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Abstract 
SPARROW (SPAtially Referenced Regressions On Watershed attributes) is a watershed modeling 

technique for relating water-quality measurements made at a network of monitoring stations to attributes of the 
watersheds containing the stations. The core of the model consists of a nonlinear regression equation describing 
the non-conservative transport of contaminants from point and diffuse sources on land to rivers and through the 
stream and river network. The model predicts contaminant flux, concentration, and yield in streams and has 
been used to evaluate alternative hypotheses about the important contaminant sources and watershed properties 
that control transport over large spatial scales.  

This report provides documentation for the SPARROW modeling technique and computer software to 
guide users in constructing and applying basic SPARROW models. The documentation gives details of the 
SPARROW software, including the input data and installation requirements, and guidance in the specification, 
calibration, and application of basic SPARROW models, as well as descriptions of the model output and its 
interpretation. The documentation is intended for both researchers and water-resource managers with interest in 
using the results of existing models and developing and applying new SPARROW models.  

The documentation of the model is presented in two parts. Part 1 provides a theoretical and practical 
introduction to SPARROW modeling techniques, which includes a discussion of the objectives, conceptual 
attributes, and model infrastructure of SPARROW. Part 1 also includes background on the commonly used 
model specifications and the methods for estimating and evaluating parameters, evaluating model fit, and 
generating water-quality predictions and measures of uncertainty. Part 2 provides a user’s guide to SPARROW, 
which includes a discussion of the software architecture and details of the model input requirements and output 
files, graphs, and maps. The text documentation and computer software are available on the Web at 
http://water.usgs.gov/nawqa/sparrow/sparrow-mod.html. 
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Part 1: A theoretical and practical introduction to SPARROW 

1.1 Introduction 
SPARROW (SPAtially Referenced Regressions On Watershed attributes; Smith and others, 1997) is a 

watershed modeling technique that uses a hybrid statistical and process-based approach to estimate pollutant 
sources and contaminant transport in watersheds and surface waters. SPARROW employs a statistically 
estimated nonlinear regression model with contaminant supply and process components, including surface-water 
flow paths, non-conservative transport processes, and mass-balance constraints. Parameters of the regression 
equation are estimated by correlating generally available stream water-quality records, such as those from State 
and Federal monitoring programs, with GIS (Geographic Information System) data on pollutant sources (e.g., 
atmospheric deposition, fertilizers, human and animal wastes) and climatic and hydrogeologic properties (e.g., 
precipitation, topography, vegetation, soils, water routing) that affect contaminant transport. The statistical 
estimation of parameters in SPARROW provides measures of uncertainty in model coefficients and water-
quality predictions.  

A unique feature of SPARROW is its model infrastructure, which consists of a detailed stream reach 
network with digital elevation model (DEM)-delineated watersheds to which all monitoring stations and GIS 
data on watershed properties are spatially referenced. This spatially distributed model structure allows separate 
statistical estimation of land and water parameters that quantify the rates of pollutant delivery from sources to 
streams and the transport of pollutants to downstream locations within the stream network (i.e., reaches, 
reservoirs, and estuaries). This mechanistic separation in the model of the terrestrial and aquatic features of large 
watersheds and emphasis on parameter estimation techniques represents an important advancement in the use of 
water-quality models to objectively evaluate alternative hypotheses about the major contaminant sources and 
watershed properties that control transport over large spatial scales. Spatial referencing and the mechanistic 
structure in SPARROW have been shown to improve the accuracy and interpretability of model parameters and 
the predictions of pollutant loadings as compared to those estimated in conventional linear regression 
approaches (e.g., Smith and others, 1997; Alexander and others, 2000). 

SPARROW has been previously applied to the analysis of sources and transport of surface-water 
nutrients, pesticides, suspended sediment, organic carbon, and fecal bacteria, and is applicable to other measures 
of water quality, stream biology and streamflow. Recent applications of SPARROW have provided reasonably 
accurate estimates of nutrient sources and the long-term rates of nutrient removal in surface waters (e.g., Smith 
and others, 1997; Alexander and others, 2000; 2001; Alexander, Elliott, and others, 2002; Alexander, Johnes, 
and others, 2002). The model has demonstrated particular utility for quantifying the long-distance transport and 
delivery of nutrients to sensitive downstream locations (e.g., estuaries, reservoirs, drinking water intakes). 
Federal and State environmental managers are currently using SPARROW to assess the sources of nutrient 
loadings in streams, including its use for targeting nutrient reduction strategies in the Chesapeake Bay watershed 
(Preston and Brakebill, 1999) and in waters of the State of Kansas (Kansas Dept. Health and Environment, 
2004) as well as for developing TMDLs (Total Maximum Daily Loads) in the Connecticut River Basin 
(NEIWPCC, 2004). The earliest version of the SPARROW model was developed to describe contaminant 
transport in surface waters of the State of New Jersey (Smith and others, 1994). Subsequently, applications were 
developed for the Chesapeake Bay watershed (Preston and Brakebill, 1999), New England watersheds (Moore 
and others, 2004), New Zealand river basins (Alexander, Elliott, and others, 2002; Elliott and others, 2005), 
North Carolina coastal watersheds (McMahon and others, 2003), and watersheds in Tennessee and Kentucky 
(Hoos, 2005). Models are currently under development for the Delaware River Basin and are being planned for 
selected regions of the U.S. (United States) as part of the U.S. Geological Survey (USGS) National Water-
Quality Assessment (NAWQA) Program. 

This publication documents the SPARROW modeling technique and computer software for constructing 
and applying basic SPARROW models. Details of the SPARROW software include the input data and 
installation requirements, guidance in the specification, calibration, and application of basic SPARROW models, 
and descriptions of the model output and its interpretation. The documentation is intended for both researchers 
and water-resource managers with interests in using the results of existing models and developing and applying 
new SPARROW models. The SPARROW software is written in SAS (Statistical Analysis System) IML 
(Interactive Matrix Language); however, only a very basic knowledge of SAS is required to develop most 
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standard versions of SPARROW models used to date. A more complete knowledge of SAS/IML is required to 
make extensive modifications to the model code. 

The SPARROW documentation is presented in two parts. Part 1 provides a theoretical and practical 
introduction to SPARROW modeling techniques. This includes a discussion of the conceptual attributes and 
model infrastructure of SPARROW, background on the commonly used model specifications and the methods 
for estimating and evaluating parameters, evaluating model fit, and generating water-quality predictions and 
measures of uncertainty. Part 2 provides a user’s guide to SPARROW. This includes a discussion of the 
software architecture and details of the model input requirements and output files, graphs, and maps. 
Throughout this report, we use a SPARROW model for total nitrogen, based on an application to a national data 
set for the United States, to illustrate model concepts and the components and output of SPARROW models that 
are supported by the computer software. 

A number of technical results related to the SPARROW methodology described in this documentation 
have not previously been reported in the literature. We found it necessary, therefore, to expand certain sections 
of the manuscript in order to properly derive these results. Unfortunately, providing this level of detail may 
burden the reader who simply wishes to get the “big picture.” With this goal in mind, such readers may elect to 
skip the more onerous technical sections identified as containing “advanced” material (the advanced material is 
shaded to assist in its identification). 

1.2 SPARROW Modeling Concepts 

This conceptual introduction to SPARROW modeling is intended to orient the reader with respect to the 
capabilities and limits of a SPARROW analysis. We first describe the key research and management modeling 
objectives that SPARROW can be used to address. We then articulate the general features of the mass balance 
approach used in the SPARROW model and the advantages it offers. This is followed by discussions of the 
appropriate time and space scales for developing and applying SPARROW models, and issues related to the 
accuracy and complexity of these models. Finally, we provide a conceptual description of how the SPARROW 
modeling structure compares with other types of water-quality models that are commonly applied to watersheds. 

