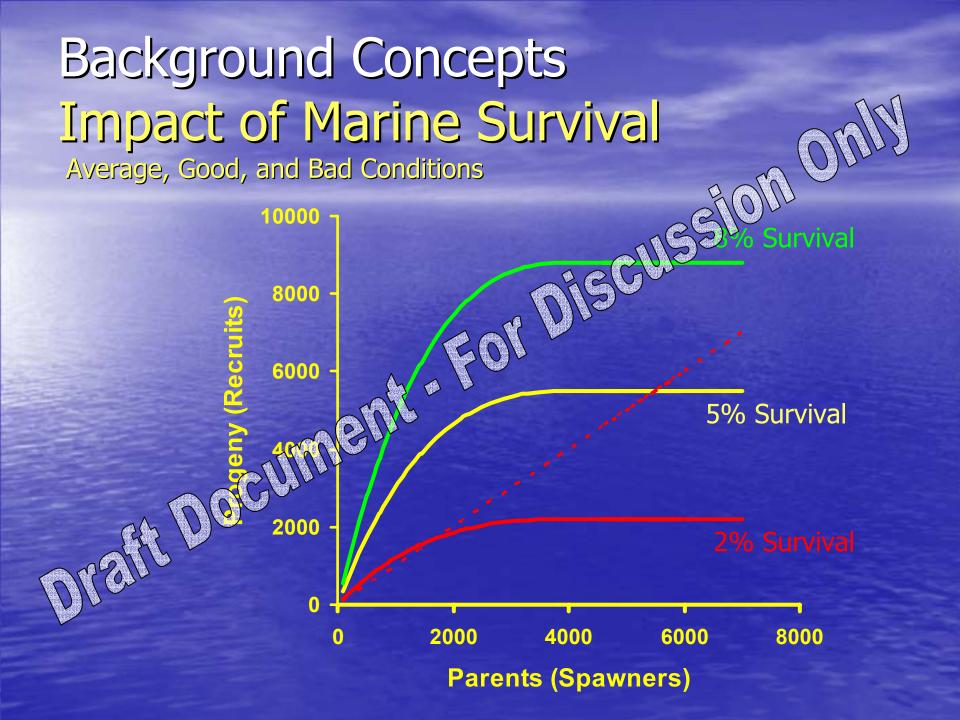
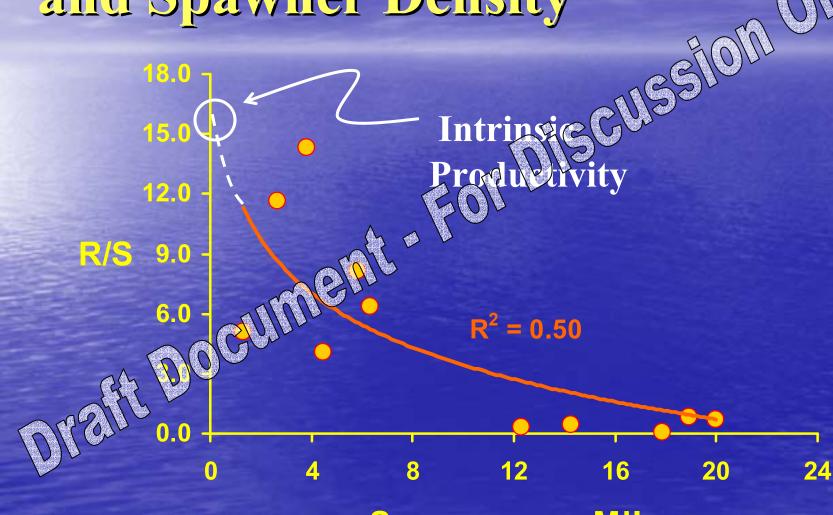
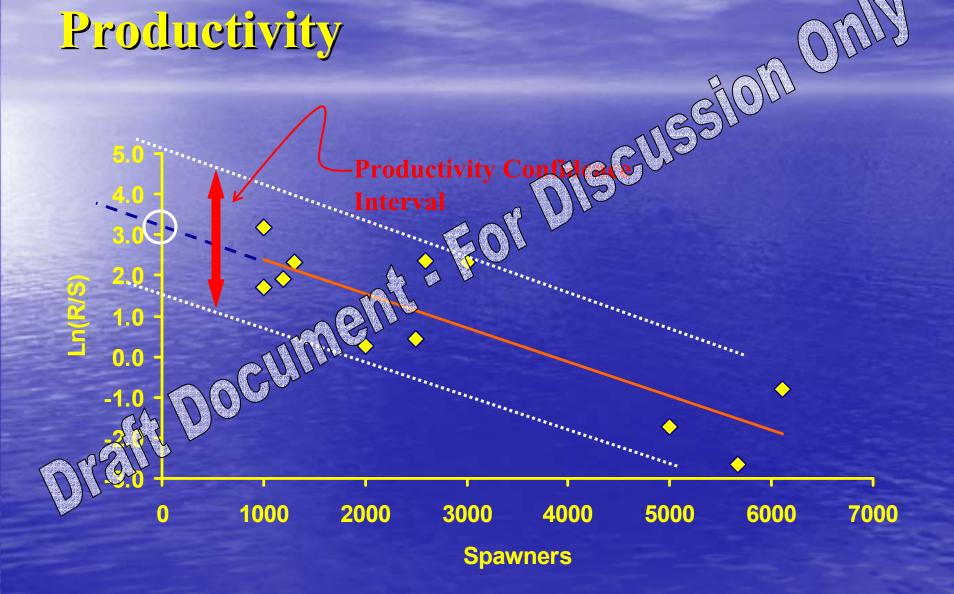

