Electronic Computer Program For

HYDRAULIC ANALYSIS OF CIRCULAR CULVERTS

(BPR PROGRAM NO HY-1)

Developed by

U. S. DEPARTMENT OF COMMERCE

Bureau of Public Roads

For further information contact:
U. S. DEPARTMENT OF COMMERCE
Bureau of Public Roads
Office of Research & Development
Washington, D. C. 20235

:

BUREAU OF PUBLIC ROADS Electronic Development Division and Bridge Division Washington, D. C.

HYDRAULIC ANALYSIS OF CIRCULAR CULVERTS

Program Developed by Richard C. Tennent and Lester A. Herr

Third Printing
February 1966

TABLE OF CONTENTS

	Page
	-
Statement of the Problem	1
Method of Functioning of Program	2
Mathematical Equations	5
Input Data	10
Output Data	15
Culvert Code Table	17
Constants	18
Definition of Terms	23
Program Listing	28
Example Problems	38

ABSTRACT

This program is used for the hydraulic analysis of circular pipe culverts for given hydrological data and site conditions. The program produces number of pipes, pipe sizes, headwater and outlet velocities for inlet conditions and outlet conditions. Outlet control calculations make use of backwater computations, whenever necessary, to compute headwater.

STATEMENT OF THE PROBLEM

Highway organizations find the electronic computer helpful in performing the numerous computations needed for the planning, designing and construction of modern highways. Programs are available for various phases of road and bridge design, but only a few programs deal with hydraulic design. This program then, is an attempt at closing the gap that exists for electronic computation in hydraulic design.

The ideal program for the design of a highway culvert would compute culvert lengths, sizes and select the most economical culvert (circular, pipe-arch or concrete box) from all the various types. The program herein described is for the hydraulic design of circular pipe culverts and is a step towards the ultimate goal of having the electronic computer select the most economical culvert.

The rapidity with which the electronic computer performs calculations makes its use advantageous for selecting culvert sizes on highway projects having a number of installations or for checking culvert sizes in review of drainage plans. An added advantage of the program is the computation of headwater required, for the culverts selected, to pass floods other than the design flood.

This program is based on the principles discussed in Hydraulic Engineering Circular No. 5 ½/, "Hydraulic Charts for the Selection of Highway Culverts." Mathematical equations, listed on pages are used instead of the nomographs in Circular No. 5 for calculating headwater-discharge relationships, head for full flow and backwater computations by the step-method.

^{1/ &}quot;Hydraulic Charts for the Selection of Highway Culverts"
Hydraulic Engineering Circular No. 5, by L. A. Herr, U. S.
Department of Commerce, Bureau of Public Roads, 1961

METHOD OF FUNCTIONING OF PROGRAM

The method of functioning can be separated into two sections; (1) inlet control calculations and (2) outlet control calculations. The two sections will be discussed separately, but in the program they are interconnected in order to avoid duplication of computer instructions.

Inlet Control

Inlet control calculations are begun by calculating the approximate diameter of pipe; this is done by equation (1). The approximate diameter is checked against the allowable headwater, which is input data. If the diameter is greater than the allowable headwater the number of pipes is incremented by one and the discharge is changed by dividing the new number of pipes into the original discharge. Using the adjusted discharge the calculation for a new approximate diameter is made and checked against allowable headwater. When a diameter of pipe has met the test of being less than the allowable headwater, inlet control calculations are continued.

Using the acceptable diameter of pipe, the headwater is calculated by equation (2). The calculated value of headwater is compared to the allowable headwater and on the basis of the comparison the program either increments or decrements the diameter of the pipe by one-half foot to obtain a new diameter. If it is necessary to increment the size of the pipe to obtain a new diameter, a check is made to be sure the diameter does not become greater than the allowable headwater plus one-half foot. If the diameter is incremented above this limit, then the number of pipes is incremented by one, the discharge is adjusted by the method mentioned previously, and the calculations are started over again.

By testing counters, the program makes a decision whether two acceptable selections of pipe size have been calculated. The two acceptable selections are: (1) a pipe size with its headwater equal to or less than the allowable headwater and (2) a pipe size with its headwater greater than the allowable headwater.

Equation (2), which is used for calculating headwater, was calculated by a Least Squares Polynomial Curve Fitting 1/2 computer program. The program was used to calculate a 5th degree curve for each set of experimental data for culvert models 1, 4, 7, 51, 81, 101, 102 and 112 as presented in Hydraulic Characteristics of Commonly Used Pipe Entrances 2/2.

^{1/} Least Square Polynomial Curve Fitting, by Electronics Branch, 1962, U. S. Department of Commerce, Bureau of Public Roads Electronic Computer Program Library M-1.

^{2/} Hydraulic Characteristics of Commonly Used Pipe Entrances, by John L. French, 1955, U. S. Department of Commerce, National Bureau of Standards, pages 48-74.

When the two pipe sizes have been selected, the program proceeds to calculate the outlet velocities for each selection. In order to calculate the outlet velocity it is necessary to calculate the normal depth of flow. The normal depth is calculated by an interative method using equation (3). The iterative calculations start at full flow and the depth is decremented until equation (3) is satisfied. When equation (3) is satisfied, the area which is calculated by equation (11) is divided into the discharge to calculate the outlet velocity.

After the velocities have been calculated and the results printed, the program branches to a control routine. This routine sets all necessary switches to enable the program to use the check value of discharge in order to calculate new values of headwater and outlet velocity for the pipe sizes originally selected. After printing the results of the check calculations, the program branches to the control routine which resets the original value of the discharge and then sends the program to outlet control calculations.

Outlet Control

Outlet control calculations are begun by using one of the selected pipes from inlet control calculations as the first selection of pipe size to be analyzed. The calculations are started by calculating the head for a circular pipe flowing full by equation (4). After the head is calculated, the value of tailwater, which is input data, is compared to the diameter of the pipe being analyzed. If tailwater is equal to or greater than the diameter, then headwater is calculated by equation (6) using the conditions listed. If the value of tailwater is less than the diameter, it is necessary to calculate critical depth by an interative method using equation (5). The iterative process starts with the depth equal to 0.98 times the diameter and the depth decrements until equation (5) is satisfied. Headwater is then calculated by equation (6) using the listed conditions.

After calculating headwater by one of the above methods a determination is made whether the critical depth is equal to or less than the normal depth. If this condition does not exist the previously calculated value of headwater is correct. If the critical depth is equal to or less than the normal depth, then a water-surface profile or backwater curve must be calculated. The calculations for a backwater curve use equations (7) and (8). The larger of the values of tailwater or critical depth is used as the starting depth of the backwater calculations. When the backwater curve is completed, the headwater is calculated by equation (9).

After a value of headwater is obtained by one of the above methods, it is compared to the allowable headwater. Depending on the comparison, the pipe diameter is either incremented or decremented by one-half foot to obtain a new diameter. This selection and any subsequent selections are then put through the above calculations and comparisons starting with the head calculations. As stated under inlet control, there are only two acceptable selections; one pipe with its headwater equal to or less than the allowable headwater and one pipe with its headwater greater than the allowable headwater.

When the program, by testing counters, has selected two pipe sizes, then outlet velocity calculations are begun. The tailwater is compared with the diameter and when tailwater is equal to or greater than the diameter, the outlet velocity is calculated for full flow. When the tailwater is less than the diameter, tailwater and critical depth are compared and the largest value is used in equation (11) to calculate area. This area is then used in equation (10) to calculate outlet velocity.

After printing the results of the pipes selected for outlet control, the program branches to the control routine. The control routine sets the switches in the program that are necessary to calculate check values of headwater and outlet velocity for the two pipes selected by outlet control. The check calculations for headwater and outlet velocity are determined in the same manner as the original calculations.

After printing the check calculations the control routine returns the program to the beginning to read-in another problem.

MATHEMATICAL EQUATIONS

Inlet Control Equations

Approximate Diameter

$$D = \left[\frac{Q}{AHW}\right]^{1/2} \tag{1}$$

Where D is the diameter in feet,

Q is the discharge in cfs,

AHW is the allowable headwater

in feet.

Inlet Headwater

$$HW = (Y)(DIA) \tag{2}$$

Where
$$Y = A + BX + CX^2 + DX^3 + EX^4 + FX^5 - (SCORR)(SLOPE)$$

HW is headwater in feet,

DIA is diameter of pipe in feet,

A,B,C,D,E, & F are coefficients as

described on page 23,

SCORR is a correction applied to slope,

SLOPE is the slope of the pipe,

$$X = \frac{Q}{DIA^{5/2}},$$

Q is discharge in cfs,

Outlet Velocity

$$Q = \frac{1.486}{n} AR^{2/3} s^{1/2}$$
 (3)

Where Q is the discharge in cfs,

A is the area of water in square feet

at any depth of flow defined by equation (11),

R is the hydraulic radius in feet,

S is the slope of the pipe in feet per foot, n is Manning's value.

Outlet Control Equations

Head

$$H = \left[1 + k_e + \frac{185.0 \text{ n}^2 \text{L}}{\text{D}^{4/3}}\right] \cdot \left[\frac{Q^2}{(39.725)(D)^{4}}\right]$$
(4)

Where H is the head for circular culverts flowing full in feet,

 $\mathbf{k}_{\mathbf{e}}$ is the coefficient of entrance loss,

n is Manning's value for stream channels,

L is length of pipe in feet,

Q is the discharge in cfs,

D is the diameter of pipe in feet.