1.2.1 Model objectives  
The primary objective of constructing a SPARROW model is to establish a mathematical relation 

between water-quality measurements made at a network of monitoring stations and attributes of the watersheds 
containing the stations. Once constructed, the model may be used to satisfy a variety of water-quality 
information objectives. 

1.2.1.1 Water-quality description 

One common objective is to describe past or present water-quality conditions for a state or region on the 
basis of monitoring data. The underlying challenge is to extrapolate from a sample of water-quality 
measurements made at a finite number of stream and river locations (i.e., a monitoring network) to an area 
containing the sampling stations and a large number of un-sampled locations. The usual limitations in doing this 
are: (1) sparse sampling, reflecting the high cost of monitoring; and/or (2) unrepresentative (i.e., non-random or 
targeted) sampling undertaken to satisfy the separate and competing objective of characterizing water quality at 
specific locations, especially those suspected of having water-quality problems. In the absence of an interpretive 
model such as SPARROW, a single monitoring design cannot be optimal for these two distinct objectives (i.e. 
spatially representative sampling to characterize the general water quality of a region, and targeted sampling to 
characterize specific water chemistry at “suspect” locations). Because the Federal Clean Water Act requires 
state governments to collect and report both types of information, the distinction between the two types of 
monitoring is of great practical importance. “Probabilistic” monitoring has been promoted by the U.S. 
Environmental Protection Agency (USEPA) (Yoder, 1997) to obtain a spatially unbiased, broad overview of 
water-quality conditions in State waters. An important limitation of this approach to assessment is that the 
monitoring data alone do not provide detailed information on the geography of water-quality conditions and 
give little understanding of the factors (i.e., sources and processes) that explain those conditions. Targeted 
monitoring has been used extensively by the States to identify specific streams with water-quality problems and 
to gage compliance with State water-quality regulatory standards and criteria. These data, however, provide a 
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spatially biased description of water-quality conditions in watersheds. Modeling tools, such as SPARROW, are 
needed to integrate samples from these different monitoring approaches to provide both a geographically 
representative description of water-quality conditions as well as insight into the sources and watershed processes 
that control water quality. A properly calibrated SPARROW model can assist with these problems and 
objectives in the following ways. First, by including data on watershed characteristics (e.g. the size and location 
of pollution sources), the model enlarges the information base and reduces the problem of sparse monitoring. 
The information gain allows for a more accurate description of the water quality of a region than that provided 
by water-quality monitoring data (even spatially representative data) alone. Second, by using the model to 
predict water-quality conditions at a representative set of locations, the effects of spatially biased sampling may 
be greatly reduced or eliminated. Finally, the model may also be used to identify the specific locations where 
poor or unsatisfactory water quality is present. Targeted sampling may then be used more efficiently to confirm 
such predictions in cases where model accuracy is estimated to be less than some predetermined tolerance. 

There are numerous published examples of the use of SPARROW models to describe water-quality 
conditions either in map or tabular form (Smith and others, 1997; Alexander and others, 2000; 2001; Alexander, 
Elliott, and others, 2002; Smith and Alexander, 2000; Preston and Brakebill, 1999; Smith and others, 2003; 
Moore and others, 2004; Smith and others, 2004). Maps of stream reaches may be variously colored to indicate 
contaminant loads, yields, or concentrations and have the advantage of displaying the general regional pattern of 
water-quality conditions along with important details such as the specific locations of extreme values. A tabular 
form of presentation, on the other hand, allows for a combination of regional summary statistics compiled for a 
set of point predictions and including such statistics as mean values, quantiles, the proportions of locations at 
which specified standards or other thresholds are exceeded, and measures of error for all of the above. One 
interesting and useful feature of tabulated regional statistics is that the accuracy and precision of regional 
statistics can be seen to increase with the size of the region (measured as the number of point predictions; Smith 
and others, 1997). This pattern is a reflection of the fact that the quantity of information that is used in making 
regional predictions increases with the size of the region.  

1.2.1.2 Contaminant source analysis 

Another objective of SPARROW modeling is to identify and quantify the sources of pollution that give 
rise to in-stream water-quality conditions predicted by the model. In describing pollution sources, we distinguish 
between “source categories,” such as point sources, atmospheric sources, and animal agriculture, and 
“individual sources” defined as the rate of supply of contaminant of a particular category originating in the 
watershed and draining to a specific stream reach. As with the descriptive water-quality applications discussed 
above, information on pollution sources may be desired either for an individual stream location or may be 
summarized for an area defined as a set of stream locations. The ability to develop quantitative information on 
pollution sources in SPARROW models stems from the ability to trace, for each contaminant category, the 
predicted in-stream flux through a given stream reach to the individual sources in each of the upstream reach 
watersheds contributing contamination to that reach. Sources may be quantified either in mass units or in terms 
of their percent contribution to the total contaminant flux to the reach. A national summary of nutrient (total 
nitrogen and total phosphorus) sources for the Reach File 1 (RF1) reach watersheds (Alexander, and others, 
1999) is presented by Smith and Alexander (2000).  

An example application of SPARROW in quantifying pollution sources is in TMDL (total maximum 
daily load) analyses (e.g., McMahon and Roessler, 2002). In general, the Clean Water Act requires TMDL 
analyses for any stream reach in which the concentration of a contaminant exceeds the applicable water-quality 
standard when all pollution discharge limits are met. The ultimate objective of TMDL-related modeling is to 
establish a hypothetical waste-load allocation for all individual sources affecting the reach in question that 
would cause water quality at that location to meet the standard. In theory, an infinite number of hypothetical 
load allocations will satisfy the standard, and choosing the official allocation requires comparing many possible 
solutions in search of a least-cost or other optimum solution. Because the model is used in such cases to describe 
hypothetical scenarios, the modeling objective is considered to be a simulation exercise (see below). Prior to 
conducting the hypothetical analyses, however, a great deal of preliminary quantitative information on the actual 
(i.e. baseline) relations between watershed sources and in-stream conditions is useful in preparing for the 
discussion of alternative allocations. The percentage contributions (shares) of individual point sources are 
commonly of particular interest because point sources are usually the only sources subject to direct regulation. 
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The share contributions of individual nonpoint sources are also of interest as a means of identifying the 
important stakeholders to include in discussions of voluntary pollution reductions. 

1.2.1.3 Water-quality simulation  

Simulation refers to the use of a calibrated model to predict conditions on the basis of a set of altered 
(usually hypothetical) model inputs. The ability to portray counterfactual conditions for specified inputs is one 
of the most powerful uses of and reasons for constructing models; there are often no alternative methods for 
conducting controlled experiments on complex systems. In the water-quality arena, model simulations often 
depict the in-stream effects of changes in contaminant sources associated with alternative future pollution-
control strategies. By linking water-quality conditions to pollution reduction, such simulations provide a critical 
step in the analysis of the costs and benefits of pollution control. Simulating alternative waste-load allocations in 
a TMDL analysis (see above) is a prime example of water-quality simulation with this objective. The use of 
SPARROW in support of TMDL development for the Neuse River Basin, NC, is described by McMahon and 
others (2003) and McMahon and Roessler (2002). 

In another example of the use of a SPARROW model in simulation mode (Smith and others, 2004), 
historical pollution rates rather than future pollution reductions provide the hypothetical model inputs. The study 
examines the effects on stream bacteria levels of regional changes in U.S. livestock manure production caused 
by structural changes in the agriculture industry between 1982 and 1997. Whereas the agricultural pollution 
inputs were based on actual manure production data for the period, other bacterial sources were held constant at 
their historical mean levels. The advantage of handling the model inputs in this way is that the effects of 
historical changes in one contaminant source category can be viewed without the additional variability caused 
by historical changes in other sources. 