Background Concepts


Background Concepts Replacement


Background Concepts Recruitment Curve

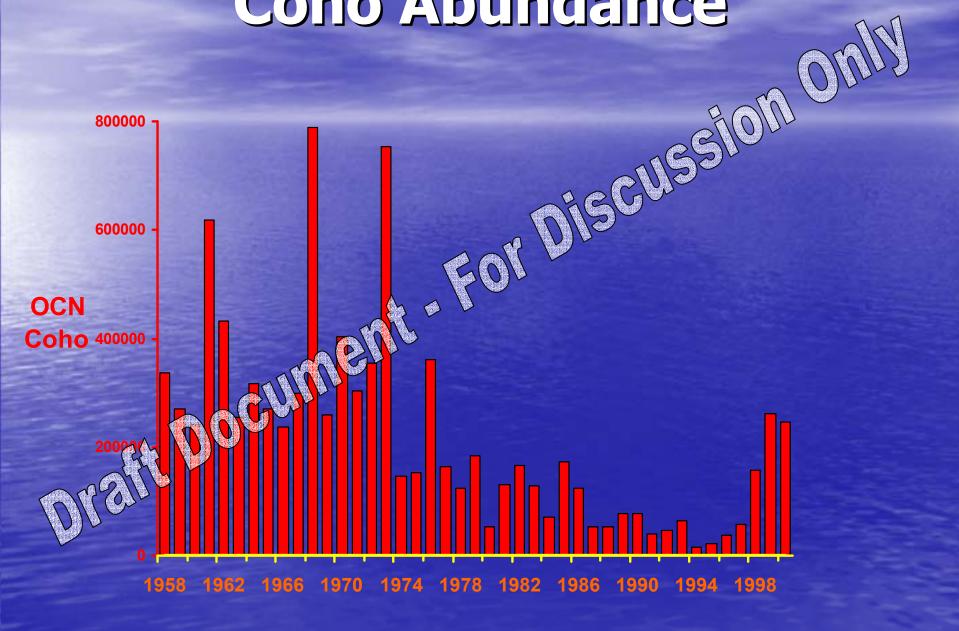
Background Concepts Impact of Marine Survival 6000 For Discussion ION Average and Good Conditions Draft 0 2000 4000 6000 8000 **Parents (Spawners)**



Relationship between Productivity and Spawner Density

Spawners per Mile

Level of Confidence for Coho Productivity



Draft Documente For Discussion Only

Oregon Coastan Only Coase Coastan Only Bioloculu ent brance Assessment

Coho Abundance

Variations in Ocean Survival

Deviations from 45-year mean Expressed as Ln(Smolt to Adult Survival * 100)

Viable Salmonid Populations
Attributes
Abundance
Productivity
Persistance
Aburdance
Abundance
<li

Viable Salmonid Populations
Attributes
Abundance
Productivity
Persistence
Attribution / Diversity

Example Abundance Questions M

- How many fish are needed at the fourt end of a bad ocean cycle to avoid the ping close to extinction levels during GC downturn?
- If standardized to poor ocean conditions, how high shoeld abundance be at any point in time?

Now high should abundance be during good ocean cycles?

Example Productivity Questions

• At low spawner densities, desparents produce enough adult progeny to replace themselves (i.e. stabilize above extinction levels)?

• Aring the record downturn of the 1990s, Or did populations average above replacement?

Example Persistence Question

Example Distribution/Diversity Questions

- Are coastal coho distributed three fout their natural range and occupying a variety of habitats?
- of habitats?
 Flow resilient are sono populations in filling available hatelets when ocean conditions becomed orable?

• **Reford genetic diversity and Nadaptability at risk?**

Attribute Criteria Preview

Abundance

(Least useful. Use as mile posts rather than criteria)

Productivity

- Pro1 During poor ocean, the average recruits per spawner (R/S) is above replacement when gowner density <5/mi.
- Pro2 During poor ocean, the average R/S is above replacement for all years below full see the or below 50% full seeding.

Persistence

Per1 – Probability <5% of hitting extinction threshold over forecasted 160 year period.

Distribution Aversity

>50% of watersheds have spawners/mi.

Marmonic mean of forecasted abundance exceeds 550 spawners to avoid loss of 5% genetic diversity over 100 yrs.

Attribute Criteria Preview

• Aprinquiance

(Least useful. Use as mile posts rather than, crift (a)

- Productivity
 - Pro1 During poor ocean, the average ccruits per spawner (R/S) is above replacement when gowner density <5/mi.
 - Pro2 During poor ocean, the average R/S is above replacement for all years below full see (10) or below 50% full seeding.
- o Persistence
 - Per1 Probabile 3% of hitting extinction threshold over forecasted 160 year period.
- Distribution (Aversity)
 - 50% f sample reaches within \geq 50% of watersheds have 4 spawners/mi.
 - Marmonic mean of forecasted abundance exceeds 550 spawners to avoid loss of 5% genetic diversity over 100 yrs.

Relationship between Productivity (R/S) and Spawner Density

Man Agente

12.0

 $R^2 = 0.50$

Spawners per Mile

12

16

20

24

8

Δ

Relationship between Productivity (R/S) and Sawner Density

12.0

9.0

6.0

CAN

R/S

mean

Δ

Estimate R/S from spawner Obnsities < 5 fish/mi.

16

20

24

 $R^2 = 0.50$

Spawners per Mile

12

8

Pro1 Productivity Criterion Risk Classification

n/mile) that For low spawner densities (less than were observed during the recent poor ocean survival cycle (1990 - 96 broad years), the following risk classific tion applies: RED = The average low density R/S was less than 1.1. YELLOHY Yé average, low density R/S was ater than 1.1, but less than 2.1. = The average, low density R/S was greater than 2.1.

Attribute Criteria Preview

• Abundance

(Least useful. Use as mile posts rather than, criffe (a)

- Productivity
 - Prol During poor ocean, the average Ccruits per spawner (R/S) is above replacement when Somer density <5/mi.
 - Pro2 During poor ocean, the average R/S is above replacement for all years below full secting or below 50% full seeding.

Perajatence

Per1 – Probability x3% of hitting extinction threshold over forecasted 160 year period.

Distribution (Aversity)

50% f sample reaches within \geq 50% of watersheds have 14 spawners/mi.

Marmonic mean of forecasted abundance exceeds 550 spawners to avoid loss of 5% genetic diversity over 100 yrs.

Pro2 Productivity Criterion Risk Classification

For spawner densities less than full seather or less than 50% full seeding, calculated where recent poor ocean survival cycle (19) 96 brood years), the following risk classification applies: RED = Greater than 50% chance that the mean R/S was less than 1.6 YELLOW = Less than 50% chance, but greater than 25% (nit) that the mean R/S was less than 1.1. Less than 25% chance that the mean R/S less than 1.1.