Critical Depth

$$\frac{\alpha Q^2}{32 \cdot 2} = \frac{A^3}{T} \tag{5}$$

Where Q is the discharge in cfs,

A is the area of water in square feet
at any depth defined by equation (11),

T is the top surface width of water in feet

at any depth of flow defined by equation (13).

Outlet Headwater

Where d_n is normal depth and d_c is critical depth. $HW = TEMP + H - (L)(S) \tag{6}$

When
$$d_c = D$$
 and $D > TW$, then TEMP = D;

$$d_c < D$$
 and $\frac{d_c + D}{2} > TW$, then $TEMP = \frac{d_c + D}{2}$;

$$TW > D \text{ or } TW > \frac{d_c + D}{2}$$
, then $TEMP = TW$;

Where D is the diameter of pipe in feet,

TW is tailwater height in feet,

HW is the headwater in feet,

H is the head for full flow in feet,

L is the length of the pipe in feet,

S is the slope of the pipe in feet per foot.

For $d_n \ge d_c$

This is for water-surface profile or sometimes referred to as a backwater curve.

$$x_1 = \frac{\begin{bmatrix} d_2 + \frac{v_2^2}{2g} \end{bmatrix} - \begin{bmatrix} d_1 + \frac{v_1^2}{2g} \end{bmatrix}}{s - s_0}$$
 (7)

Where Xl is the distance in feet between two different depths of water,

 \mathbf{d}_{1} and \mathbf{d}_{2} are the different depths of water in feet,

V₁ and V₂ are the velocities in feet per second at the different depths of water,

 $\boldsymbol{S}_{_{\boldsymbol{O}}}$ is the slope of the pipe in feet per foot.

$$g = 32.2 \text{ ft/sec}^2$$
,

$$S = \frac{n^2 V^2}{2.21 R^{4/3}}$$
 (8)

S is the slope of the water surface in feet per foot,

n is Manning's value,

V is the average velocity in feet per second of the two cross-sections,

R is the average hydraulic radius in feet of the two cross-sections.

$$HW = d_2 + \frac{v_2^2}{2g} + \frac{k_e v_1^2}{2g}$$
 (9)

Where HW is the headwater in feet,

 ${\bf k_e}$ is the coefficient of entrance loss, ${\bf d_2}$ is the depth in feet at the last cross-section, ${\bf V_l}$ and ${\bf V_2}$ are the velocities in feet per second at the different depths.

Outlet Velocity

$$V = \frac{Q}{A} \tag{10}$$

Where V is the outlet velocity in feet per second,

Q is the discharge in cfs,

A is the area in square feet for any depth of flow.

$$A = (DEP - R)\sqrt{(2R)(DEP)-DEP^{2}} + R^{2} \left[\pi/2 + \sin^{-1} \left(\frac{DEP - R}{R} \right) \right]$$
 (11)

Where A is the area in square feet.

$$WP = 2R \left[\pi/2 + \sin^{-1} \left(\frac{DEP - R}{R} \right) \right]$$
 (12)

Where WP is the wetted perimeter in feet.

$$T = 2\sqrt{R^2 - DEP^2}$$
 (13)

Where T is the top surface width in feet.

INPUT DATA

The input data for the program are:

- 1. Culvert code
- 2. Slope of pipe
- 3. Length of pipe
- 4. Design discharge
- 5. Allowable headwater
- 6. Design tailwater
- 7. Check discharge
- 8. Check tailwater

These input data are discussed in detail in the following paragraphs.

Culvert Code

The culvert code is taken from the table on page 17 of this writeup and incorporates all the necessary constants for the different types of culverts. The first four numbers comprising the culvert code are the subscripts for the constants listed on page 18 and the fifth number is the subscript for the Inlet Control Equation Coefficients.

To find the correct culvert code, select the type of pipe desired; i.e., riveted, riveted with paved invert, structural plate, structural plate with paved invert, or concrete. After selecting the type of pipe, select the type of inlet for the pipe; i.e., projecting, mitered, headwall, etc. Enter the table vertically under the type of pipe selected, read down the table until opposite the type of inlet selected. The five-digit number at the intersection of the appropriate row and column is the culvert code. For example: the culvert code is 12233 for a structural plate pipe, 25% paved with a headwall.

For correct use of the Culvert Code Table the following definitions will be helpful.

- 1. Type of pipe.
 - a. Riveted corrugated metal pipe commonly used riveted metal pipe with 1/2" by 2" corrugations.
 - b. Structural plate pipe sections of structural steel plates with 2" by 6" corrugations. Plates are usually field bolted.
 - c. Concrete pipe any concrete pipe in common use. No distinction is made for length of sections or method of casting.

2. Paved Invert.

a. Paved invert relates to a material, asphalt or concrete, plated in the bottom portion of a metal culvert barrel.

3. Types of Inlets.

- a. Projecting The culvert barrel extends from the embankment. The transverse section at the inlet is perpendicular to the longitudinal axis of the culvert.
- b. Mitered (sometimes referred to as beveled). The end of the culvert barrel is on a miter or bevel to conform with the fill slope. All degrees of miter are treated alike in this program since research data on this type of inlet are limited. Headwater is measured from the culvert invert midway of the mitered section.
- c. Headwall A headwall is a concrete or metal structure placed around the entrance of the culvert. Headwalls considered are those giving a flush or square edge with the outside edge of the culvert barrel. No distinction is made for wingwalls or skews.
- d. End section This section is the common prefabricated end made of either concrete or metal and placed on the inlet or outlet ends of a culvert. The closed portions of the section, if present, is not tapered.
- e. Tapered This inlet is a type of improved entrance which can be made of concrete or metal. Dimensions are given on standard plan No. R8S71, figure 1, page 19.

f. Bevel A and Bevel B - These bevels, a type of improved entrance, can be formed of concrete or metal. The shape and dimension for Types A and B are shown in the following sketch and table.

BEVELED RING

Bevel can be made of Metal or Concrete

BEVEL	α <mark>α</mark>	<u>a</u> D	ပျံဝ	<u>a</u> D
Α	0.042	0.063	0,042	0.083
В	0.083	0.125	0.042	0.125

The bevel should extend a minimum of 300 degrees around the upper portion of the pipe's circumference. See figure 2, page 20 for standard plans of bevel A for structural plate pipe.

g. Grooved edge - The bell or socket end of a standard concrete pipe is an example of this entrance.

Slope of Pipe

Slope of pipe (SLOPE), in feet per foot, is the elevation of the invert at the inlet minus the elevation of the invert at the outlet. divided by the length.

Length of Pipe

Length of pipe (DIST), in feet, is the total length of pipe measured from the invert to the outlet invert.

Design Discharge

Design discharge (Q_1), in cfs, is the quantity of water that is used in the selection of pipe size.

Allowable Headwater

Allowable headwater (AHW), in feet, is the height of water above the invert at the inlet end of the pipe selected by the designer. The allowable headwater should be below the shoulder line with allowance for adequate freeboard, otherwise the culverts selected by this program might not have sufficient cover. If the pipes selected give insufficient cover over the pipes, then the AHW should be decreased and the problem rerun.

Design Tailwater

Design tailwater (DTW), in feet, is the depth of water above the invert at the outlet end of the pipe. This depth is determined by downstream flow conditions in the natural channel.

Check Discharge

Check discharge (\mathbb{Q}_2) can be used for two purposes: 1) to find headwater for a discharge greater than the Design Discharge (\mathbb{Q}_1) should some greater flood occur; and 2) to obtain various headwater-discharge values for plotting performance curves for the culvert sizes selected by the program for the input problem. Values of \mathbb{Q}_2 in cfs, can be less than or greater than \mathbb{Q}_1 to obtain the values under 2) above. The solution for finding these values requires a series of problems using different input cards, keeping all the input data the same except \mathbb{Q}_2 and check tailwater (CTW).

Check Tailwater

Check tailwater (CTW), in feet, is the depth of water above the invert of the outlet end of the pipe for the \mathbb{Q}_2 discharge. This value is used in conjunction with Check Discharge as described above.

Input Data Form

The input data form is as shown on page 21. This form incorporates on one page a sketch of the problem and the two cards used for input data to the computer program. The sketch is filled in with the necessary information about the site. After having the sketch portion of the data form completed, the data cards can be filled in for use by the punch card operator. Card No. 1 is for problem identification and contains 49 columns of alphabetic and/or numeric information. This could be such items as: The project number, the station of the pipe, and the date submitted to the computer. Card No. 2 is for the data listed under the card columns and all data are necessary for the program to dunction properly. See examples on pages 71 to 81.

OUTPUT DATA

The output of this program is either a message or an answer. Messages indicate that something is wrong with the input data.

The messages are:

- 1. ALLOWABLE HEADWATER TOO SMALL.
- 2. NUMBER OF PIPES EXCEEDS SIX.
- 3. CULVERT CODE INVALID.

Message number one is a check to insure enough difference between the elevation of allowable headwater and the elevation of design tailwater to insure flow through the culvert. A difference of one-half foot has been set arbitrarily by the authors but this may be changed merely by changing the constant in the formula for HEIT.

Message number two is a check on the number of pipes being used. Again, the maximum number of pipes that can be used in this program has been set at six. If this number is too high or too low, the constant can be changed in the test for maximum number of pipes.