Reducing cultural (i.e., anthropogenic) pollution sources in models to zero is one of the few methods 
available for simulating natural, unpolluted environments of the more distant past. The primary alternative to 
simulating natural environments in the water-quality area is the direct study of relatively pristine “reference” 
sites in remote regions. A SPARROW-based study by Smith and others (2003) combines these two approaches. 
Nutrient measurements from 63 USGS reference sites in 14 nutrient ecoregions were used to characterize small 
watershed total nitrogen (TN) and total phosphorus (TP) yields as functions of runoff and the natural vegetation 
cover. The small watershed models were then used to provide the nutrient inputs for national-level SPARROW 
simulations of natural TN and TP conditions. In applying the nutrient input models, the vegetation cover of the 
conterminous U.S. was altered to include only natural vegetation classes. 

1.2.1.4 Hypothesis testing: examining the importance of explanatory factors and processes 

One common feature of the previous modeling objectives is that they each make use of predictions of 
the dependent variable by a calibrated model. Another class of modeling objectives focuses on the calibration 
process and its results directly. As with multiple regression modeling in general, the SPARROW estimation 
process explores the predictive value of a set of potential explanatory variables and may also compare 
alternative mathematical forms. The selection of a final set of predictors and mathematical form usually has the 
primary objective of maximizing the accuracy of model predictions of the dependent variable, but an alternative 
modeling objective may be to test one or more hypotheses about the nature and importance of factors and 
processes that may have influenced water quality at the locations where samples were collected. Hypothesis 
tests are performed for each of the model parameters estimated in the calibration, and these serve as indicators 
of an empirical relation between the independent variables associated with each parameter and the dependent 
variable of the model. Because the coefficients in a SPARROW model are specified to conform to physical 
processes, and the potential explanatory variables are selected on the basis of some theoretical or logical 
connection to the dependent variable, a statistically strong parameter provides evidence of a physical relation to 
the dependent variable (see additional discussion in section 1.5.4.2). 

For example, in cases in which multiple categories of potential sources of the contaminant are being 
modeled, the model estimation process provides useful hypothesis tests on the importance of each category. 
“Importance” is measured by the correlation between contaminant inputs from the source category and 
downstream monitored loads of the contaminant. That correlation will tend to be stronger when the mass 
contribution of the category to the total mass of contaminant flowing past many of the monitoring stations is 
large, but model estimation may also indicate a source category is important even when the mass contribution is 
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small, provided the amount contributed to stream loads by each unit of source is consistent from place to place. 
An important case in point is the significance of point sources of total nitrogen and total phosphorus observed in 
estimating the national-scale SPARROW models (Smith and others, 1997). Hypothesis tests for point sources of 
the two nutrients were each highly significant (p < 0.005), but the average mass contributions of point sources to 
total mass flux at the Hydrologic Unit outlets were only 2 percent and 9 percent, respectively—although point 
sources may dominate in specific reaches. Point sources have also been found to be statistically significant in 
most of the regional SPARROW models (Preston and Brakebill, 1999; Alexander, Elliott, and others, 2002; 
McMahon and others, 2003; Moore and others, 2004; see also the discussion in section 1.5.4), despite their 
small overall contributions to stream nutrient flux. 

The importance of factors and processes potentially related to the transport of contaminants from 
sources to stream channels and within stream channels may be tested through calibration of the “land to water” 
and “in-stream decay” terms in the model. These terms dictate the fraction of the contaminant mass that 
completes the terrestrial and aquatic phases of transport within the watershed draining to each stream reach. The 
land-to-water terms describe the land-surface characteristics that influence both overland and subsurface 
transport from sources to stream channels. Similarly, the in-stream decay terms describe the effects of channel 
characteristics on downstream transport. In addition to their statistical significance, the mathematical form of 
these terms, and the signs of their estimated coefficients, provide useful empirical information on the processes 
that affect water quality. The form and coefficient sign, for example, indicate whether the effect of a particular 
land-surface variable is positively or negatively correlated with contaminant transport. Beginning with the first 
SPARROW models (Smith and others, 1997), for example, soil permeability has consistently been found to be 
negatively related to TN transport in SPARROW models, which is indicative of the long-term storage or 
permanent removal (i.e., denitrification) of nitrogen in soils and the subsurface. Similarly, stream channel size, 
measured as either the channel depth or mean flow rate, has consistently been found to be inversely related to 
the first-order total nitrogen decay rate in stream channels (Alexander and others, 2000; see discussion in section 
1.4.4). In sum, a frequent objective in building and calibrating SPARROW models is to gain insight and to test 
hypotheses concerning the role of specific contaminant sources and hydrologic processes in supplying and 
transporting contaminants in watersheds.  

1.2.1.5 Design of sampling networks 

Government programs for collecting water-quality samples from a large network of regularly visited 
sites on rivers and streams have existed for approximately a century (Dole, 1909). For most of this history, 
monitoring sites have been chosen on a multi-objective basis, balancing the continuous need for a generally 
representative picture of regional water-quality conditions with a periodic need for more detailed information on 
specific locations or problems. SPARROW models are atypical in the realm of water-quality modeling because 
they are designed specifically to interpret the data collected at a network of monitoring sites (see Smith and 
others, 1997). Once a SPARROW model has been constructed for a monitoring network, some commonality 
likely exists between the objectives of monitoring and those of SPARROW modeling, at least with respect to the 
contaminants that have been modeled. It then becomes logical to consider using the model to choose sampling 
locations on a more objective basis so as to optimize the ability to achieve the common monitoring/modeling 
objectives. 

An example of using a SPARROW model to identify high-priority sites for future monitoring is 
described by McMahon and others (2003). They point out that when the objective is to establish where 
contaminant levels exceed a specific threshold, it makes sense to collect data where the uncertainty about 
exceeding the threshold is greatest. Because they are statistically calibrated, SPARROW models are able to 
provide quantitative information on model prediction uncertainty for each stream reach and, thus, indicate where 
additional sampling would best support that objective. Other objectives may call for addressing other aspects of 
model uncertainty. For example, if information on the future effects of reducing a certain source of 
contamination is desired, it would likely be most beneficial to collect data so as to reduce the uncertainty of the 
model parameter that is associated with that source rather than addressing overall prediction uncertainty. In 
conclusion, it is important to note that usually there are multiple objectives of water-quality monitoring and that 
in order to design an optimal monitoring network it is necessary to precisely state the objectives and their 
relative importance in quantitative terms. Once this is done, however, a SPARROW model can form the 
infrastructure of an algorithm for optimizing network design. A great deal of work in this area is expected in the 
future. 
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1.2.2 Mass balance approach 
SPARROW models constructed to date, like most water-quality models and many other models 

describing some aspect of the physical world, are expressed in the form of a mass balance. Such models describe 
the movement of mass in space and/or the change of mass in time. The law of conservation of mass implies that 
certain basic accounting rules must apply to a mass balance, water-quality model, such as: (1) the sum of fluxes 
entering the confluence of two streams equals the flux leaving the confluence; (2) the sum of the fluxes 
attributable to each contaminant source must equal total flux; and (3) a doubling of all sources in the model 
results in an exact doubling of the predicted flux at each location. Because the dependent variable in SPARROW 
models (the mass of contaminant that passes a specific stream location per unit time) is, in mathematical terms, 
linearly related to all sources of contaminant mass in the model, all accounting rules relating to the conservation 
of mass will apply. 

Mass accounting in SPARROW models is also supported by the explicit spatial structure defined by the 
stream network. Most other empirically based surface water-quality and streamflow models, however, use a 
spatially inexplicit approach that does not support mass balance (Larson and Gilliom, 2001; Mueller and others, 
1997; Tasker and others, 1996; Vogel and others, 1999). Typically, these models relate measurements of stream 
water quality and streamflow to spatially averaged basin characteristics via a log-linear functional relation. 
Because the log-linear relation is non-additive, the sum of fluxes entering a confluence, as predicted by separate 
sets of basin characteristics, does not equal the flux leaving a confluence, as predicted by a single set of 
aggregated basin characteristics. 