Attribute Criteria Preview

Abundance

(Least useful. Use as mile posts rather than, crift in)

- Productivity
 - Prol During poor ocean, the average Ccruits per spawner (R/S) is above replacement when Cowner density <5/mi.
 - Pro2 During poor ocean, the average R/S is above replacement for all years below full see (10) or below 50% full seeding.
- Persistence

Per1 – Probability <u>s</u>5% of hitting extinction threshold over forecasted 160 year period.

Distribution (Aversity)

50% f sample reaches within \geq 50% of watersheds have spawners/mi.

Marmonic mean of forecasted abundance exceeds 550 spawners to avoid loss of 5% genetic diversity over 100 yrs.

Perl Persistence Criterion

 Modeling Approach: "What as the possible combinations of ight hsic productivity and habit it capacity that will ensure a population bas a bid. ensure a population has a high probability of persistence over a period of 100 years under a dult range of likely environmental fluctuations ?"

Perl Persistence Criterion

Key Considerations and Assumptions

1. What are the characteristics of the model used to predict recruit recruit ?

= Ricker recruitment model with an additional parameter to incorporate annual variation in marine survival.

2. How variable is the recruitment process ?

= a stand relieved measure of the difference between the assumed recruited model prediction and the observed data points. This was expressed as the standard deviation of the regression's happendent variable Ln(R/S) on the dependent variables.

Per1 Persistence Criterion Estimating Parameters for Habitat Capacity, Intrinsic Productivity, and Recruitment Variability - Ex: DISCUSSION

