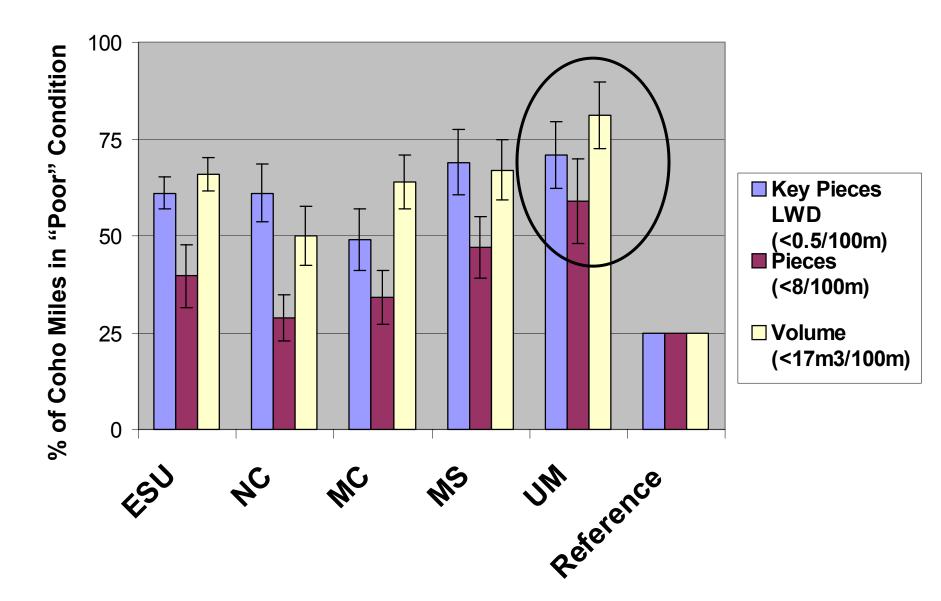

What is the trend in instream habitat conditions?

ESU Trend Analysis 1998-2003 DRAFT

What is the status of instream habitat conditions?

- Combined data from 1998 2003
- Compared to conditions at 124
 reference sites
- As with water quality reference sites, physical habitat reference sites differ from random sample sites primarily by management intensity
- See handout for 1st quartile breakpoints for each habitat variable

Status of Instream Physical Habitat In Oregon Coast Coho ESU


	Spawning Gravel	Instream Roughness				Fine Sediment	Channel Morphology					
Spatial Scale	% Gravel in riffles	Volume LWD	Pieces LWD	Key Pieces LWD	% Bedrock	% Fines in riffles	Deep pools	% SW pools	% Second. channel	% Pools	Channel Morph. Index	
ESU (N=353)												
North Coast (N=118)												
Mid-Coast (N=110)												
Mid-South Coast (N=77)												
Umpqua (N=62)												
Significantly less large wood in random		Color Key					Significantly more entrenched streams Math all for the the streams					
		Better Than Reference Conditions										
surveys compare reference condition		Similar To Reference Conditions					from from from the from the from the ference may not be					
		worse Than Reference Conditions							good – average of 3,200 beavers trapped			

each year (1998-2003)