There are a number of advantages to the mass balance approach. Because of the linear relation between 
flux and sources, there is an expectation that the estimation of flux over spatial scales smaller and larger than 
that covered by the model’s sample data will yield reasonably accurate results. This would not generally be an 
expectation for the log-linear basin-oriented models. The imposition of mass balance greatly improves the 
interpretability of model coefficients. For example, because of the assumption of mass balance, the coefficient 
associated with the reach time-of-travel variable is interpreted as a first-order decay rate and, because point-
source loadings are delivered directly to the stream network, a reasonable null hypothesis for coefficients 
associated with point sources is that they equal 1.0 (Smith and others, 1997; see the discussion in sections 1.4.1, 
1.4.2, and 1.5.4.2). The enhanced interpretability of the model coefficients in turn facilitates the comparison of 
coefficient estimates from the model with other estimates described in the literature. These comparisons have 
been generally favorable, especially for the model components that quantify in-stream nitrogen decay rates 
(Alexander and others, 2000; Alexander, Elliott, and others, 2002; McMahon and others, 2003; see section 
1.4.4), nutrient and suspended sediment removal rates in reservoirs (Alexander, Elliott, and others, 2002; 
Schwarz and others, 2001; see section 1.4.5), and the nutrient export associated with various land uses and 
pollutant sources (e.g., Alexander and others, 2001, 2004; Alexander, Elliott, and others, 2002; McMahon and 
others, 2003; see sections 1.4.2 and 1.5.4). 

Mass balance provides a basis for flux accounting, whereby flux can be allocated to its various sources, 
both spatially and topically (that is, according to the location and type of source—for example, fertilizer, 
atmospheric deposition, etc.). For example, mass balance makes it possible to attribute nutrients discharged to 
the Gulf of Mexico to specific sources within the Mississippi basin (Alexander and others, 2000), thereby 
providing guidance in managing the reduction of this discharge. 

There are at least two ways in which mass balance can be imposed in a hydrologic model. The first 
approach, which might be called the traditional approach, imposes mass balance dynamically. This approach is 
implemented by requiring that the mass of water entering a reach from upstream at time t, plus the mass 
discharged at time t into the reach from sources within the reach’s incremental watershed, equals the mass of 
water leaving the reach at time t + d, where d is the time of travel through the reach. Such restrictions are 
commonly used in deterministic models such as TOPMODEL (Wolock, 1993) and models in the USEPA’s 
BASINS system (Better Assessment Science Integrating Point and Nonpoint Sources; USEPA, 2001; 
http://www.epa.gov/docs/ostwater/BASINS/). The restrictions are useful because they make explicit the 
dominant fluvial pathways—by knowing what the water is exposed to, it is possible to infer what is in it. The 
complication arising from this approach, however, is the extensive infrastructure required to support it. All data 
must be referenced with respect to both space and time, making it difficult to construct large-scale regional 
models. Moreover, many of these models are over-parameterized (that is, the parameters of the model are under 
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identified), causing the coefficients describing contaminant supply, transformation, and transport processes to be 
subject to large uncertainties (see additional discussion in section 1.2.5). 

An alternative approach is to impose mass balance on average, removing entirely the temporal 
component. In this case, the model is described in terms of summary statistics that must balance over time. The 
simplest summary statistic to work with is the mean—for example, the long-term annual mean flux or the long-
term mean flux during a given season. This is the statistic SPARROW has been designed to model and for 
which all applications to date have been developed. As discussed in the subsequent section, this approach is 
sensitive to the effects of natural and human-related processes that supply and remove contaminants from 
watersheds over long periods. Thus, this approach de-emphasizes the quantification of short-term cycling and 
transformation processes, which are often central to the functioning of many dynamic mechanistic models, in 
favor of processes that have a long-term impact on elemental budgets in aquatic ecosystems. Scientific and 
management interests in understanding the nature of these persistent impacts have grown considerably in recent 
years, with particular attention focused on nutrients (e.g., Howarth and others, 1996; Vitousek and others, 1997; 
Carpenter and others, 1998; Preston and Brakebill, 1999; National Research Council, 2000; Boyer and others, 
2002; Moore and others, 2004). 

Other summary statistics also could be modeled using a mass balance approach. For example, a mass 
balance approach could be developed to explain the variance of flux over time. Such a model, used in 
combination with a model of the mean value of flux for a specified period, could then yield estimates of the 
distribution of flux over time—information that would be of considerable utility in evaluating many water-
quality standards promulgated by the USEPA. Models of higher order statistics could be developed to fine tune 
the estimate of the flux distribution. Moreover, by expanding the analysis to one that determines the bivariate 
distribution of contaminant flux and streamflow, it becomes possible to determine the distribution of 
concentration over time—another important distribution for addressing USEPA water-quality standards. The 
feasibility of each of these extensions of the basic SPARROW model remains speculative pending the outcome 
of future research. 

Technically, a mass balance approach focused on long-term conditions would preclude the analysis of 
water-quality and streamflow data expressed in terms of frequency of occurrence. Analyses of these types of 
variables have been the domain of the basin-oriented statistical models cited above. The limitation of the mass-
balance approach in this context refers to a lack of simultaneity across all reaches for the particular frequency 
condition being studied—that is, if a particular reach is at the 70th percentile with regard to some water-quality 
or streamflow condition, it cannot be expected that all other upstream reaches are simultaneously experiencing 
the same percentile condition. 

Finally, it should be pointed out that nothing in the SPARROW methodology or the program code 
described in this manual precludes the modeling of dependent variables that are not expressed as a mass flux. 
Indeed, many important water-quality variables are expressed in non-flux units, and brief mention of a few of 
these may serve to encourage future experimentation with SPARROW models in which the usual mass balance 
characteristics would either be modified or dispensed with entirely; for example, results of a preliminary 
SPARROW model of fecal coliform bacteria in which the dependent variable was the number of bacteria 
colonies passing a stream location per unit time were recently reported by Smith and others (2004). Because the 
flux of bacteria colonies in a stream would be expected to vary in approximate linear proportion to the mass of 
animal waste and other bacteria sources released per unit time in the surrounding watershed, the model retains a 
strong mass-balance character. If, however, the dependent variable of interest is the concentration of a 
contaminant in benthic sediments or in fish tissues for example, which do not flow with the water and cannot be 
expressed in flux units, the mass balance nature of the model is more tenuous. If the dependent variable makes 
no reference to mass or mass-proportional quantities whatsoever, as in species diversity for example, then 
clearly the model does not represent a mass balance at all. Nevertheless, all of the above dependent variables are 
important measures of water quality and share an important characteristic with those that have been successfully 
modeled with SPARROW—they may be strongly correlated with contaminant sources or other spatially 
referenced attributes of watersheds. Thus, attempting to model them with the methods and software described 
herein may be worthwhile. The absence of a mass balance relation in SPARROW models may make it more 
difficult to interpret the physical meaning of the predictor variables, but the spatially explicit relation between 
the dependent and predictor variables in such models may enhance interpretability of the model in comparison 
to non-spatially referenced regression models. 
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1.2.3 Time and space scales of the model 
Previously developed SPARROW models and the basic version of the model described in the 

accompanying computer code and supported in this documentation are structurally designed to explain spatial 
variability in the long-term mean-annual or mean-seasonal flux (mass per unit time) of contaminants in streams, 
the response variable of the model. Spatial variability in the long-term mean flux is modeled as a function of 
natural and human-related properties of watersheds that influence the supply and transport of contaminants. 
Estimates of the long-term mean flux are developed from water-quality and streamflow monitoring data that are 
regularly collected at fixed locations on streams and rivers. The basic form of SPARROW models presented in 
this report is structured to describe the long-term, steady-state water-quality and flow conditions in streams. 
Contaminant source inputs are assumed to be in balance with the estimated sinks and measured riverine output 
(i.e., in-stream water-quality load) such that there is conservation of mass among the model components that 
describe the source inputs, sinks, and the in-stream flux of contaminants. The principal objective supported by 
this model structure is the quantification of the location and rates (and statistical uncertainties) of the supply, 
transport, and fate of contaminants within the terrestrial and aquatic ecosystems of watersheds. In the current 
specifications of SPARROW models, temporal variability in contaminant loads, including intra- and inter-
annual variations in water quality and streamflow reflected in the monitoring data, are explicitly modeled and 
accounted for in a step prior to modeling spatial variability in loads with SPARROW. We comment later in this 
section on SPARROW model specifications that would be of interest in modeling variations in contaminant 
loads in both space and time. 