Ø

4000

Spawners

pawners + 2.04

8000

 \diamond

6000

4.0

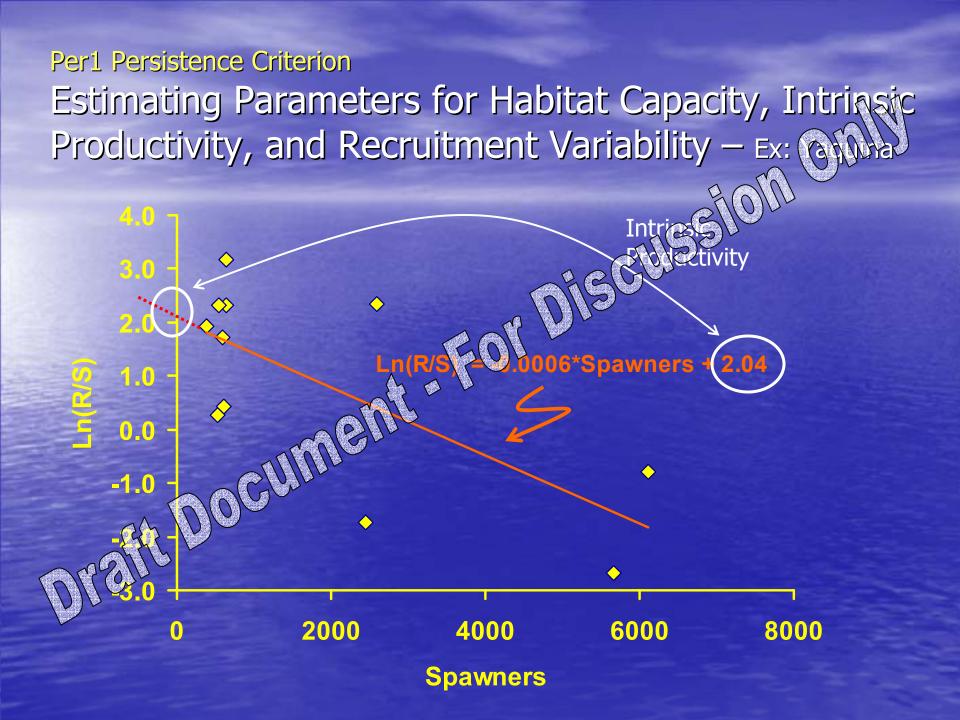
3.0

2.0

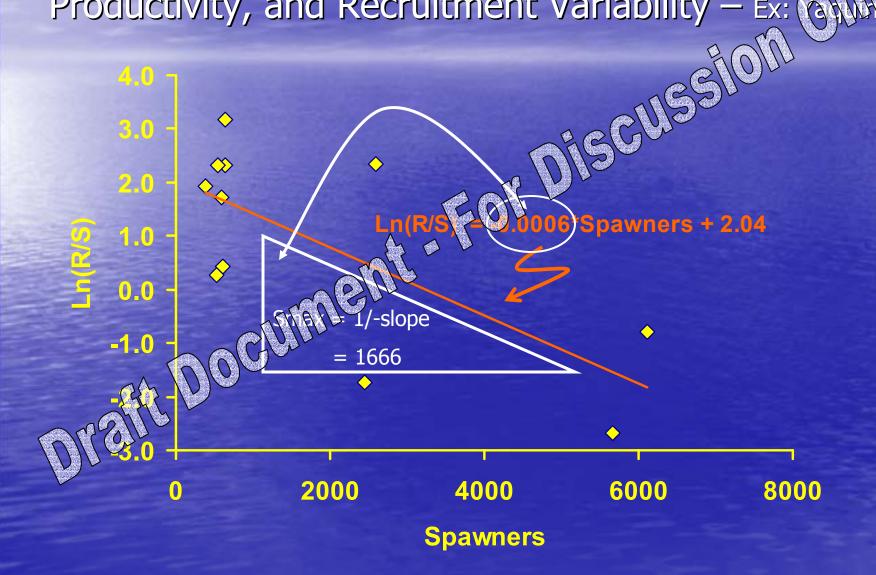
1.0

0.0

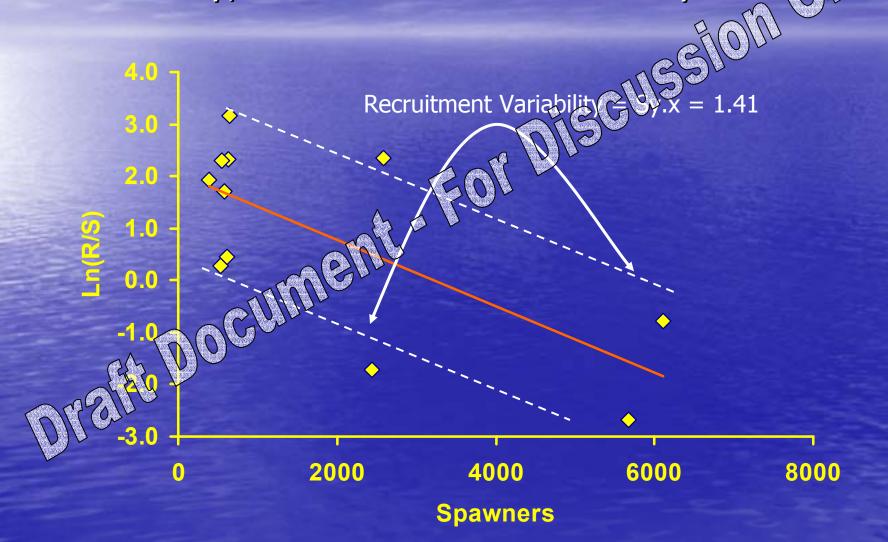
-1.0

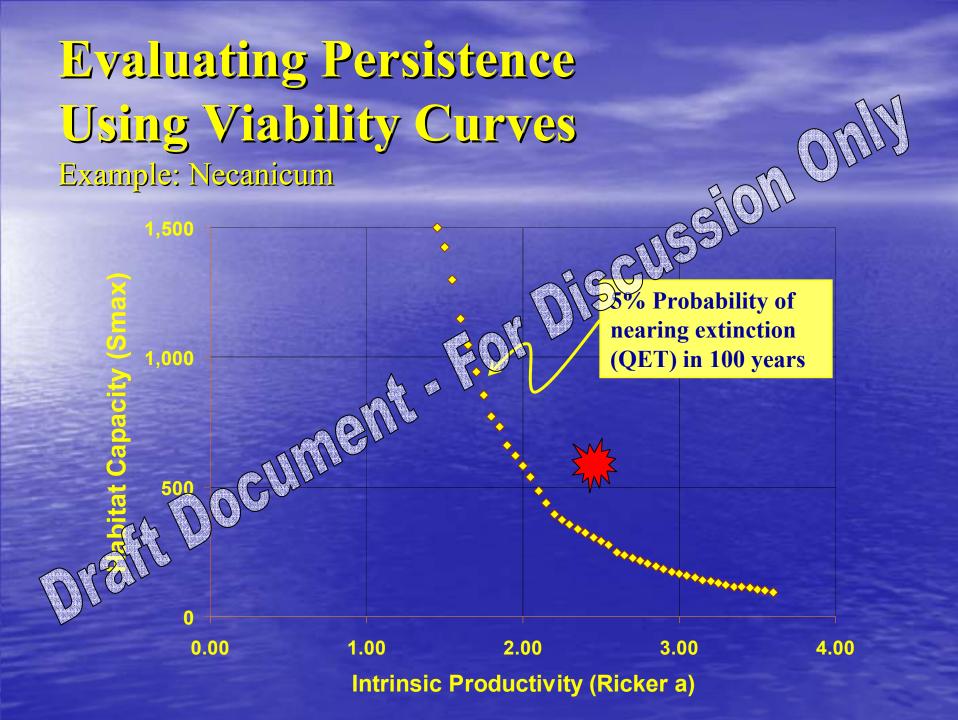

 \cap

 \diamond


 \bigotimes

Document


2000

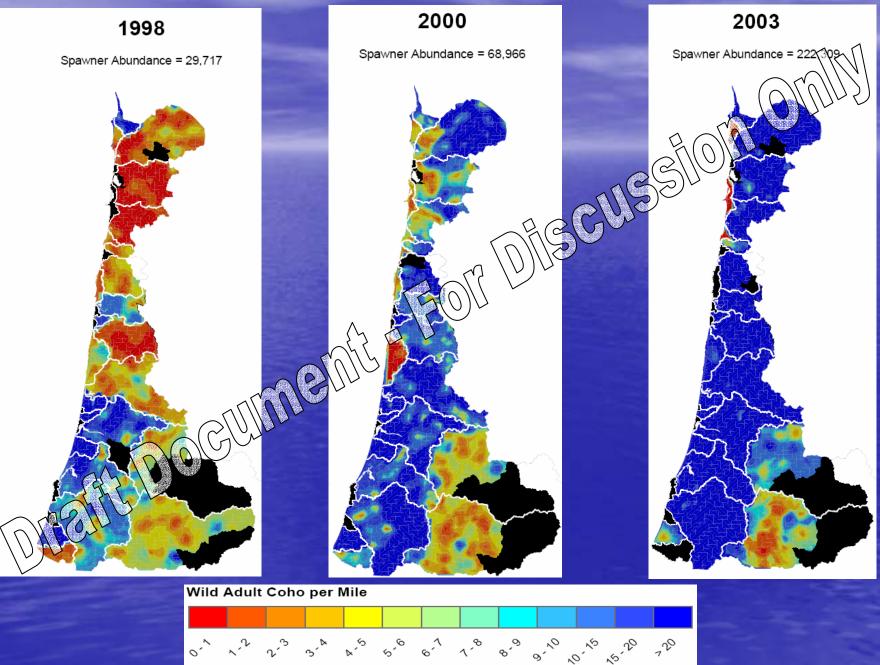


Perl Persistence Criterion Estimating Parameters for Habitat Capacity, Intrinsic Productivity, and Recruitment Variability – Ex: Column