Message number three is a check to insure that a valid culvert code is submitted as input data. The individual values that make up the culvert code have a maximum value and the program checks to be sure these values are not exceeded.

The answers are:

- 1. Problem identification.
- 2. List of input data.
- 3. Inlet control results
- 4. Outlet control results.

Problem identification is the same as was read-in as input data. This is used for identification of the analysis as well as for a record.

The input data is listed to assist the designer in selecting an acceptable culvert. Also, this information is helpful in correcting the input data if one of the messages is printed out.

Inlet control results consist of two pipes, one pipe having a headwater equal to or less than the allowable headwater and the other a size smaller pipe having a headwater greater than the allowable. For each pipe size selected, the following is printed out.

- 1. Discharge in cfs.
- 2. Number of pipes.

- 3. Diameter of pipe in feet.
- 4. Headwater in feet.
- 5. Outlet velocity in fps.

Using the check discharge of the input data, new values of headwater and outlet velocity are computed for the two culverts selected for both inlet control and outlet control. These results are printed out in the same form as given previously.

Outlet control results are the same general form as inlet control results. The only difference occurs when "INLET CONTROL GOVERNS" is printed instead of the values for headwater and outlet velocity. This is printed when normal depth of flow is less than critical depth. Inlet control governs when this message appears.

The value under discharge will only correspond to the Q_1 or Q_2 used as input when the number of pipes shown is equal to one. For multiple pipes the input discharge, Q_1 and Q_2 , is divided by the number of pipes used, changing the discharge to equal that carried by one pipe.

Selection of Culvert

Knowing the Allowable Headwater (AHW), the size of a circular culvert can be selected by comparing the values of headwater listed as the output results. It must be remembered that for any particular pipe the control with the highest headwater is the governing control.

A typical output listing is as shown in the sample problems on pages 71 through 81.

CULVERT CODE TABLE

	*		
RIVETED Indicators**	Inlet Type	Hydraulic ¹ / Exper. Model	RIVETED & 25% PAVED Indicators**
11 12 13 14 15 1 2 3 1 1*	Projecting	Number 112	Il I2 I3 I4 I5 l 2 4 l l*
1 3 3 2 2*	Mitered	81	
1 3 3 2 2* 1 2 3 3 3* 1 2 3 4 6	Headwall End Section	7 51	1 3 4 2 2* 1 2 4 3 3* 1 2 4 3 5 1 2 4 4 6
1 2 3 4 6	Bevel (A)		
1 1 3 4 8	Bevel (B) Tapered		1 2 4 4 7 1 1 4 4 8
STRUCTURAL PLATE			STRUCTURAL PLATE & 25% PAVED
Indicators** Il I2 I3 I4 I5	Inlet Type		Indicators** Il I2 I3 I4 I5
1 2 1 1 1*	Projecting	112	1 2 2 1 1*
1 2 1 3 3*	Mitered Headwall	81 7	1 3 2 2 2* 1 2 2 3 3* 1 2 2 4 6
12146	Bevel (A) Bevel (B)	•	
1 2 1 4	pever (P)		12247
CONCRETE			·
Indicators**	Inlet Type		
Il I2 I3 I4 I5 2 2 5 5 1	Socket-end Projecting	102	
2 2 5 5 2 2 2 5 3 3	Socket-end Headwall	4	
2 2 5 3 4	Square Edge Projecting Square Edge Headwall	101 1	
2 2 5 3 5 2 2 5 4 6	End Section	51	
2 2 5 4 7	Bevel (A) Bevel (B)		
2 1 5 4 8	Tapered		

^{*} In the computer, I5 value equals the above value plus 8, giving I5 values of 9, 10 or 11.

^{**}Used in computer program and references the subscripts of the CONSTANTS and Inlet Control Equation Coefficients.

^{1/}First Progress Report on Hydraulics of Short Pipes, Hydraulic Characteristics of Commonly Used Pipe Entrances, by John L. French, 1955, U. S. Department of Commerce, National Bureau of Standards, pages 48-74.

CONSTANTS

Velocity Distribution Factors	Slope Correction Factors
Associated Indicator: Il CMP ALPHA ₁ = 1.16 Concrete ALPHA ₂ = 1.05	Associated Indicator: I2 SCORR ₁ = 1.50 SCORR ₂ = 0.50 SCORR ₃ = 0.00

. Manning's n	Entrance Loss Coefficients
Associated Indicator: I3 Multiplate - plain $CN_1 = 0.032**$ Multiplate - 25% paved $CN_2 = 0.026**$ CM Riveted - plain $CN_3 = 0.024$ CM Riveted - 25% paved $CN_4 = 0.021$ Concrete $CN_5 = 0.012$	Associated Indicator: I4 CM projecting

		Inl	et Control	Equation Co	efficients		
I 5	А	В	С	D	E	F	I 5
1 2 3 4 5 6 7 8 9 10 11	0.108786 0.114099 0.167287 0.087483 0.120659 0.063343 0.081730 0.047266 0.187321 0.107137 0.167433	0.662381 0.653562 0.558766 0.706578 0.630768 0.766512 0.698353 0.831043 0.567710 0.757789 0.538595	-0.233801 -0.233615 -0.159813 -0.253295 -0.218423 -0.316097 -0.253683 -0.324632 -0.156544 -0.361462 -0.149374	0.0579585 0.0597723 0.0420069 0.0667001 0.0591815 0.0876701 0.0651250 0.0794642 0.0447052 0.1233932 0.0391543	-0.00557890 -0.00616338 -0.00369252 -0.00661651 -0.00599169 -0.00983695 -0.00719750 -0.00851125 -0.00343602 -0.01606422 -0.00343974	0.000205052 0.000242832 0.000125169 0.000250619 0.000229287 0.000416760 0.000312451 0.000347801 0.000089661 0.000767390 0.000115882	1 2 3 4 5 6 7 8 9 10 11

***Values higher than in Sept.'61 edition of HEC No. 5 -- based on recent research on multiplate pipe.

FIGURE

	r			-
	ļ	ਲਲ		
	į	- 2 -		
	- 1	4		
		5.4		
		34		
		45		
		24		
		43		
	- 1	42		
	- 1	4		
		40		
		క్ట		
		8		
		37		
		36		
		35		
	1	34		
		33		
	- 1	32		Z
		33		1
	i	30		AT
		23		PROBLEM IDENTIFICATION
		28		Ť
		27		E
		92		日
		25		H
		24		Œ
		23		BE
		22		윤
		21		P.
		न्न		
		19		
		18		
		12		
		16		
		15		
		12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50		
		-33		
		12		
		=		
		2		
birox waaabaysaacabaabaabaabaabaabaabaabaabaabaabaabaa		1 2 3 4 5 6 7 8 9 10 11		and the control of th
1		8	1	Ì
	~~1	_		
	CARD NO.	9		3
	~	5		1
2000	E	7	T	And of the control of
	ວ	8		Î
Ī		2 3	†	4
l		-		}
•				

Person de establishen	50 51 52 5354		CHECK TAILWATER (TW ₂)
	36 37 38 39 40 41 42 43 44 45 46 47 4	•	CHECK DISCHARGE (Q2)
	36 37 38 39 40 4	•	DESIGN TAILWATER (TW ₁)
	29 30 3132 33	•	DESIGN ALLOWABLE DISCHARGE HEADWATER (Q1) (AHW)
	5 16 17 18 19 20 21 22 23 24 25 26		4
,	13 14 15 16 17 18 19 20 21 22 23	•	LENGTH OF PIPE (L)
0. 2	1 2 3 4 5 8 9 10 11 12 13 14 11		CULVERT SLOPE I CODE * OF PIPE C (Sc)
CARD NO. 2	1 2 3 4 5		CULVERT CODE *

See back of the input data form

CULVERT CODE TABLE

Contract of the Contract of th	and the state of t	Commence of the party of the control				
Inlet Type For Steel Pipe	Riveted	R1v & 25%	Structural Plate	Structural Plate & 25% Paved	Inlet Type For Concrete Pipe	. Concrete
Projecting Mitered Headwall End Section Bevel (A) Bevel (B) Tapered	8-4 6/4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 4 4 4 4 4 4 4 4 4 4 4 4 4	12111 13122 12133 12146 12147	12211 13222 12222 12233 12246	Socket-end Projecting Socket-end Headwall Square Edge Projecting Square Edge Headwall End Section Bevel (A) Bevel (B)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SAMPLE INPUT CARDS

			-
	50	N	
	49	19	
	18		
	47	B	
	46	<u>\</u>	
	45		
	44	0	Ī
	43		
	42 43	R	
	4	HERR	
	6	V	
	33	1	
	38	•	
	021 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	9+2\$ L. A. HERR B	
	36	<u> </u>	
	35	Y	
	8		
	33	B	
	32	N	
	3	\$ Z + 6 \$ 1	1
	8	0	
	28 29 30	B	
	78	\	,
	27		
	32	>	
	25	STATIOM	
	27		i
	23		
	20 21 22 23	2	9
	21		,
	, 0	8	
	1 2		
	82		
	42	3	
	22	7	
	15		
	<u> </u>	2	
	7.1	2-94	
	11 12 13 14 15 16 17 18 19 20		
,		H	
- t	9		
	C.		
-	7 8		
Ċ	6 7 8 9 10 11 12 13 14 15 16 17 18 19 2	PROJECT	
CARD NO.	5 6	-2-1	
9	5	-0-	
Z	3 4	~	
\sim	2 3 4 5 6 7 8		
	- 2	1 PROJECT I-46-23 STATION 1	
			•