Percentage of ESU in "Poor" Category for Three Large Wood Measures

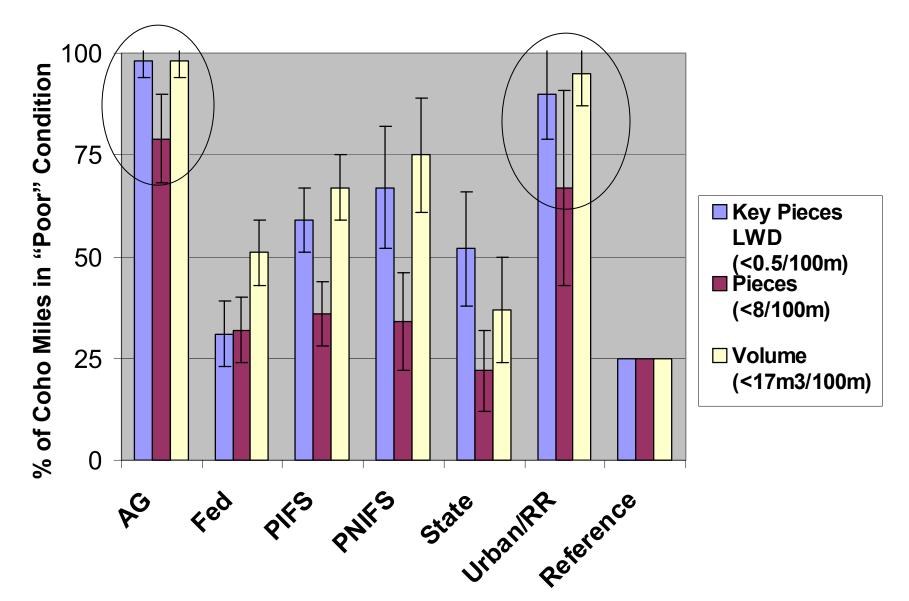
DRAFT

What is the status of instream habitat condition by landuse?

• Landuse identified by GIS using a 200 foot buffer on each side of digital stream arcs

	Spawning Gravel	Instream Roughness				Fine Sediment	Channel Morphology				
Landuse	% Gravel in riffles	Volume LWD	Pieces LWD	Key Pieces LWD	% Bedrock	% Fines in riffles	Deep pools	% SW pools	% Second. channel	% Pools	Channel Morph. Index
Agriculture (N=43)											
Pvt. Indust. Forest (N=111)											
Pvt. Non-Indust. Forest (N=42)											
Urban (N=15)											
Federal Forest (N=93)	1										
State Forest (N=45)											

Significantly less large wood on private lands compared to public lands



- Better Than Reference Conditions
- Similar To Reference Conditions
- Worse Than Reference Conditions
- Inadequate Sample Size