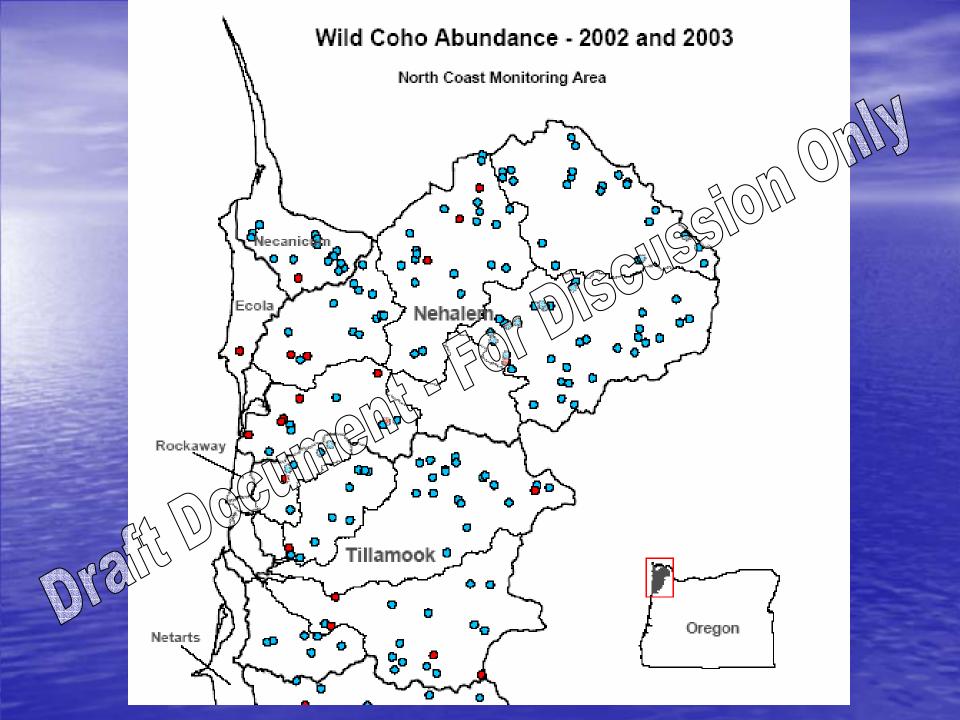
Perl Persistence Criterion Estimating Parameters for Habitat Capacity, Intrinsic Productivity, and Recruitment Variability — Ex:

Persistence Criterion Risk Classification

For a 100 year test period, 34 Sar average <QET: RED = >5% Sobability. YELLCOV = 1-5% probability. Solution = <1% probability.


Attribute Criteria Preview

• Aprinquice


• (Least useful. Use as mile posts rather than, criteria)

- Productivity
 - Prol During poor ocean, the average Ccruits per spawner (R/S) is above replacement when Somer density <5/mi.
 - Pro2 During poor ocean, the average R/S is above replacement for all years below full see Tr() or below 50% full seeding.
- Persistence
 - Per1 Probabiles 25% of hitting extinction threshold over forecasted 160 year period.
- Distribution (Alversity)
 - > 50% of watersheds have > 50% of watersheds have > 4 spawners/mi.
 - Marmonic mean of forecasted abundance exceeds 550 spawners to avoid loss of 5% genetic diversity over 100 yrs.

Adult Coho Distribution and Abundance

°.

Coquille Coho Population Distribution

ESU Biological Viability: Population Diversity, Spatial Structure, and Connectivity

Indicator: Coho Population Stribution

Distribution Criteria: Each functionally independent and potentially independent population must meet or exceed the water bried-scale diversity index in four of the last six years and never fail in 3 consecutive years.

Watershed-Scale Diversity Index

At least 50 percent of the sample reaches with a at least 50% of watershed, with spawning habitat support 4 or more spawners/mile.

Watersheds defined by 5th Field USGS Hydrologic Unit Code – spawners/mile from ODWF AUC or equivalent)