PROBLEM IDENTIFICATION

1410.	50 51 52 53 54	A . &	CHECK TAILWATER (TW ₂)
For Key Punching Purposes, the number zero is shown as ϕ and "eye" as I. Number one (1) must appear under position 1 on Card No. 1 when program is run on the 1400.	36 37 38 39 40 41 42 43 44 45 46 47	225.0	CHECK DISCHARGE (Q ₂)
For Key Punching Purposes, the number zero is shown as ϕ and "eye" as I. Number one (1) must appear under position 1 on Card No. 1 when program is run on	36 37 38 39 40	3.6	DESIGN TAILWATER (TW,)
Poses, the num Number one Card No. 1 wh	29 30 3132 33	9 9	ALLOWABLE IRADWATER (ARV)
/ Punching Pur and "eye" as I position 1 on	15 16 17 13 19 20 21 22 23 24 25 26	80.6	DESIGN DISCHARGE (Q1)
NOTE: For Key as ϕ s under i	7	200.0	LENGTH OF PIPE (L)
CARD NO. 2	2	22551 . 050	SLOPE OF PIPE (50)
CARD NO. 2	1 2 3 4 5	2255/	CODE

DEFINITION OF TERMS

ALPHA(I1)	* ***	Velocity Distribution Factor. When Il equals one, this refers to the first value of the velocity distribution.
SCORR(I2)		Slope Correction Factor. When I2 equals one, this refers to the first value of slope correction.
CN(13)	ein ann	Manning's n for Natural Stream Channels. When I3 equals one, this refers to the first value of n.
CKE(I4)	•••	Entrance Loss Coefficients. When I4 equals one, this refers to the first value of entrance loss.
SPH(I)	*** ***	Specific Head in feet. The values of specific head for two cross-sections are stored in SPH(I) during backwater calculations.
A(I5)		The first coefficient in the equations used for inlet control headwater. When I5 is equal to 4, this refers to the fourth value of A.
B(I5)		The second coefficient in the equations used for inlet control headwater calculations.
C(15)		The third coefficient in the equations used for inlet control headwater calculations.
D(15)		The fourth coefficient in the equations used for inlet control headwater calculations.
E(15)		The fifth coefficient in the equations used for inlet control headwater calculations.
F(15)		The sixth coefficient in the equations used for inlet control headwater calculations.
DC(I)		Critical Depth in feet. Two values of critical depth are stored, one for each diameter of pipe chosen by outlet control. Critical depth is recalled later for outlet control velocity calculations.
HYDR(I)		Hydraulic Radius in feet. The values of hydraulic radius for two cross-sections are stored in HYDR(I) during backwater calculations.
V(I)	Size dite	Velocity in feet per second. The values of velocity for two cross-sections are stored in $V(\mathbb{I})$ during backwater calculations.

ANGLE		The answer from the arcsin subroutine in radians is stored in ANGLE.
WHA		Allowable headwater in feet.
AOVWP		Area of pipe to the $4/3$ power divided by wetted perimeter to the $2/3$ power.
AREA		The area of water in square feet in any pipe for any depth of flow.
AVEHR		Average of the hydraulic radii calculated in back-water calculations.
AVEV	••	Average of the velocities calculated for two cross-sections in backwater calculations.
CTW		Check tailwater in feet.
DAB	Ofe was	The difference between depth of flow and radius. This is used in the area equation.
DAC	•	The central angle plus $\pi/2$. This is used in the area equation.
DECRM		The amount of decrement of the depth of flow in the pipe during critical depth calculations in feet.
DEP	000 ess	Working depth of flow in the pipe in feet.
DIA	500 as	Working diameter in feet. This is used for diameter calculations until pipe size is selected.
DIAML		Diameter one in feet. The first diameter selected is stored in DIAM1.
DIAM2	04 ca	Diameter two in feet. The second diameter selected is stored in DIAM2.
DIST		Length of the pipe in feet.
DSUBC	## @	A temporary storage location for storing the critical depth while doing backwater calculations.
DIW	****	Design tailwater in feet.
DXI	5	The distance between the two cross-sections in backwater calculations.

HEAD		The Head required for a given flow in outlet control in feet.
HEIT	- 	The maximum height in feet that design tailwater can be to insure flow through the culvert.
HWOVD	***	Headwater divided by diameter. This is the answer from the inlet headwater equation.
HWl		Headwater one in feet. This is the headwater for the pipe size stored in DIAM1.
HMS		Headwater two in feet. This is the headwater for the pipe size stored in DIAM 2.
I		A counter used to indicate the particular variable of a group.
Il		A counter set by the culvert code for use with the constant ALPHA.
12		A counter set by the culvert code for use with the constant SCORR.
I3		A counter set by the culvert code for use with the constant CN.
I¼		A counter set by the culvert code for use with the constant CKE.
I 5	*** ***	designates which hydraulic model is to be used; therefore
		it is used to refer to the coefficients A, B, C, D, E and F.
190		A counter used to determine when the working diameter has been incremented.
191		A counter used to determine when the working diameter has been decremented.
INVAL		A counter used to count the number of outlet control invalid calculations.
Kl		A counter which counts the number of times outlet control is calculated.
K2		A counter which counts the number of times an answer has been printed by the outlet control invalid routine.

KOUNT A counter which counts the number of times critical depth is calculated. PIPES The number of pipes calculated by inlet control. PHIY A portion of the calculation of the arcsin approximation using Hastings Approximation for Digital Computers. 01 Design discharge in cfs. Q2 Check discharge in cfs. QADJ Adjusted discharge in cfs. This is used for storing working discharge and it is Ql or Q2 divided by the number of pipes. **Q20VG** Discharge squared divided by 32.2. This is used in outlet control in critical depth calculations. R Radius of the pipe being analyzed in feet. Sl The slope of the water surface between two cross-sections in backwater calculations. SLOPE Slope of the pipe in feet per foot. SUMX The accumulated distance in feet from the outlet end of the pipe in backwater calculations. T The top surface width of water in feet in any size pipe for any depth of flow. TEMP A temporary location used for storing temporary calculations. THETA The central angle formed by a verticle line through the center of the pipe and a line from the center of the pipe to the point where the top water surface meets the pipe. This is used in the area equation (see figure 3). VELI Outlet velocity one in feet per second. This is the outlet velocity for the pipe size stored in DIAML. VEL2 Outlet velocity two in feet per second. This is the outlet velocity for the pipe size stored in DIAM2. WHW Working headwater in feet. The calculations for

headwater are stored in WHW until the pipe sizes

are selected.