The computation of a long-term mean-annual or mean-seasonal flux, the SPARROW response variable, 
requires the prior application of a water-quality flux-estimation model constructed on the basis of streamflow 
and water-quality records from regularly monitored stream locations (see section 1.3.1 for details). The flux-
estimation model explicitly accounts for temporal variability in contaminant loads related to streamflow, season 
of the year, and trends (either continuous or abrupt) with time. In previous applications of SPARROW, the trend 
term has been used to remove time trends in contaminant loads by detrending the mean-annual contaminant load 
to a particular base year. A base-year load estimate ensures that the stream water-quality loads and the 
contaminant source data (which are commonly reported only periodically, e.g., the U.S. Agricultural Census 
reports agricultural conditions every five years) are contemporaneous. Therefore, the mean-annual loads used to 
calibrate SPARROW models (and also the SPARROW predictions of contaminant load) describe the mean load 
that would be expected to occur during a particular base year under long-term mean streamflow conditions. 
Provided there are sufficient data describing the contaminant sources in watersheds, one could alternatively 
estimate long-term averages in both stream water-quality loads and source inputs for a contemporaneous period 
of record without explicitly detrending the estimates to a base year. 

The steady-state mass-balance structure of the basic SPARROW model quantifies the long-term net 
effects of biogeochemical and hydrologic processes on contaminant transport in terrestrial and aquatic 
ecosystems. Modeling the effects of these processes is typically of greatest interest for non-conservative 
chemical, physical, and biological properties of water, such as nutrients, pesticides, fecal coliform bacteria, 
organic carbon, and suspended sediment. Many of these constituents are subject to chemical transformations or 
degradation during transport and may be stored over short or long periods. For example, large quantities (greater 
than 75 percent) of the nitrogen input to watersheds from various sources over annual time scales are either 
permanently removed or stored in the terrestrial and aquatic ecosystems of many eastern U.S. watersheds 
(Howarth and others, 1996). In SPARROW models that are estimated using long-term water-quality records 
(multi-year to decadal periods), biogeochemical cycling and storage processes that temporarily immobilize or 
remove contaminants from flow paths are generally in steady state with those processes that mobilize or release 
contaminants from storage. Hence, the effects of transformation and removal processes (e.g., mineralization, 
nitrification, uptake by stream algae) that operate on relatively short intra-annual time scales (e.g., daily, weekly, 
seasonal), or over multi-year time scales that are less frequent than the period of model estimation, are not likely 
to be detected as contaminant losses in the steady-state form of SPARROW models.  

The emphasis on long-term mean conditions in SPARROW allows the model to be especially sensitive 
to detecting the effects of biogeochemical processes that either remove contaminants from watersheds 
permanently or result in their storage over time scales that are longer than the period of the monitoring records 
used to estimate the model. Permanent removal processes may include denitrification—a biologically mediated 
conversion of inorganic nitrogen to gaseous nitrogen, the mortality of pathogens (e.g., fecal coliform indicator 
bacteria) from exposure to ultraviolet light or high salinity, and the natural degradation of pesticides and 
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formation of by-products or lower-order chemical forms. SPARROW models have been used previously (e.g., 
Smith and others, 1997; Alexander and others, 2000; Alexander, Elliott, and others, 2002) to quantify net losses 
of the total forms of phosphorus and nitrogen in terrestrial and aquatic systems over nearly decadal or longer 
periods. These losses would be expected to reflect the long-term net effects of the rates of such processes as 
denitrification, immobilization, mineralization, nitrification, and particulate settling and resuspension. The 
losses may include the net loss or storage of nutrients (e.g., sediment-bound phosphorus, organic nitrogen) on 
land (e.g., soils, ground water) and in reservoirs and streams and their nearby floodplains. 

Limitations in our knowledge of temporal lags in chemical transport and their causes create 
uncertainties in the periods over which steady-state conditions apply. For example, the time scales for the 
transport of sediment in streams reflect erosion, storage, and transport processes that operate from seasonal to 
decadal or even longer (e.g., century) periods (Trimble and Crosson, 2000). Dissolved substances, such as 
nitrate, are readily transported in the subsurface and may be permanently removed from watersheds via 
denitrification, but may also be attenuated along lengthy subsurface flow paths over periods of years to decades 
(e.g., Bohlke and Denver, 1995). Recent SPARROW nitrogen models are generally sensitive to the effects of 
subsurface properties that affect water and nitrogen movement; the models indicate that the largest nitrogen 
losses occur in watersheds with permeable soils and topographic properties that accentuate water infiltration and 
movement into the subsurface. The available information on the age of stream waters is limited, but indicates 
that streams may contain an appreciable contribution of older waters with ages in excess of 10 or more years. 
For example, based on available tritium measurements at a small number of U.S. river locations (Michel, 1992), 
older waters (greater than 1 year in age) may constitute an average of nearly 50 percent of total river flow; the 
estimated mean residence times of these waters ranges from 10 to 20 years (Michel, 1992; Focazio and others, 
1997). Temporal lags, ranging from 2 to 9 years, have also been estimated in the mean-annual nitrogen flux near 
the outlet of the Mississippi River (McIsaac and others, 2001). Moreover, recent studies of European rivers have 
noted many instances where, despite substantial declines in agricultural fertilizer use and livestock manure 
production, such as those evidenced after the fall of the former Soviet Union, decreases in riverine nutrient 
concentrations were not observed in subsequent sampling periods that ranged from 5 to 10 years (Stalnacke and 
others, 2003). In general, where the in-stream response of contaminant flux to changes in watershed sources is 
believed to be delayed because of long subsurface residence times (e.g., Bachman and others, 1998; McIssaic 
and others, 2001; Lindsey and others, 2003), the mean estimates of the in-stream flux and source inputs should 
be based on data for a correspondingly long period to more accurately reflect steady-state conditions. Water and 
contaminant residence times in ground water are highly uncertain (e.g., Focazio and others, 1997), however, and 
the temporal lags in the response of stream loads to changes in source inputs are unknown for most watersheds. 
As a result, multi-year temporal lags in contaminant transport have not been explicitly modeled in most surface-
water contaminant transport models. In developing SPARROW models, to address uncertainties over time lags 
in transport, preference should be given to the use of data from lengthy multi-year periods to estimate water-
quality loads and source inputs. 

In addition to developing spatial models of mean stream water-quality conditions, temporal changes in 
mean conditions also can be explicitly modeled in SPARROW using the current model structure and software, 
although little work has been done on testing such models. One approach is to estimate multiple steady-state 
models that explain mean-annual or mean-seasonal stream contaminant loads for separate multi-year periods. 
Alternatively, the current software permits the estimation of a single SPARROW model having time-
dimensioned dependent and independent variables—each assumed to pertain to different steady-state conditions. 
In this approach, temporal changes in mean-annual stream contaminant flux may be modeled as a function of 
temporal changes in contaminant sources, land use, and climatic factors (e.g., precipitation, streamflow, and 
temperature) over similar multi-year periods as those used to estimate stream loads at each monitoring station. 
The coefficients in this model can be time dependent or restricted to take common values over the full period of 
the analysis. This type of model structure has considerable data demands that require the development of 
historical data on contaminant sources and climatic/hydrologic variability in the watersheds and reaches 
(including stream velocity, which is sensitive to average streamflow and thus varies in response to changes in 
mean streamflow across different periods). Such a model would allow users to explicitly test for temporal 
changes in model parameters to determine whether changes are evident in process rates or contaminant export 
coefficients with time.  