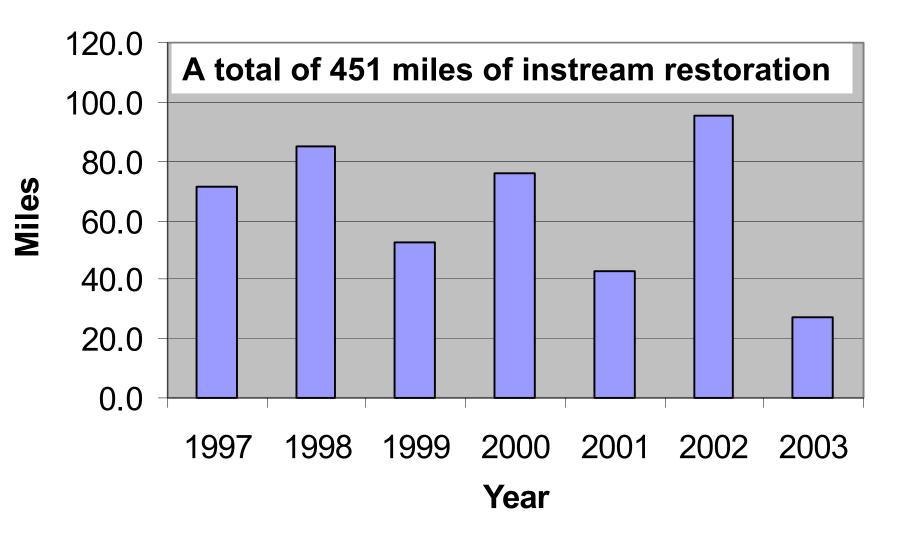
DRAFT

Percentage of Each Landuse in "Poor" Category for Three Large Wood Measures

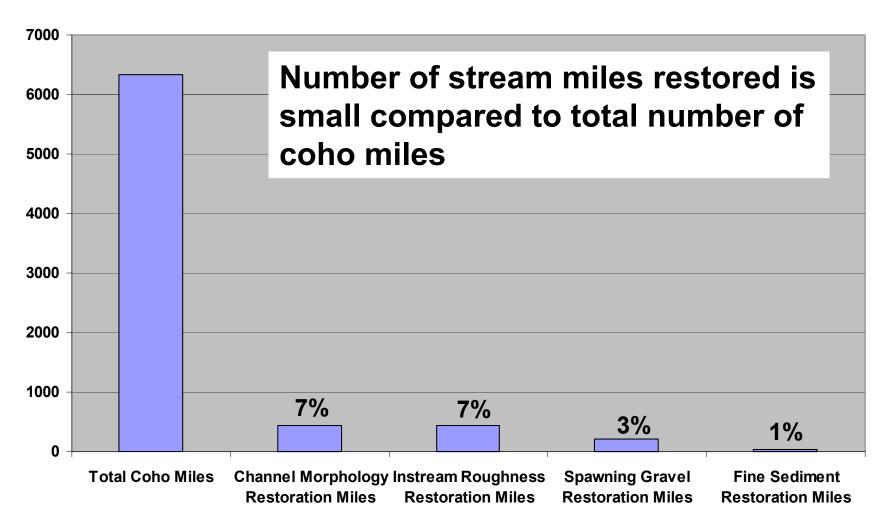
Instream Habitat Status and Trend Conclusions

- No detectable trend since 1998
- Significantly higher channel entrenchment
- Significantly less large wood
- Umpqua has less large wood than other areas
- Public lands have more large wood than private lands

Instream Habitat Restoration Analysis



Miles of Instream Habitat Restoration Conducted Each Year


Source – OWEB & Federal Restoration Database

Total Coho Miles and Restoration Miles in the Oregon Coast Coho ESU, 1997 – 2003

How effective is instream habitat restoration?

 Research has shown that increasing large wood in streams <u>can</u> increase the overwinter survival of juvenile coho salmon and <u>can</u> prevent localized extinctions during poor ocean conditions

• We can't determine the effectiveness of all instream restoration projects, <u>but</u> ODFW does conduct pre- and post-treatment habitat surveys at a subsample of restoration sites.

Quality of Habitat Restoration Sites Monitored by ODFW

Typical Pre-Project Stream •Low Wood •Low Complexity •Single Channel

Current status of many restoration projects

DRAF

Desired Post-Project Stream •Increased Wood •High Complexity •Multiple Channels

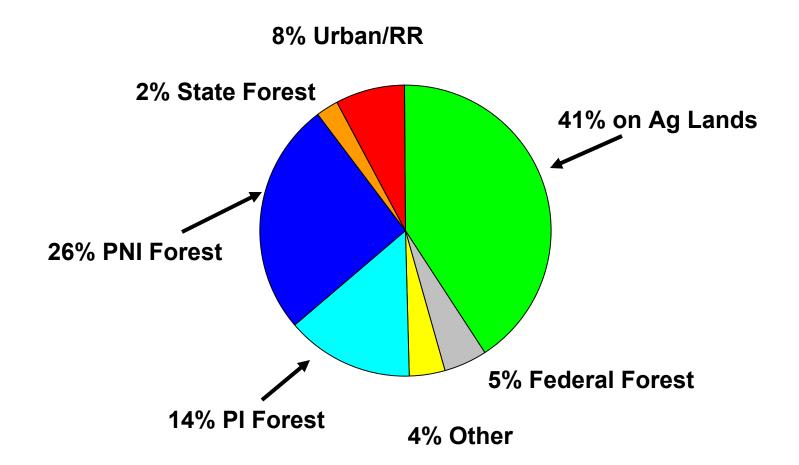
DRAF

Where should we focus future restoration efforts?

Low Intrinsic Potential

High gradient, constrained, or high mean annual flow

High Intrinsic Potential



Low gradient, unconstrained, and low to moderate mean annual flow

Occurrence of High Intrinsic Potential by Land Use

Intrinsic potential analysis from Coastal Landscape Assessment and Modeling Study (CLAMS)

Instream Habitat Restoration Conclusions

- Instream restoration projects are generally successful at improving large wood parameters to conditions found at reference sites
- Restoration projects are not addressing channel entrenchment problem
- Small proportion of overall coho miles treated makes restoration signal difficult to detect
- Many project are not currently creating "high" quality habitat because it takes time for wood placement to trap additional wood, trap substrate, and scour deep pools
- Biggest potential for habitat restoration making a difference to coho populations may be on agriculture lands