WP -- Wetted perimeter in feet of the water in any pipe for any depth of flow.
 X -- The independent variable in the equation for inlet control headwater calculations.
 Y -- An entrance storage location where the argument of the arcsin subroutine is stored.
 Yl -- The absolute value of the argument (y) used in the arcsin subroutine.

```
C
         COMPUTER PROGRAM FOR HYDRAULIC ANALYSIS OF CIRCULAR CULVERTS
          BY R.C. TENNENT + L.A. HERR , BUREAU OF PUBLIC ROADS DEC. 1962
C
           REVISED JULY 1964, FEB. 1965
C
      DIMENSION ALPHA(2), SCORR(3), CN(5), CKE(5), SPH(2), V(2), HYDR(2),
                 A(11),B(11),C(11),D(11),E(11),F(11),DC(2)
Ć
      READ AND STORE CONSTANTS
C
     READ 900, (ALPHA(I), I=1,2), (SCORR(I), I=1,3), (CN(I), I=1,5), (CKE(I)
                  , I=1,5)
C
C
      READ AND STORE MATHEMATICAL EQUATION COEFFICIENTS FOR HYDRAULIC
C
      MODELS 1,4,7,51,81,101,102,AND112
C
      READ 901, (A(I),B(I),C(I),D(I),E(I),F(I),I=1,11 )
C
C
      READ IDENTIFICATION CARD AND INPUT DATA CARD
C
   10 READ 902
      READ 903, 11,12,13,14,15,SLCPE,DIST,Q1,AHW,DTW,Q2,CTW
      IF ( II )11,11,12
   11 TYPE 904
      STOP 111
   12 PRINT 902
      PRINT 912, I1, I2, I3, I4, I5, SLOPE, DIST, Q1, AHW, DTW, Q2, CTW
      IF ( AHW )21,21,20
   20 HEIT = DIST * SLOPE + AHW - 0.5
      IF ( DTW - HEIT )22,21,21
   21 PRINT 907
      GO TO 10
   22 SLOPE = SLOPE + 0.000001
      113
            = 13
      115
            = 15
   30 IF ( I1 - 1 )31,31,33
   31 IF ( 15 - 3 )32,32,33
   32\ I5 = I5 + 8
С
C
      CHECK FOR INVALID CULVERT CODE
   33 IF ( II - 2 )34,34,38
   34 \text{ IF } (12 - 3)35,35,38
   35 IF ( I3 - 5 )36,36,38
   36 IF ( I4 - 5 )37,37,38
   37 IF ( I5 - 11 139,39,38
   38 PRINT 913
      GO TO 10
   39 CLTH
             = ( DIST * DIST - SLOPE*DIST * SLOPE*DIST )**0.5
      NSWO = 0
      NSW11 = 0
```

```
C
C
         INITIALIZE INLET CONTROL
   40 PIPES = 1.0
      DSUBC = 0.0
      QADJ = Q1
   50 190
           = 0
      191
            = 0
      NSW1
            = 1
      NSW2
      NSW3
      NSW5
      NSW6
            = 0
      NSW7
            = 1
      NSW10 = -1
      CALCULATE APPOXIMATE DIAMETER OF PIPE .DIA
C
            = (QADJ / AHW) **0.5
      DIA
C
      ROUND DIAMETER TO NEXT HIGHEST 0.5 FOOT
C
          = FLOATF( FIXF( DIA*2.0+0.9 ) *5 ) *0.1
      IF ( DIA - AHW - 1.0 )70,70,51
   51 PIPES = PIPES + 1.0
      IF ( PIPES -6.0 )60,60,52
   52 PRINT 905
      GO TO 10
   60 \text{ QADJ} = Q1 / PIPES
      GO TO 50
C
C
         INLET CONTROL CALCULATIONS
   70 X
           = QADJ / (DIA ** 2.5)
      HWOVD = A(15) + (B(15) + (C(15) + (D(15) + (E(15) + F(15) *X))
               * X ) * X ) * X ) * X - SCORR(12) * SLUPE
          = HWOVD * DIA
   71 GO TO (72,540,400,250),NSW1
C
С
         SELECTION OF SIZES ROUTINE
C
   72 IF ( WHW - AHW )80,80,90
   80 IF ( 190 )81,81,400
   81 191
          = 1
      DIAM1 = DIA
      DIA
          = DIA - 0.5
C
      STORE FIRST SET OF RESULTS
   82 HW1
            = WHW
```

```
DC(1) = DSUBC
      IF ( NSW2 )101,70,101
   90 IF ( 191 )91,91,400
   91 190 = 1
      DIAM1 = DIA
           = DIA + 0.5
     + IF ( DIA - (AHW + 0.5) 182,82,92
   92 IF ( NSW3 )93,51,93
C
C
      SET SWITCH TO INDICATE NEED FOR ADDITIONAL BARRELS
C
   93 \text{ NSW11} = 1
      GO TO 82
C
         INITIALIZE OUTLET CONTROL
C
  100 \text{ INVAL} = 0
      Κ1
            = 0
      К2
      190
      191
            = 0
      NSW1
      NSW2
      NSW3
      NSW5
            = 1
      WTW
            = DTW
C
C
         OUTLET CONTROL CALCULATIONS
  101 HEAD = (1. + CKE(14) + (185.0*CN(13)*CN(13)*DIST/DIA**1.33333))
              * ( QADJ*QADJ/39.725/DIA**4 )
     1
      K1
            = K1 + 1
C
C
      INITIALIZE CRITICAL DEPTH CALCULATIONS
C
      Q2OVG = QADJ * QADJ * ALPHA(II) / 32.2
          = 0.98 * DIA
      DEP
      NSW9 = 0
      GO TO 600
  120 DSUBC = DEP
C
      INITIALIZE NORMAL DEPTH CALCULATIONS
C
      TEMP = QADJ * CN(I3) / 1.486 / SLOPE ** 0.5
            = 0.90 * DIA
      DEP
      NSW9 = 1
      GO TO 600
  130 DSUBN = DEP
```

```
DETERMINE OUTLET CONTROL CONDITION
      TEMP = ( DSUBC\cdot + DIA ) * 0.5
  160 IF ( TEMP - WTW )161,161,170
  161 TEMP = WTW
  170 WHW
           = TEMP + HEAD - SLOPE * CLTH
      IF ( WHW )200,200,180
  180 IF ( WHW - (DIA+(1.+CKE(I4))*(QADJ*QADJ/39.725/DIA**4)) )200,71,71
  200 IF ( DSUBN - DSUBC )230,205,205
  205 NSW4 = 0
      IF ( WTW - DSUBC )225,225,210
  210 IF ( WTW - DSUBN )220,220,215
  215 \text{ NSW4} = 1
  220 DEP
           = WTW
      GO TO 320
  225 DEP
          = DSUBC
      GO TO 320
C
C
         INLET CONTROL GOVERNS ROUTINE
  230 PRINT 906, QADJ, PIPES, DIA
      INVAL = INVAL + 1
      K2 = K2 + 1
      IF (K1 - 2)240,260,260
            = DIAM2
  240 DIA
           = 4
      NSW1
      GO TO 101
  250 \text{ INV} = 0
      DC(1) = DSUBC
  251 I
            = 1
      NSW6 = -1
      GO TO 450
  255 IF ( INV )280,256,280
  256 PRINT 911, QADJ, PIPES, DIA, WHW, VEL1
           = K2 + 1
      K2
      GO TO 282
  260 DIAM2 = DIA
      IF ( INVAL - 2 )270,281,281
 270 INV
            = 1
            = DIAM1
      DIA
      GO TO 251,
  280 PRINT 911, QADJ, PIPES, DIAM1, HW1, VEL1
            = K2 + 1
  281 IF ( K2 - 3 )282,270,10
  282 IF ( QADJ - Q2 )290,570,290
 290 DIA = DIAM1
      NSW6 = 1
      GO TO 560
```

```
C
Č
          BACKWATER PROFILE ROUTINE
C
  320 \text{ SUMX} = 0.0
       Ι
             = 1
       NSW10 = 0
       IF ( DEP - DIA )700,325,330
  325 IF ( NSW4 )700,390,700
             = WTW - SLOPE * DIST
  330 DEP
       IF ( DEP - DSUBN )335,335,376
  33/5 SUMX = (WTW-DIA/(1.0+SLOPE*SLOPE)**0.5)*(1.0+1.0/SLOPE/SLOPE)**0.5
       DEP
           = DIA
       GO TO 700
C
       COMPUTE THE VELOCITY, SPECIFIC HEAD + HYDRAULIC RADIUS
C
       FOR TWO CROSS-SECTIONS
  340 \text{ V(I)} = \text{QADJ / AREA}
       SPH(I) = DEP_i + ALPHA(II) * V(I)*V(I)
                                                  1 64.4
       HYDR(I) = AREA / WP
       IF (I - 2)350,360,360
  350 I
            = I + 1
  351 IF ( NSW4 )380,355,356
  355 DEP
           = DEP + 0.2
       IF ( DEP. - DIA )700,390,390
  356 DEP
           = DEP - 0.2
      GO TO 700
COC
      COMPUTE AVERAGE VELOCITY AND AVERAGE HYDRAULIC RADIUS
      FOR THE CROSS-SECTIONS
Č
  360 \text{ AVEV} = (V(1) + V(2)) * 0.5
      AVEHR = (HYDR(1) + HYDR(2)) * 0.5
             = CN(I3) * CN(I3) * AVEV * AVEV / 2.21 / AVEHR**1.33333
      IF ( NSW4 )362,361,362
  361 IF ( S1 - SLOPE )375,375,366
  362 IF ( SLOPE - S1 )375,375,367
C
      COMPUTE DISTANCE X1
  366 DX1
           = (SPH(2) - SPH(1)') / (S1 - SLOPE)
      GD TO 368
            = ( SPH(1) - SPH(2) ) / ( SLOPE - S1 )
  367 DX1
C
C
      COMPUTE ACCUMULATED DISTANCE FROM THE OUTLET
  368 \text{ SUMX} = \text{SUMX} + \text{DXI}
      IF ( SUMX - CLTH )370,371,371
  370 \text{ V(1)} = \text{V(2)}
      SPH(1) = SPH(2)
```

```
HYDR(1) = HYDR(2)
      GO TO 351
  371 IF ( NSW4 )373,372,373
  372 DEP
             = DEP - (SUMX-CLTH)/DX1*0.2
      GO TO 376
  373 DEP
             = DEP + (SUMX-CLTH)/DX1*0.2
      GO TO 376
  375 DEP
             = DSUBN
             = -1
  376 NSW4
             = 1
      I
      GO TO 700
  380 WHW
            = SPH(1) + CKE(I4) * V(1) * V(1) / 64.4
  390 \text{ NSW10} = -1
      GO TO 71
C
C
      STORE SECOND SET OF RESULTS
  400 DIAM2 = DIA
      HW2 = WHW
      DC(2) = DSUBC
C
C
         VELOCITY CALCULATIONS FOR INLET AND OUTLET CONTROL
C
            = 2
      T
  401 IF ( NSW5 )450,410,450
C
C
      INLET CONTROL CALCULATIONS
C
           = QADJ * CN(I3) / 1.486 / SLOPE**0.5
  410 TEMP
      DEP
            = 0.90 * DIA
      NSW9 = -1
      GO TO 600
  420 IF ( DEP - DIA )480,470,470
C,
C
      OUTLET CONTROL CALCULATIONS
C
  450 IF ( WTW - DIA )451,470,470
  451 IF ( DC(I) - DIA )452,470,470
  452 IF ( DC(I) - WTW )453,454,454
  453 DEP
           = WTW
      GO TO 460
  454 DEP
          = DC(I)
  460 \text{ NSW10} = 1
            = 0.5 * DIA
      GO TO 700
C
      AREA CALCULATION FOR PIPE FLOWING FULL
C
  470 AREA = 0.785398 * DIA * DIA
            = QADJ / AREA
  480 VEL1
```

```
IF (I - 1)500,500,490
   490 VEL2 = VEL1
       DIA
             = DIAM1
       I
             = I - 1
       GO TO 401
   500 IF ( NSW6 )255,510,520
 C
C
          CONTROL AND PRINT ROUTINE
   510 PRINT 908
       PRINT 910
       WRITE INLET + OUTLET CONTROL RESULTS
   520 PRINT 911, QADJ, PIPES, DIAM2, HW2, VEL2
       PRINT 911, QADJ, PIPES, DIAM1, HW1, VEL1
       GO TO ( 530,550,560,570 ),NSW7
C
Ċ
       SET CONTROLS FOR INLET CONTROL CHECK CALCULATIONS
C
  530 Q1
             = QADJ
       QADJ = Q2 / PIPES
       DIA
             = DIAM1
             = 2
       NSW1
      NSW8
            = 0
      GO TO 70
C
C
      STORE RESULTS FOR FIRST SET OF CHECK CALCULATIONS
  540 HW1
            = WHW
      DC(1) = DSUBC
      DIA
            = DIAM2
      NSW1
           = 3
      IF ( NSW8 )542,541,542
  541 \text{ NSW6} = 1
      NSW7 = 2
      GO TO 70
  542 NSW7 = 4
      GO TO 101
C
C
      SET CONTROLS FOR OUTLET CONTROL CALCULATIONS
  550 PRINT 909
      PRINT 910
      DIA
            = DIAM1
      Q2
            = QADJ
      QADJ
            = Q1
            = 3
      NSW7
      GO TO 100
C
C
      SET CONTROLS FOR OUTLET CONTROL CHECK CALCULATIONS
C
```

```
560 QADJ
            = Q2
      WTW
             = CTW
      K1
             = 0
      NSW1
             = 2
      NSW8
             = 1
      NSW10 = -1
      GO TO 101
  570 Q1
             = PIPES * Q1
             = PIPES * Q2
      02
_{\mathsf{C}}^{\mathsf{C}}
         CORRUGATED METAL CULVERTS OPTION ROUTINE
C
      IF ( NSWO )590,571,590
  571 IF ( II - 1 )575,575,595
  575 IF ( I5 - 5 )595,595,576
  576 IF ( I5 - 8 )580,595,580
C
C
      DETERMINE TYPE OF CULVERT - RIVETED OR PLATE
  580 IF ( I3 - 3 )585,581,581
  581 IF ( DIAM1 - 6.0 )582,583,583
  582 IF ( DIAM2 - 6.0 )595,583,583
C
      WHEN ANY RIVETED CM SIZE IS 6 FEET OR OVER, RETURN TO
C
      BEGINNING AND CALCULATE RESULTS FOR STRUCTURAL PLATE
  583 I3
            = 13 - 2
      PRINT 914
      GO TO 588
  585 IF ( DIAM1 - 8.0 )587,587,586
  586 IF ( DIAM2 - 8.0 )587,587,595
C.
C
      WHEN ANY STRUCTURAL PLATE SIZE IS 8 FEET OR LESS RETURN
C
      TO BEGINNING AND CALCULATE RESULTS FOR RIVETED CM
  587 I3
           = 13 + 2
      PRINT 915
  588 NSWO = 1
      GO TO 40
  590 I3
             = II3
C
C
      CHECK TO DETERMINE IF THE PROBLEM IS TO BE CALCULATED
C
      FOR AN ADDITIONAL BARREL
  595 IF ( NSW11 )596,10,596
  596 \text{ NSW11} = 0
      PRINT 902
      PRINT 912, I1, I2, I3, I4, II5, SLOPE, DIST, Q1, AHW, DTW, Q2, CTW
      GO TO 51
```

```
C
C
         ITERATIVE ROUTINE USED FOR CALCULATING
C
         CRITICAL DEPTH, DSUBC, AND NORMAL DEPTH, DSUBN
  600 R
           = 0.5 # DIA
      DECRM = 0.2 * DIA
      KOUNT = 0
      GO TO 700
  610 IF ( NSW9 )630,611,630
  611 TEMP = AREA * AREA * AREA / T
      IF ( TEMP - Q20VG )615,650,620
  615 IF ( KOUNT )616,640,616
  616 IF ( DECRM - 0.03 )650,650,617
  617 DEP = DEP + DECRM
      DECRM = 0.2 * DECRM
  620 DEP '= DEP - DECRM
      KOUNT = KOUNT + 1
      GO TO 700
  630 AOVWP = AREA ** 1.66667 / WP ** 0.666667
      IF ( AOVWP - TEMP )615,650,620
  640 DEP = DIA
  650 IF ( NSW9 )420,120,130
C
          CALCULATIONS FOR PIPE CHARACTERISTICS FOR ANY DEPTH OF FLOW
C
          ANSWERS ARE 1. AREA OF PIPE 2. WETTED PERIMETER 3. TOP WIDTH
C
  700 DAB
          = DEP - R
      Υ
            = DAB / R
           = ABSF(Y)
      Y1
C
      ARCSIN APPROXIMATION
С
C
           = 1.570796 + (-0.214512 + (0.0878763 + (-0.0449589 + (
               0.0193499 - 0.00433777 * Y1) * Y1) * Y1) * Y1) * Y1
      ANGLE = 1.570796 - ( 1.0 - Y1) ** 0.5 * PHIY
      IF( Y )705,710,710
  705 \text{ ANGLE} = - \text{ ANGLE}
  710 DAC
            = ANGLE + 1.570796
      AREA
           = ( DAB * ( DIA*DEP - DEP*DEP )**0.5 ) + (R*R*DAC)
      T
            = 2.0 * (R*R - DAB*DAB) ** 0.5
      WP
           = DIA * DAC
      IF ( NSW10 )610,340,480
C
C
               INPUT AND OUTPUT FORMATS
C
               4F4.2,F5.2,10F5.3 )
  900 FORMAT (
  901 FORMAT (
                6E12.6 )
  902 FORMAT (
                50H
  903 FORMAT (
                511,F7.4,6F7.1 )
                14H END OF RUN )
  904 FORMAT (
```

```
905 FORMAT (
              31HK . NUMBER OF PIPES EXCEEDS SIX )
              5X, F7.1, 10X, F2.0, 10X, F5.1, 8X, 23H INLET CONTROL GOVERNS )
906 FORMAT (
907 FORMAT (
              33HK
                    ALLOWABLE HEADWATER TOO SMALL )
908 FORMAT (
              24HK
                    INLET CONTROL RESULTS
909 FORMAT 6
              25HK OUTLET CONTROL RESULTS
                                           )
910 FORMAT (
              42H
                      DISCHARGE
                                    NUMBER OF
                                                  DIAMETER ,
   1
              2-8H
                      HEADWATER
                                    VELOCITY / 7X,4H CFS,9X,6H PIPES,
   2
              8X, 5H FEET ,9X,5H FEET,9X,4H FPS. )
911 FORMAT ( 5X,F7.1,10X,F2.0,10X,F5.1,8X,F6.1,8X,F6.1 )
912 FORMAT ( 13HK INPUT DATA / 5X,5HCODE ,8H SLOPE ,8H LENGTH,5X,
   1
              2HQ1,5X,5HAHW ,5H DTW,6X,2HQ2,5X,3HCTW /
   2
              4X,511,F8.4,2F9.1,2F7.1,F9.1,F7.1 )
913 FORMAT (
             24HK
                     CULVERT CODE INVALID )
914 FORMAT ( 21HK MULTI-PLATE OPTION )
915 FORMAT ( 17HK RIVETED OPTION )
   END
```