As an alternative to the explicit estimation of a SPARROW model with time-dimensioned coefficients, 
existing SPARROW models can be used to simulate changes in mean-annual stream water-quality loads as a 
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function of changes in source inputs. This approach assumes that the process rates and contaminant export 
coefficients of the model do not change with time. One recent application of this approach was developed to 
evaluate the effect on fecal bacteria concentration in streams from changes in the wastes emitted from confined 
and unconfined livestock operations (Smith and others, 2004).  

The development of dynamic SPARROW models to describe short-term, intra-annual variability in 
water-quality loads, the long-term storage of contaminants, or short-term cycling processes that involve separate 
nutrient forms requires more advanced software and model specifications than those described in this report. 
Non-spatially referenced statistical models of time-varying mean-annual nitrogen loads as a function of 
contemporaneous and antecedent nitrogen source inputs were developed for the outlets of the Mississippi River 
basin (McIsaaic and others, 2001) and basins draining to Long Island Sound (Mullaney and others, 2002). A 
spatially referenced extension of these models would require the specification of storage pools within the 
interior reach catchments of the basin—a feature that is not part of the current SPARROW model structure and 
software. Dynamic versions of SPARROW models that simulate inter- and intra-year variability in stream 
contaminant loads for seasonal, monthly, or daily time scales could ultimately provide the most detailed 
temporal descriptions of water quality. However, the similarity of the structure of this type of model to existing 
dynamic simulation models, such as the HSPF and SWAT watershed models, may argue for simply replacing 
current ad hoc methods used to fit these models with traditional parameter-estimation methods from the 
statistics literature (e.g., using nonlinear parameter-estimation software such as PEST; Doherty, 2004). In 
keeping with SPARROW approaches, this would entail simplifying these simulation models to only the set of 
sensitive parameters (i.e., those for which the predictions are the most responsive); most existing simulation 
models are over-parameterized and executed with many non-sensitive and sometimes highly collinear 
parameters. 

1.2.4 Accuracy and complexity of SPARROW models 
It is generally the case for SPARROW, as for any model with statistically estimated parameters, that 

model accuracy (bias and precision) and complexity (number of statistically significant or sensitive parameters) 
are dependent on the “information content” of the water-resources data used in the model calibrations. 
Investigations of hydrologic models have demonstrated that both the quantity and quality of the calibration data 
define the information content and have important effects on parameter estimation and precision (e.g., Gupta 
and Sorooshian, 1985; Yapo and others, 1996). Increasing the quantity of data can improve the precision 
provided the data give new, independent information about the values of the model parameters. Data quality, as 
defined by Gupta and Sorooshian (1985), generally increases as the data become more “representative” of the 
range of watershed properties that affect transport and the range of conditions present in the sampled 
watersheds. An orthogonal or independent set of measurements are preferred for estimating parameter values, 
such that the data reflect the most extreme combinations of watershed conditions for the various properties. This 
often provides the best information for assessing a parameter’s statistical significance. 

These general statistical guidelines have implications for the time and space scales required to develop 
SPARROW data sets and accurate models. First, a sufficiently large number of water-quality monitoring 
stations are required. In SPARROW models, the monitoring-station loads serve as the response variable 
observations in the nonlinear spatial regressions. The number of stations has a demonstrable effect on the 
statistical power of the regression—i.e., the capacity of the model to detect the effect of an explanatory factor on 
stream loads. Models with more stations generally have greater power, which typically supports more complex 
models—i.e., models with a larger number of statistically significant parameters and functional components. 
Table 1.1 and figure 1.1 illustrate this relation for previously developed national and regional SPARROW total 
nitrogen models. The number of statistically significant parameters in these models (fig. 1.1a, 1.1c) generally 
increases with the number of monitoring stations used in the calibrations. For example, the number of 
parameters increases from typically 6 or 7 in the regional models having fewer than about 60 stations to about 
10 parameters in the Chesapeake Bay and national New Zealand models, which have nearly 80 stations, and 
finally to 18 parameters in the U.S. national model, which has more than 300 stations.  
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Table 1.1. Station characteristics and model performance data for national and regional SPARROW total nitrogen models. 
 
[km2, square kilometers; RMSE, the root mean square error, expressed in percent, is a measure of the average percentage 
error in a prediction of mean-annual concentration at a given reach] 

 
Station Characteristics  Model Performance  

 
 
 

Model Location 
Drainage 

Area 
(km2) 

Number 
of sites 

Site 
Density 
(km2 / 
site)  

Accuracy 
[RMSE] 

(percent) 

Complexity 
[number of statistically 
significant parameters1] 

United States 6,057,000 375 16,590 56 18 

New Zealand national  136,000 77 1,766 34 11 

Chesapeake Bay 125,000 79 1,582 41 10 

Northeast U.S. 40,000 65 615 40 6 

North Carolina Coast 26,000 44 590 47 7 

New Zealand-Waikato River 14,000 37 378 38 6 

Tennessee/Kentucky 100,100 36 2,781 19 7 
1 Statistical significance for an alpha of 10 percent. 

 (a) (b) 

 

(c) 

 

Figure 1.1. Characteristics of the national and regional SPARROW total nitrogen models: (a) number of statistically significant 
model parameters, (b) drainage area, (c) model complexity (number of parameters tested) and number of stations. 
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Second, the amount of spatial variability in the stream monitoring data and explanatory factors should 
reflect as broad and representative a range of watershed conditions as possible. The most complex SPARROW 
models typically have been developed for regions that have relatively large spatial variability (greater than one 
order of magnitude) in the watershed properties that affect contaminant transport. Watershed properties that vary 
over a wide range within a modeled region generally provide more information about the response of stream 
loads to different levels of a given watershed property and are more likely to be statistically significant in 
SPARROW models.  

Consider, for example, the case of mean-annual estimates of nitrate deposition (fig. 1.2), an important 
source of nitrogen that is included in most SPARROW total nitrogen models. The SPARROW models for which 
a statistically significant coefficient has been estimated for atmospheric deposition include the national U.S. 
model and regional models developed for the northeastern U.S., Chesapeake Bay, and Tennessee/Kentucky. All 
of these models were developed for geographic areas in which the mean-annual rates of deposition vary 
considerably over generally short distances. In general, it is difficult to estimate a statistically significant 
atmospheric-deposition source variable in models where there is little spatial variability in mean-annual rates of 
deposition, such as the rates observed in many of the watersheds in the western and southeastern U.S. We have 
also found that only the largest drainage areas (i.e., associated with the U.S. and New Zealand national models) 
typically have sufficient spatial variation in mean-annual precipitation for the models to detect a statistically 
significant response in the mean-annual stream nutrient loads. Developing time-dependent models could 
potentially improve the responsiveness of the regional models to properties such as atmospheric deposition and 
precipitation.  
 

 

Figure 1.2. Spatially interpolated mean-annual estimates of wet nitrate deposition, based on measurements from National 
Atmospheric Deposition Program (NADP) sites. Units of deposition are kilograms kilometer-2 year-1. [Image from J. W. Brakebill, 
U.S. Geological Survey, written comm., 2002.] 
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The spatial variability of a given variable is most readily increased in SPARROW models by expanding 
the spatial domain of the model to include larger drainage areas. This, of course, has the effect of increasing the 
number of monitoring stations, which also contributes to the potential for greater model complexity. Both of 
these effects can be seen in the greater complexity of the U.S. national, Chesapeake Bay, and New Zealand 
national nitrogen models (table 1.1, and fig. 1.1b). In comparison to the other regional models, these have 
expanded descriptions of terrestrial and aquatic loss processes and a broader description of the land uses and 
contaminant sources that supply nutrients to streams. In selecting water-quality monitoring sites for modeling, it 
is especially important to obtain sites that are located on a wide range of stream sizes (especially small streams) 
and are inclusive of impoundments of varying size. Nutrient removal rates are highly responsive to the hydraulic 
characteristics of streams and reservoirs (e.g., flow, velocity; Alexander and others, 2000; Alexander, Elliott, 
and others, 2002). Accounting for the wide variation in these properties can provide more accurate estimates of 
nutrient removal and improve the separation of land and water effects on transport in the model.  