Attribute Criteria Preview

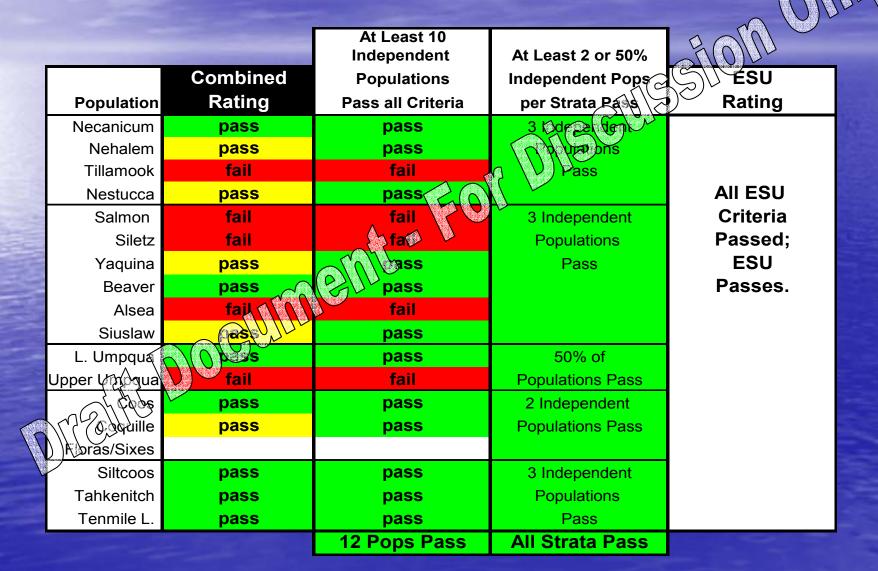
• Aprinquice

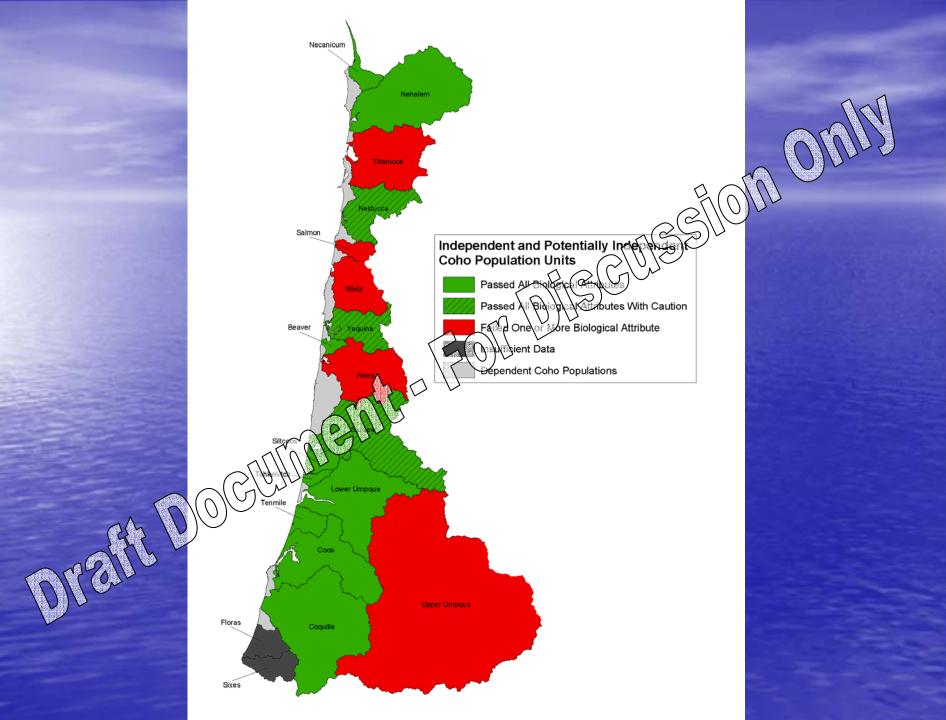
(Least useful. Use as mile posts rather than, crift in)

- Productivity
 - Prol During poor ocean, the average Ccruits per spawner (R/S) is above replacement when Somer density <5/mi.
 - Pro2 During poor ocean, the awage R/S is above replacement for all years below full see (40) or below 50% full seeding.
- Peralatiance
 - Per1 Probability 25% of hitting extinction threshold over forecasted 160 year period.
- Distribution (Aversity)
 - 50% f sample reaches within \geq 50% of watersheds have spawners/mi.
 - Marmonic mean of forecasted abundance exceeds 550 spawners to avoid loss of 5% genetic diversity over 100 yrs.

Application of Biological Criteria

Criteria for ESU Viability


1. At least 10 independent possibilitions pass all population criteria. 2. For each ESU strate, either 50% or 2 independent populations pass all population criteria (1 population must be classified as functionally independent, except in lakes strata). All strata pass.


Preliminary Application of Criteria to Oregon Coastal Coho Populations

RG

	Pro1			Dro? Dor1		Dietre		Combined
	Pr	01	Pro2		Per1	Distro	Verse	Combined
Population	mean R/S	Prob < 1.1	< 1/2Smax	< Smax	Prob < QET	M(B)C	HarMean	Rating
Necanicum	3.48	0.113	0.124	0.223	0,000	N0%	1300	pass
Nehalem	1.31	0.364	0.143	0.472	(a) (the p)	73%	7159	pass
Tillamook	1.30	0.393	0.405	0.448	1 10 38	83%	847	fail
Nestucca	2.62	0.144	0.062	(.04 F)	0.029	85%	1429	pass
Salmon			0.175	A \$17	0.999	0%	1	fail
Siletz	1.34	0.302	0.496	0.646	0.087	67%	1006	fail
Yaquina			A B J	0.058	0.013	80%	1586	pass
Beaver			16u		0.000	100%	2737	pass
Alsea			0.756	0.875	0.400	50%	234	fail
Siuslaw		NG UNI	0.014	0.428	0.013	65%	5999	pass
L. Umpqua	VUV	9	0.128	0.131	0.000	56%	7772	pass
Upper Umpque				0.976	0.000	47%	10753	fail
C P P P	70				0.000	73%	12381	pass
				0.272	0.000	60%	9420	pass
Floras/Sixes						55%		
Siltcoos			0.078	0.049	0.000	100%	5681	pass
Tahkenitch				0.022	0.000	100%	2318	pass
Tenmile L.					0.000	100%	10706	pass

Preliminary Strata and ESU Assessment

Persistence Under Different Fish Management Scenarios

Base = Current w/o anticipated hatchery improvements HatchChg = Base w/ hatchery improvements

OldHR70 = Outcome if historical 70% rate had not been changed.

				$ \langle \langle \rangle \rangle $	\mathbb{N}	
				$\langle N \rangle$	\backslash	
	(c	$\langle \Lambda \rangle$	<u>`</u> ∩	ΛV)
		$ 1\rangle$	M	17.		
\sim		\mathcal{F}	6			
L_{Δ}	\sim					

		Probability of < Threshold			
	Population	Base	HatchChg	CHERRY	
	Necanicum	0.000	0.000	2.469	
	Nehalem	0.004	C C C	0.993	
	Tillamook	0.138		1.000	
	Nestucca	0,029	0.029	0.795	
	Salmon	0.000	0.947	1.000	
	Siletz	★ Ø.087	0.000	0.999	
	Yachta	0.013	0.003	0.609	
	Regrer	0.000	0.000	0.223	
	Alsea	0.400	0.000	0.999	
	Siuslaw	0.013	0.006	0.736	
as '	Siltcoos	0.000	0.000	0.000	
475	Tahkenitch	0.000	0.000	0.043	
all -	Lower Umpqua	0.000	0.000	0.071	
	Upper Umpqua	0.000	0.000	0.952	
	Tenmile	0.000	0.000	0.000	
	Coos	0.000	0.000	0.000	
	Coquille	0.000	0.000	0.024	

Viability Curves - Tillamook Population 2,000 cument - For Discussion rait Document - # •

2.5

3

3.5

Δ

1.5

2

Viability Curves - Tillamook Population Anticipated Impact of Changes in Hatchery Program 2,000 cument we Discussion