- 38 -PROBLEM I

	The state of the s
HYDRAULIC ANALYSIS OF CULVERTS - Input Data Form	Designer R.C. Tennent
Project: I-96-666	Date 8-10.62
Hydrologic and Channel Information	Sketch
STRUCTURAL PLATE WITH MITERED TULET	Station: 44+96.8
	Elev 154
Q1 = 180 C.f.S.	AHW = 100 tt.
2= 225 c.f.s.	MJ ,
Trill= 4552 feet El	Elev 124/50 = .005 ft/ft Elev. 123/
TW2= //22 feet	L = zoo feet

	18	N	T
	8	0	1
	82	1	1
	1	B	7
	100	1	1
	15,		1
	14	G	1
	E	1-3-	1
	2		1
	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	R. C. TEWNENT 8/14/62	1
	-	1.	1
	4	3	-
	83	7	1
	100	100	1
	3		-
	53	<u> </u>	1
	100		1
	3	12	ļ
	<u> </u>	0	1
	132	<u>v</u>	F
	3		PROBLEM IDENTIFICATION
*	<u>8</u>		X
	3		H
	%	Ø	Ī
•	27		
	26	4	日日
	25	96-666 578.44	1
	24	*	哥
	23	4	E
1	22	A	8
;	7.	•	a.
į	.2	D	
	19	 	
	18	4)	
	2		
	92	w	
	-35	- V	
	14	Q	
	2		
	12		
	=	- -	
	0		
		i l	
	8		
	8		
o	- 1		
MRD NO.	~	0	
9	- 5	Q	
N.	4	Q	
	ო	-	
	2		
	i		