The accuracy of SPARROW model predictions as measured by the root mean square error (RMSE), a 
measure of the average model error, is also highly influenced by the range of stream water-quality and 
watershed conditions reflected in the calibration data. The level of model accuracy shows a general relation to 
the size of the model domain (i.e., total monitored drainage area) and the level of spatial variability in watershed 
properties within the domain (table 1.1). For example, the model accuracy is lowest (highest RMSE of 56 
percent) for the U.S. national model, which also has by far the largest monitored drainage area used to estimate 
the model. By contrast, the regional models have higher accuracy with RMSE less than 47 percent, but are 
typically less complex, with six or seven significant parameters. The nutrient concentrations and watershed 
properties of the regional models typically span fewer orders of magnitude as compared with the national model. 
Despite the exceptionally large monitored drainage area of the Tennessee regional model (approximately 
100,000 km2), this model is the most accurate (RMSE of 19 percent) among all models. The relatively small 
variation in total nitrogen yields of only one order of magnitude in the watersheds (compared to two or more for 
the other models) contributes to this result; the watershed also shows generally small variation in certain 
ecological properties that may affect the supply and transport of nitrogen. 

The accuracy of SPARROW model predictions is also intrinsically linked to the accuracy of the 
monitoring station flux estimates (i.e., the response variable of the SPARROW model), determined in a prior 
step to SPARROW modeling (see section 1.3.1). In evaluating water-quality monitoring stations for use in 
modeling, users should consider the characteristics of the water-quality records that affect the accuracy of 
monitoring station estimates of mean-annual contaminant flux. As described in table 1.3 of section 1.3.1.5, the 
accuracy of the mean-annual flux is correlated with various properties of the watersheds and the water-quality 
data. Important water-quality properties include the number of observations and the extent of coverage of the 
streamflow hydrograph by the observations. Smaller estimation errors often result from a larger number of 
observations and a more complete sampling of high-flow conditions. In general, estimation errors tend to be 
larger for the mean fluxes of smaller watersheds, which generally respond faster to changes in precipitation and 
thus have more variable streamflow. Estimation errors are much larger for constituents that are most affected by 
high flows, such as total phosphorus, suspended sediment, and fecal coliform bacteria. These constituents are 
generally more difficult to measure and exhibit larger variability in concentrations in streams, which can 
produce less precise estimates of the mean-annual flux. By contrast, dissolved substances, such as nitrate, 
sulfate, and total dissolved solids exhibit less variability with flow, and their fluxes can generally be more 
accurately estimated. Note that differences in the accuracy of the mean-annual flux estimates among the sites 
can be accounted for in SPARROW by executing a weighted SPARROW calibration (see discussion in section 
1.5.2). Nevertheless, as pointed out in section 1.3.1, we recommend that users apply reasonable filters to the 
monitoring station data in advance of SPARROW modeling to eliminate stations with unacceptably few 
observations, those for which the range of streamflow conditions is poorly represented, and cases where the 
flux-estimation model fits the observed data poorly (e.g., as expressed by a high RMSE for the estimate). 

On the basis of experience from national and regional modeling efforts, we recommend that stream 
fluxes, watershed data on pollutant sources, and watershed properties affecting contaminant transport vary over 
at least one order of magnitude. Stream water-quality records should be at least 2 years in length (at least 24-30 
observations) and preferably include long-term continuous (i.e., daily) measures of streamflow, although the 
records may contain some gaps. The discussion in section 1.3.1 contains additional recommendations regarding 
the acceptability of monitoring data for estimating long-term flux. 
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The network of monitoring stations should consist of more than about 20 sites. To satisfy this 
requirement, SPARROW users may need to consider increasing the size of the study area (i.e., the watershed 
domain of the model) to increase the number of monitoring stations and also to possibly expand the variability 
reflected in the water-quality concentrations and explanatory factors in the model. Increasing the number of 
monitoring stations may be more easily accomplished if users are relying on historical stream water-quality 
monitoring data collected by state and local agencies (e.g., USGS National Water Information System (NWIS) 
or USEPA Storage and Retrieval (STORET) system). Expanding the study area to include nearby watersheds is 
likely to provide a much broader range of watershed conditions for the model, which will assist parameter 
estimation. An expansion of the study area may be especially needed to model contaminant sources or 
watershed properties that tend to show only modest variations over space on annual time scales, such as 
atmospheric nitrogen deposition or precipitation.  

If increasing the size of the study area is not feasible, an alternative approach is to nest the smaller scale 
model inside an existing regional or national model that has greater variability in watershed characteristics and 
more monitoring stations. This approach, described in some detail in section 1.4.6, combines the watershed and 
monitoring data from a smaller study area with similar data available for a larger, existing study to form a hybrid 
model, one that includes the coefficients estimated from the larger-scale data along with a set of “adjustments” 
to those coefficients for which the smaller-scale data demonstrate there is a statistically significant difference. 

1.2.5 Comparison of SPARROW with other watershed models 

A wide variety of hydrologic and water-quality models have been used to describe contaminant sources 
and transport in watersheds and surface waters. These models can be characterized on the basis of their process 
complexity and the temporal and spatial scales that are used in the models (e.g., Singh, 1995). The level of 
complexity or process detail represented by model descriptions of hydrologic and biogeochemical processes 
commonly varies with the extent to which “deterministic” (i.e., mechanistic) and “statistical/empirical” methods 
are used to describe and estimate these processes (fig. 1.3; e.g., see Alexander, Johnes, and others, 2002). All 
models reflect some blend of these methods, but most place greater emphasis on one or the other type of model 
structure and process specification.  
 

 

Figure 1.3. A simple continuum of model types based on the level of statistical and mechanistic descriptions of contaminant 
sources and biogeochemical processes. 

In general, purely statistical models tend to reflect more simplistic model constructs. These models have 
a simple correlative mathematical structure and typically assume limited a priori knowledge of various 
processes. Conventional versions of these models (i.e., “linear regression”) are expressed as simple linear (or log 
linear) correlations of stream measurements with watershed sources and landscape properties (e.g., Caraco and 
others, 2003; Peierls and others, 1991; Howarth and others, 1996). The methods have the advantage of being 
readily applied in large watersheds (often relying on generally available stream monitoring records) and can 
readily quantify the errors in model parameters and predictions. Simple correlative approaches, however, offer 
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little mechanistic explanation of contaminant sources and transport. They generally lack spatial detail on the 
distribution of sources and sinks within watersheds, rarely account for nonlinear interactions between sources 
and loss processes, and do not impose mass-balance constraints on contaminant transport. The most purely 
statistical approaches are found in artificial neural network and kriging techniques. These models commonly 
provide an excellent fit to the observations, but have the disadvantage of providing little understanding of the 
processes that affect contaminant transport. 