Intrinsic Productivity

2.5

3

3.5

1.5

2

Viability Curves - Tillamook Population Results in Context of Historical Fishery Impact Rates

entit

2

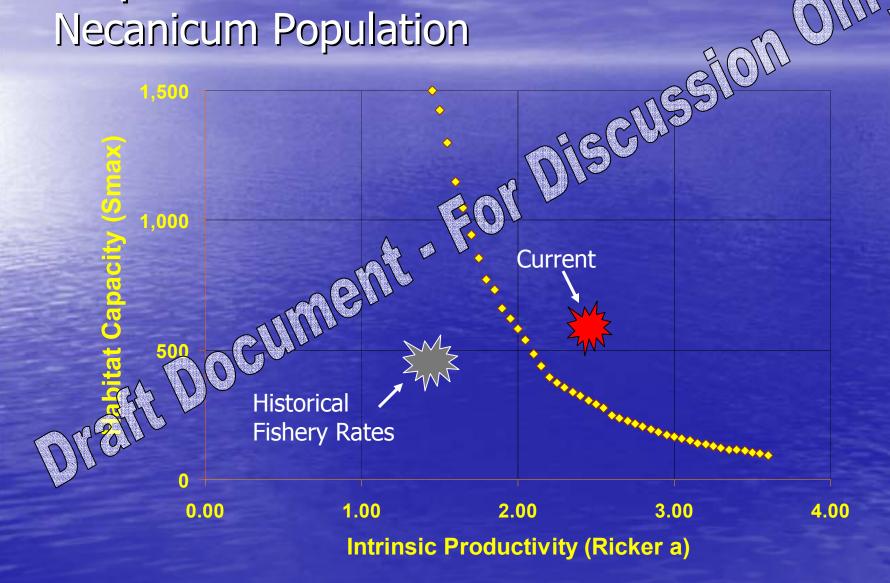
1.5

6.000

4.000

2,000 - C

Intrinsic Productivity


2.5

000000000000

3.5

3

Perl Persistence Criterion Impact of Historical Harvest Rates Necanicum Population

Persistence Under Different Fish Ocean Survival Scenarios

	Probability of < Threshold (0)						
Population	1.00Survival	0.85Survival	0.70Survival	0.50Survival	0.38 00000	0.20Survival	0.10Survival
Necanicum	0.000	0.001	0.005	0.104	Upz239	1.000	1.000
Nehalem	0.004	0.027	0.191	CRACK!	0.993	1.000	1.000
Tillamook	0.138	0.326	0.547	UNS	1.000	1.000	1.000
Nestucca	0.029	0.067	A 1791	600	0.795	0.999	1.000
Salmon	0.999	1.000	1 Factor 12	1.000	1.000	1.000	1.000
Siletz	0.087	0.275	0.572	0.968	0.999	1.000	1.000
Yaquina	0.013	G A La	0.077	0.264	0.609	0.994	1.000
Beaver	0.000	(92).00	0.000	0.008	0.223	1.000	1.000
Alsea	0,400	0.619	0.845	0.988	0.999	1.000	1.000
Siuslaw	(CARE	0.042	0.193	0.402	0.736	0.997	1.000
Silloode	000.00	0.000	0.000	0.000	0.000	0.000	0.968
(Ten Ken Ych	0.000	0.000	0.000	0.000	0.043	1.000	1.000
Lower Umpqua	0.000	0.000	0.000	0.013	0.071	0.952	1.000
() Upper Umpqua	0.000	0.000	0.007	0.442	0.952	1.000	1.000
Tenmile	0.000	0.000	0.000	0.000	0.000	0.000	0.935
Coos	0.000	0.000	0.000	0.000	0.000	0.124	0.996
Coquille	0.000	0.000	0.000	0.000	0.024	0.996	1.000

Manu Esteve 2001

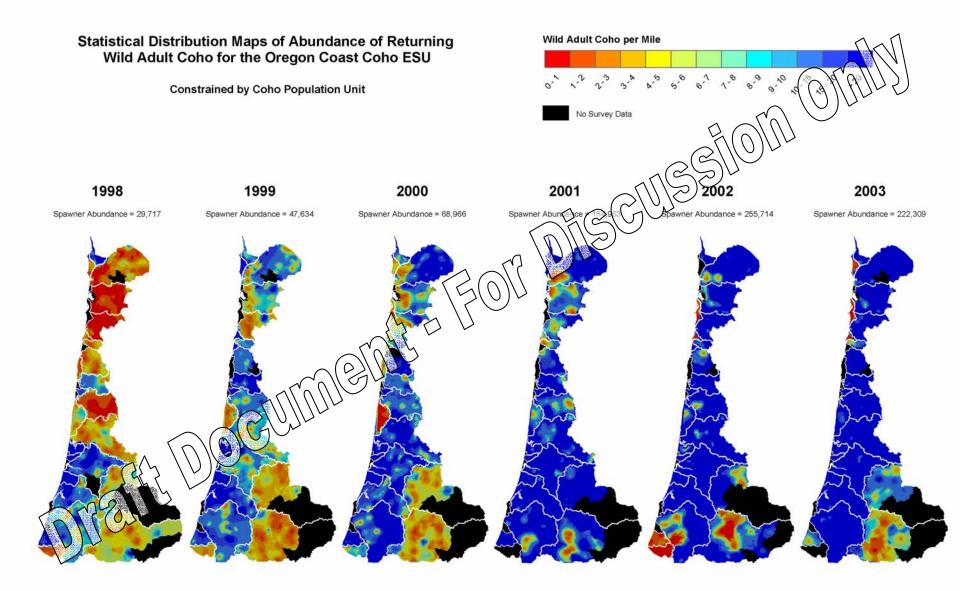
Conserva presion Only Conservation Effort