	Name and a second	name the Green	Para.
	54	N	
	100	0	ı ç
	12	8	CHECK PAILWATER (TW ₂)
	-2		CHECK ILINATII (TW2)
	(4)		自己是
	S		10 A
	6		€
	8	1	1
		1-0	1
	4	a a	1
	7	•	뜅
	45	1 6	X B C
	4	N N	HECK CHAR (02)
	8	2 2 S	CHECK MISCHARGE (Q2)
	12	1,0	H
	4		
	i =		
	9	5.2	ſ
	16	 	~
	E	- 1	DESIGN PAILWATER (TW ₁)
	<u></u>	- J	DESIGN AILWATE (TW ₁)
	3		E E S
	36		一位日の
	55		1 11
	<u> </u>		_
•	33	B	
	32		r=1 ~~
	3	8	ALLOWABLE HEADMATER (AHW)
	0		AT (
	1		ADMATH (AHW)
	12		CAEC
	73		설빔
	27		
	20 21 22 23 24 25 26 27	B	-
	5		뜅
	-2-		
	2	R	255
	23	8 6	DESIGN MISCHARGE (Q1)
	22		百貨
	=		
	6		
	-2	-	-
		8	
	<u> </u>	•	~ E
		B	LENGTH OF PIPE (L)
	9	2	<u> </u>
	<u></u>	- 4	<u>덕</u> 는
	14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	280.8	- O
	2 3 4 5 6 7 8 9 10 11 12 13	1	_
	12		-
:	=	$\neg \sim 1$	
		-27	<u> </u>
}	<u> </u>	9	SLOPE OF PIPE (So)
	0	B	3 4 R
٠.	∞		SZ (F)
CARD NO. 2	5 7 8 9 10	Ø	S
6		-	
Z	<u> </u>		•
Д	2	N	F-4
Ä	4	N	\$4 <u>[</u>]
5	6	3/22	JULVERI CODE
	7		불용
			ರ 💆 👚

PROJ. I-96-666 STA.44+96.8 R.C.TENNENT 12/17/62

INPUT DATA

CODE SLOPE LENGTH 01 AHW DTW Q2 CTW 225.0 180.0 10.0 15.2 17.2 13122 0.0050 200.0

ALLOWABLE HEADWATER TOO SMALL

Comments: This message was printed out because the DTW is at a higher elevation than the AHW. The AHW must be 0.5 ft. higher in elevation than the DTW. Problem should be recomputed using an AHW equal to or greater than 14.7 ft.

PROBLEM 2

CARD MO. 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50								
CARD MO. 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 4 PROJ.				. 53	_	0	1	T
CARD MO. 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 4 PROJ.				49			<u>a</u>]
CARD MO. 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 4 PROJ.				8				1
CARD MO. 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 4 PROJ.				47	_	e		1
CARD MO. 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 4 PROJ.				\$	_			1
CARD MO. 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 4 PROJ - I - 9 7 - 7 7 5 7 4 . 2 9 7 4 9 PROBLEM IDENTIFICATION				45	_		_	l
CARD MO. 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 4 PROJ - I - 9 7 - 7 7 5 7 4 . 2 9 7 4 9 PROBLEM IDENTIFICATION			į	3		0	`	İ
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I				13	_		_	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I				12	_	 		
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			i		-	-	_	Ì
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			-	0			-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I				- 6		N	-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I				- 8	-	<u>Q</u>	-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I				~	-	1	{	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			1	3	-	7	-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			1	-53-	4	7	-{	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			ŀ	-£ -	-	_ ;	\dashv	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			ł	۔	-		\dashv	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			ŀ	3	-	 :	4	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			f	===	+		4	Ö
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			}	.	-	·	-i	TE
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			-	8	+		-	Š
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			H	-2	+		-	E
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			-	$\frac{7}{2}$	4		4	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			-	-23	4	<u> </u>	4	311
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			+	2	+	<u> 7</u>	4	ΙD
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			+	4	+		4	≥.
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			+	$\frac{3}{2}$	+	-07	-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			-	2/2	+	,,,	4	OB
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			}	<u> </u>	÷		-	P.R.
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			H	- 5	+	 :	-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			+	-2	+	1	-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			-	-	+	<u> </u>	-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			H	_	+		-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			H	-	╀		-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			H	5	╀	~	-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			\vdash	_	1		1	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			H	<u>e</u>	╀		1	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			H		Ļ		-	
CARD NO. 1 3 4 5 6 7 8 9 10 PROJ. I			-	_	ŀ		-	
CARD NO. 1 3 4 5 6 7 8 9 PROJ. I	Γ.		<u> </u>		-	0	1	
CARD NO. 1 3 4 5 6 7 8 PROJ.			-		-	1	-	
CARD NO. 3 4 5 6 7 PROJ - 7			ļ.,		L	N	-	
CARD NO 3 4 5 6 PRO O			-		-		-	
		ċ	-		_	'	1	
		×	-	9	_	$\frac{\varsigma}{J}$		
		8	-	2	_			
		,A.				~		
- 7						<u> </u>		
				7		_		
	<u> </u>	لـــــا						

		54	18	1
		33	1	LECK MATER
		2	1	CHECK CHECK FAILWATER (TW2)
				CHECK LILWAM (TW2)
		5		一贯已見
		100		1,8,
		4		1 5
		12		4
		4	B	_ _
		4	•	၂ 뛍
		45	B	18E~
		4	B	CHECK SISCHARGE (Q2)
		43	h	ပ္ပင္သ
		42	0	A
		±		7
		5	B	. T
		39		- E
		38	3. 6 65 8 6. 6	
		<u> </u>	1	TO WE LE
		9	1	DESIGN TAILWATER (TW1)
		353	 	T AT
		4 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	1	1
		<u> </u>	B	†
		2	9	-1
		=======================================	10	188
		8	1.	ALLOWABLE HEADMATER (AHW)
		6	 	1888
		80	 	
		7		4 Z X
		1 5	10	+
		5	9	妈
		4	8	DESIGN DISCHARGE (Q1)
		3	2	SCIIA (Q1)
		2	0	
		12	9	1 1 1
		0 2	2	1
		15 16 17 18 19 20	2 & & & & & & & & & & & & & & & & & & &	}
		5	R	
				H
			a	E L E
		2	B	LENGTH OF PIPE (L)
		F=	<u> </u>	10
		13 14		<u></u>
·		ΨΞ	کر ا	Ed
		12	800	S I E
		8 9 10	B	SLOPE OF PIPE (So)
	CV	8		S OF
	<u>.</u>	1	<u> </u>	
	CARD NO. 2	3 4 5 6 7 8 9 10 11 12 13 14		_
	9	5	\rightarrow	T.
	AR	4	->-1	E 61
	C	<u>e</u>	2	CODE
		-2	<u>~</u>	20 0
		!	~ 1	

PROJ. 1-97-777 STA. 29+49 L.A.HERR 12/17/62

INPUT DATA CTW DTW Q2 Q1 AHW SLOPE LENGTH CODE 6.0 6500.0 4.0 3.0 200.0 5000.0 12311 0.0050

NUMBER OF PIPES EXCEEDS SIX

Comments: This message is printed due to the allowable headwater (AHW) and the design discharge (Q1) imposing conditions that require more than six pipes. In this case however, the input data listed above checks with that given the keypunch operator, but the discharges were copied incorrectly from the hydrologic data given. Hydrologic and other data should be checked carefully before sub-

mitting problem for keypunching.

- 42 -PROBLEM 3

Project: Z-98-686 Project: Z-98-686 Hydrologic and Channel Information CMP WITH #60 c.f.s. Q1= 400 c.f.s. Q2= 500 c.f.s. TW1= 4.0 feet TW2= 5.0 feet TW2= 5.0 feet
--

			SS.		0//4//8	J	T
			\$			0	1
			8		$\overline{}$	_]
			47		*	£	7
			46				1
			45				1
			44		00		1
			43				
			42				1
			41		- 1		
			6		₹		
			39		Ų		
		Į	38		<u> </u>		
		Ţ	37		_ >		
		-	36		Ч		
		1	35	4		4	
		1	<u>8</u>	4	•	_ļ	
		1	11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	4	.98-888 STA. 86+19.5 R.C. TENNENT	_	
		1	3	4	.	-	3
		ŀ	8	+		4	ľľ
		-	<u>8</u>	+	1-	-	SA.
		-	8	+	<u> 1)</u>	-	F
		+	7/2	+	<u>, </u>	4	Ξ
		H	62	+	- 01	4	
		H	52	+		-	PROBLEM IDENTIFICATION
		H	242	+	70	_!	Σ.
		H	ਲ ੋ	\dagger	8	1	M.
		r	22	t		1	S S
		r	7	†		1	d
		Γ	2	T	D	1	
		Γ	6.	T	7	1	
			8	Ī	8]	
		L	2				
		L	2	L	0		
		L	- 2	L	Ø		
		L	<u>=</u>	L	Ø		
		L		L	1	•	
				L	Ø		
_		_		Ĺ	0		
			2	Ļ.			
			٥	-	7		
	~		ω	_		-	
	0			L	<u>.</u>		
	CARD NO.	_`	-		0		
	8		2		8		
	5		ر م	-	2		
	}		7				
	ŀ	-	_		$\overline{}$		
	£		£				

	4	1 %) å
	35	-	
	2 5		HUB_
	5		45 E &
	5		CHECK LILWAR (FW2)
	್ದಿ ಜ		CHECK TAILWATER (TW ₂)
	<u>\$</u>		7 €
	8	7	
	15	N	7
	9	+	<u> </u>
	4	~	40 <u>5</u>
	1 4	5 6 6	CHECK SISCHARGE (Q2)
	4	1 0	山田田の
	<u> </u>	_ ე	
•	54		
	7		
	\$	0	T
	6		~ ~
	8	M	1ヵ買へ
		1-3	7.38.7
	15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 18 49 50 51 52 53 54	 	DESIGN TAILWATER (TW1)
	<u> </u>	<u> </u>	18 E C
	<u> </u>	ļ] -
	2 2	1	1
	33	B	1
	32		7
	31	9	ALLCWABLE HEADWATER (AHW)
	8	 	LOSIAB ADSIAT (ABBV)
	8	 	1885
	100		日常
	12	<u> </u>	A E
	12		-
	- 5	\$ \text{\tint{\text{\tint{\text{\tin}\text{\tex{\tex	ы
	22 23 24 25 2	• .	DESIGN SISCHARGE (Q1)
	24	\mathscr{C}	DESIGN ISCHAR (Q1)
	23	\mathscr{S}	ESIC SCHA
	22	4	百百二
	12		
	. 8		,
	0	A	-
	8		F=7
		-2	표표
	-	- OL	E LEGIT
		126.0	LENGTH OF PIPE (L)
	3.7		0 [1
	13 14		
	13	{	_
	12		-
	=	2	
	2	0 0 2	E E
	0	B	SLOPE OF PIPE (So)
	100		15 (S)
α		-2	7 0
ċ		3	
Ξ	10		
CARD NO. 2	2 3 4 5 6 7 8 9 10 11 12 13 14	2833	뜬
Z.	1 4	2	CODE
\mathcal{O}	10	<u>v</u>	ULVEN CODE
	2	0	55 8
	i - I)

PROJ. I-98-888 STA. 86+19.5 R.C. TENNENT 12/17/62

INPUT DATA CTW DTW Q2 01 AHW LENGTH SLOPE CODE 5.0 500.0 400.0 6.0 4.0 120.0 0.0020 12833

CULVERY CODE INVALID

Comments: This is a message that indicates something has been put on the keypunching portion of the data sheet that is not a valid culbert code. In checking the Culvert Code Table for a CMP with headwall, the code should be 12333 instead of 12833.

This mistake on the data sheet could be eliminated if the

culvert code had been checked.

PROBLEM 4 - PART I

PROJ. I-98-888 STA. 86&19.5 R.C. TENNENT 4/20/65

INPUT D	ATA							
CODE	SLOPE	LENGTH	Q1	AHW	DTW	Q2	CTW	
12333	.0020	120.0	400.0	6.0	4.0	500.0	5.0	
INLET CO	ONTROL R	ESULTS						
DISCHA		NUMBER OF	AAIG	1ETER	HEAD	WATER	VELOCITY	
CF:	S	PIPES		ET		ET	FPS	
200.	• 0	2.		5.5		• 4	8.4	
200.	0	2.	_	.0		• 9	7.0	
250.	. 0	2.		5.5		.0	10.5	
250.	.0	2.		••0		.1	8.8	
OUTLET C	ONTROL	RESULTS		•				
DISCHA		NUMBER OF	DIAM	IETER	HEAD	WATER	VELOCITY	
CFS	6	PIPES		ET	FE		FPS	
200.	0	2.		5		• 9	8.3	
200.		2.		.0		. 1	8.7	
250.		2.		• 5		• 8	7.9	
250.	0	2.	7	• 0		• 1	8.5	
MULTI-PL	ATE OPT	ION						
INLET CO	INTROL RI	ESULTS			•			
DISCHA		NUMBER OF	DIAM	ETER	HEAD	AATER	VELOCITY	
CFS		PIPES		ET	FE		FPS	
200.	0	2.		• 5		. 4	8.4	
200.	0	2.		•0		. 9	7.0	
250.	0	2.		• 5		.0	10.5	
250.	0	2•		. 0		. 1	8.8	
OUTLET C	ONTROL F	RESULTS	. '					
DISCHA	RGE	NUMBER OF	DIAM	ETER	HEADI	VATER	VELOCITY	
CFS		PIPES	FE	ET	FE		FPS	
200.		2.		<u>.</u> 5	5.		7.6	
200.		2.	8	• 0	6.		•	
250.		2.	8	• 5	6.		7.9 7.2	
250.	0	2.	8	• 0	6.		7.5	
				•	٠.	7	1+2	

Comments: The code of 12333 is for a CMP with headwall (riveted). Since at least one riveted CMP size is greater than 6 feet, structural plate pipe results are also presented. Note that inlet control results are identical.

Outlet control governs and two 7.5 ft. CM pipe (riveted) or two 8.0 ft. structural plate pipes are required for headwaters equal to or less than 6.0 ft. As the sizes are being calculated, a check is made to determine if the diameter is greater than the allowable by 1/2 ft. When this occurs, as it does in above results, the problem is calculated using an additional barrel. Part II, following, shows the results.

- 45 -PROBLEM 4 - PART II

PROJ. I-98-88'8 STA. 86619.5 R.C. TENNENT 4/20/65

	INPUT DA	ΤΑ							
	CODE	SLOPE	LENGTH	Q1	AHW	DTW	Q2	CTW	
	12333	.0020	120.0	400.0	6.0	4.0	500.0	5.0	
	INLET CO	NTROL F	RESULTS	•					
	DISCHA	RGE	NUMBER OF	DIA	METER	HEADW	ATER	VELOCII	ΓΥ
	CFS		PIPES	F	EET	FEE	T	FPS	
	133.	3	3.	. •	4.0	7.	0	10.6	
	133.	3	3.		4.5	.5 •	7	8.3	
166.6		3.	4.0		9.4		13.2		
	166.	6	3.	•	4 • 5 ·	7.	2	10.4	
	OUTLET CO	ONTROL	RESULTS						
	DISCHA	RGE	NUMBER OF	DIA	METER	HEADW	ATER	VELOCI	ΓY
	CFS		PIPES	F	EET	FEE	T	FPS	
	133.	3	3.		5.5	. 5.	6	7.2	
	133.	3	3.	1	5.0	6.	1	7.9	
	166.	6	3.	:	5.5	6.	9	7.3	
	166.	6	3.	•	5.0	8.	1	8.4	

Comments: This is the second set of results for Problem 4

This set of answers is calculated using an additional barrel in order to try to design a culvert diameter which is equal to or less than the allowable headwater plus 1/2 foot.

PROBLEM 5

PROJECT 1-99-999 STATION 109820 L.HERR 4/20/65

INPUT DATA			of head of god for sole					
CODE	SLOPE	LENGTH	Q1	AHW	DTW	QZ	CTW	
12311	.0500	200.0	180.0	10.0	3.0	225.0	4.0	
INLET CO	NTROL R	ESULTS						
DISCHA	RGE	NUMBER OF	DIA	1ETER	HEAD	√ATER	VELOCITY	
CFS		PIPES	F	EET	FEI		FPS	
180.	0	1.	4.0		13.		15.7	
180.0		1.	4.5		9.6		16.4	
225.	0	1.	4.0		20.3		17.9	
225.	0	1.	4	· • 5	13.	-	17.0	
OUTLET C		RESULTS						
DISCHA	RGE	NUMBER OF	DIAN	ETER	HEADV	VATER	VELOCITY	
CFS		PIPES	FE	ET	FEE	T	FPS	
180.	0	1.	4	• 5	INLE		•	
180.	0	1.	. 4	0	10.	6	14.5	
225.	-	1.	4	• 5	INLE	T CONTRO		
225.	0	1.	4	• 0	20.	-	17.9	

Comments: This problem gives the size of CMP required for a projecting inlet. Problem No. 6 uses the same input data except that concrete pipe is used, Code 22551.

Inlet control governs the single 4.5 ft. CMP selection. In outlet control, the message "Inlet Control Governs" indicates flow condition under which outlet control is not valid.

PROJECT I-99-999 STATION 109&20 L.HERR 4/20/65

INPUT DATA				
CODE SLOPE	LENGTH	Q1 AHW	DTW Q2	CTW
22551 .0500	200.0	180.0 10.0	3.0 225.0	4.0
INLET CONTROL	RESULTS			
DISCHARGE	NUMBER OF	DIAMETER	HEADWATER	VELOCITY
CFS	PIPES	FEET	FEET	FPS
180.0	1.	3.5	13.4	27.3
180.0	1.	4.0	9.1	27.9
225.0	1.	3.5	20.1	28.8
225.0	1.	4.0	12.8	29.4
OUTLET CONTROL	RESULTS			
DISCHARGE	NUMBER OF	DIAMETER	HEADWATER	VELOCITY
CFS	PIPES	FEET	FEET	FPS
180.0	1.	4.0	INLET CONTR	OL GOVERNS
180.0	1.	3.5	INLET CONTR	DL GOVERNS
225.0	1.	4.0	INLET CONTR	OL GOVERNS
225.0	1.	3.5	INLET CONTR	OL GOVERNS

Comments: Inlet control governs the single 4.0 ft. concrete pipe selection. This is 0.5 ft. in diameter less than that required for CMP shown in Problem No. 5. This is due to the inlet edge geometry of concrete pipe being superior to that of CMP, both projecting. The size required would be identical for concrete pipe and CMP for square-edged headwall condition.

Outlet velocities are considerably higher for the concrete pipe, and the effect of these velocities must be weighed by the designer. Depending upon the location of an installation and material in downstream channel, a form of energy dissipator may be required.

In outlet control, the message "Inlet Control Governs" indicates a flow condition under which outlet control is not valid.

ş ş