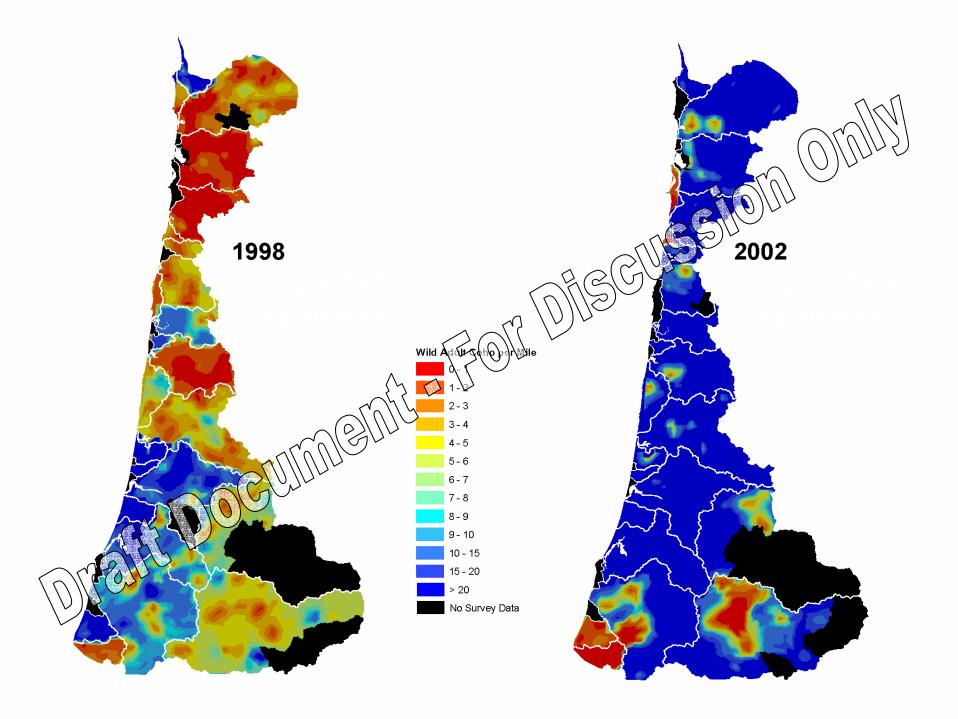
Technical Review • OP Management Payesers • INIST • Input Mark Page

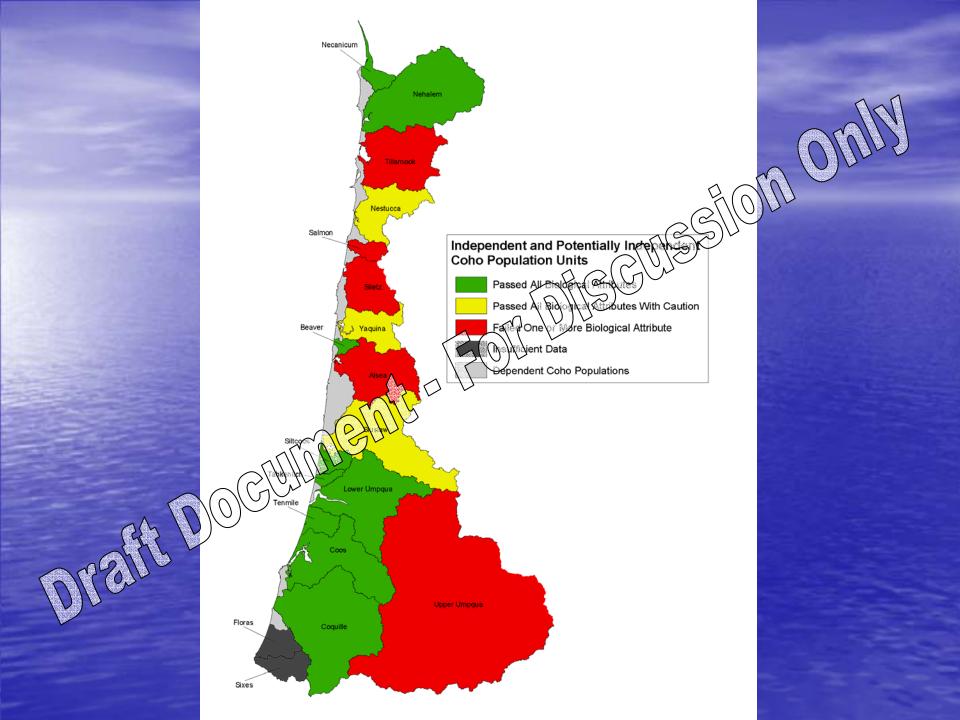
Manu Esteve 2001

Coastal Coho Orgecussion
 Coastal Coho Orgecussion
 Coastal Coho Orgecussion
 Coastal Coho Orgecussion
 Coastal Coho Orgecus
 Coastal Coh

ummer/Fall '04 - Winter '05


Manu Esteve 2001


Prate Dock in Ball & For Discussion Outbo


Preliminary Application of Productivity, Persistence, and Distribution Criteria to Oregon Coast Coho

			the second se					QUIP	
		Productiv	ity 1		Productivity 2			Per1	Distrb
Population	n	mean R/S	Prob < 1.1	n	< 1/2Smax	n	्रिञ्छ ax	Prob < QET	
Necanicum	3	3.48	0.113	4	0.124		1U .223	0.000	100%
Nehalem	3	1.31	0.364	7	0.1	(D)	0.472	0.004	73%
Tillamook	5	1.30	0.393	7	8,405V	V10	0.448	0.138	83%
Nestucca	3	2.62	0.144	FL	0 0 062	9	0.044	0.029	85%
Salmon	2	2.23	Δ	3	0.175	8	0.917	0.999	0%
Siletz	4	1.34	0.302	$\bigcirc 7 \bigcirc$	0.498	8	0.646	0.087	67%
Yaquina	2	8.39	arally	7	0.058	7	0.058	0.013	80%
Beaver	0		<u>NGP</u>	1		1		0.000	100%
Alsea	1	0.097//	NO.	5	0.756	9	0.875	0.400	50%
Siuslaw	0	CAU		5	0.014	10	0.428	0.013	65%
L. Umpqua	(PD)	1010		3	0.128	6	0.131	0.000	56%
Upper Umpq	20V			0		6	0.976	0.000	47%
	150			1		2		0.000	73%
To quild	0			0		5	0.272	0.000	60%
Flotad Sixes	0								55%
Siltcoos	3	4.76	0.078	3	0.078	8	0.049	0.000	100%
Tahkenitch	1	5.84		1		5	0.022	0.000	100%
Tenmile L.	1	4.55		1		2		0.000	100%

OET Values (Impending Extinction) (Expanded for miles of habitat occupied during 1990s, rounded to nearest 10, and with no value less than 50)								
Population	QET	Popelation	QET					
Necanicum	50	Siuslaw	460					
Nehalem	370	Siltcoos	50					
Tillamook	170	Tahkenitch	50					
Nestucca	00173	Lower Umpqua	280					
Satular	50	Upper Umpqua	590					
Siletz	170	Tenmile	50					
Yaquina	120	Coos	180					
Beaver	50	Coquille	240					
Alsea	190							