By contrast, mechanistic water-quality models have a highly complex mass-balance structure that 
simulates hydrologic and contaminant transport processes, often according to relatively fine temporal scales 
(e.g., HSPF, Bicknell and others, 2001; SWAT, Srinivasan and others, 1993; INCA, Whitehead and others, 
1998; AGNPS, Young and others, 1995). The components of these models frequently provide a highly detailed 
temporal description (e.g., daily, hourly) of the response of stream contaminants to climatic variability; the 
effects of coarser temporal variations in land use and management activities are often superimposed on the more 
detailed climatic variations). The mathematical descriptions of these responses are frequently based on a priori 
assumptions about the dominant processes and their reaction rates. The complexity of mechanistic simulation 
models creates intensive data and calibration requirements, which generally limits their application to relatively 
small watersheds. If the observed data for estimating the models are insufficient, reaction rates and other process 
components cannot be directly estimated in the models, but must be assumed. Because mechanistic water-
quality models are frequently calibrated manually, robust measures of uncertainty in model parameters and 
predictions cannot be quantified. Two of the most commonly applied mechanistic water-quality models in large 
watersheds are HSPF (Hydrologic Simulation Program—Fortran; Bicknell and others, 2001) and SWAT (Soil 
Water Assessment Tool; Arnold and others, 1990). These models are now part of the USEPA’s BASINS system 
(Better Assessment Science Integrating Point and Nonpoint Sources; U.S.EPA, 2001; 
http://www.epa.gov/docs/ostwater/BASINS/) for use in development of TMDL (Total Maximum Daily Load) 
assessments. The models are a common choice among water-resource managers to address various water-quality 
assessment needs.  

Despite the common use of highly complex mechanistic models, especially among water-resource 
managers, there are growing concerns about whether sufficient water-resources data and knowledge of 
biogeochemical processes exist to reliably support the general use of such highly complex descriptions of 
processes (Beven, 2002; Jakeman and Hornberger, 1993). The intensive data and calibration requirements of 
these models are costly and can rapidly exceed project budgets. Without sufficient data, there is limited ability 
to apply formal parameter-estimation techniques, which are needed to quantify model uncertainties and to 
identify unique models having parameters that are sensitive and uncorrelated. Non-unique models are those for 
which nearly identical model predictions result from the use of different parameter sets and values. These 
models may have large uncertainties in the interpretability of the parameters and their characterization of the 
effects of specific processes (e.g., Wade and others, 2002), such as denitrification in streams (Boyer and others, 
in press; Filoso and others, 2004). Recently, there has been considerable discussion among hydrologists (e.g., 
Hill, 1998; Bevin, 2002; Duan and others, 2003) of the problems with non-unique models (i.e., statistical models 
with under-identified parameters), which have commonly been reported in the literature. As a result, there is 
growing recognition that increases in model complexity beyond certain limits results in only marginal 
improvements in model accuracy and interpretability (fig. 1.4; Hill, 1998). The notion is that a large fraction of 
the total variability in the observations can frequently be explained by a relatively small number of model 
parameters—increases in the number of parameters beyond these limits are likely to have only marginal 
increases in explanatory value (fig. 1.4). In some cases, if erroneous values of parameters are selected (e.g., 
“default” parameter values), model accuracy could potentially decline. The estimation of parameters using 
nonlinear optimization or inverse modeling techniques, such as those in PEST (Doherty, 2004) and UCODE 
(Poeter and Hill, 1998), and the development of other optimization methods (Duan and others, 2003) have been 
promoted as ways of identifying how much model complexity can be supported by the data used for parameter 
estimation. The use of parameter estimation has been growing with ground-water models, such as MODFLOWP 
(Hill, 1992, 1998). There also is increasing recognition of the value of using relatively simple statistical models 
for purposes of conducting TMDL assessments (National Research Council, 2001a) and investigating the 
sources, transport, and fate of contaminants over large spatial scales (National Research Council, 2000; Bricker 
and others, 1999; Alexander and others, 2000). 

http://www.epa.gov/docs/ostwater/BASINS/
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Figure 1.4. Hypothetical illustration of the relation of model accuracy to model complexity. 

By comparison to other types of water-quality models, SPARROW may be best characterized as a 
hybrid process-based and statistical modeling approach for estimating pollutant sources and contaminant 
transport in surface waters. The mechanistic mass transport components of SPARROW include surface-water 
flow paths (channel time of travel, reservoirs), non-conservative transport processes (i.e., first-order in-stream 
and reservoir decay), and mass-balance constraints on model inputs (sources), losses (terrestrial and aquatic 
losses/storage), and outputs (riverine nutrient export). Separating land and water components provides estimates 
of the rates of pollutant delivery from point and diffuse sources to stream reaches and locations along 
downstream reaches, including reservoirs and estuarine waters. The statistical features of the model involve the 
use of nonlinear parameter-estimation techniques. Parameters are estimated by spatially correlating stream 
water-quality records with geographic data on pollutant sources (e.g., atmospheric deposition, fertilizers, human 
and animal wastes) and climatic and hydrogeologic properties (e.g., precipitation, topography, vegetation, soils, 
water routing). Parameter estimation ensures that the calibrated model will not be more complex than can be 
supported by the data. This provides an objective statistical approach for evaluating alternative hypotheses about 
important contaminant sources and controlling transport processes over large spatial scales in watersheds. 
Indeed, the model has been shown to improve the accuracy and interpretability of model parameters and the 
predictions of nutrient loadings and sources in streams as compared with conventional statistical modeling 
approaches (Smith and others, 1997; Alexander and others, 2000; Alexander, Elliott, and others, 2002; 
Alexander, Johnes, and others, 2002). As with any model that relies upon parameter estimation, SPARROW 
may be most reliably used in watersheds that have appreciable spatial variation in water-quality concentrations 
and explanatory factors as well as large numbers of stream monitoring stations (see section 1.3.1), such as those 
from state and local monitoring programs. The statistical estimation of parameters in SPARROW is critically 
important to provide robust measures of uncertainty in both the model coefficients and water-quality 
predictions.  

Few other source-transport watershed models have used spatially referenced river networks in large 
watersheds together with simple process-based descriptions of sources and transport such as those used in 
SPARROW. One exception is the regional-scale spatially distributed watershed model, PolFlow (De Wit, 2000, 
2001), which has been used to describe mean-annual total nitrogen flux in large European watersheds of the 
Rhine and Elbe Rivers. The model (De Wit, 2000) was recently expanded (De Wit, 2001) to include water and 
nutrient routing components similar to that of SPARROW. The model accounts for various natural and 
anthropogenic nitrogen sources, storage and permanent loss of nitrogen in soils and ground water, and nitrogen 
delivery to surface waters. The functional relation of nitrogen removal to stream size, channel slope, and water 
velocity is generally similar to that of SPARROW (Boyer and others, in press); however, the specification of the 
aquatic decay variables does not provide first-order rate expressions, meaning that units are neither reciprocal 
time (i.e., reaction-rate coefficient) or length per time (i.e., mass-transfer coefficient), so that estimated 
coefficients cannot be directly compared with literature or SPARROW rates (see, the SPARROW comparisons 
in section 1.3.1.3). Moreover, PolFlow model coefficients typically have been estimated by using manual “trial-
and-error” type approaches (De Wit, 2001) rather than using formal optimization routines as in SPARROW, and 
thus do not provide measures of the uncertainties in model parameters and predictions. 

A number of inter-model comparisons have been previously conducted that compare the performance 
and properties of SPARROW to those of other water-quality models. These include national comparisons with 
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SWAT (Soil Water Assessment Tool) and comparisons in the Chesapeake Bay watershed with HSPF (see 
Alexander and others, 2001). Inter-model comparisons also have been conducted with statistical and quasi-
deterministic models in watersheds of the northeastern U.S. (see Alexander, Johnes, and others, 2002; Seitzinger 
and others, 2002). Finally, evaluations of the SPARROW technique also are included as part of a number of 
recent National Research Council (NRC) reports (2000, 2001a, 2001b, 2002a, 2002b). At least two of the NRC 
reports (2000, 2001a) have noted the advantages of statistical modeling approaches, such as SPARROW, for 
general water-quality assessment and use in TMDL assessments.  

1.3 SPARROW model infrastructure 
This section describes the major components of the spatial infrastructure that support the calibration and 

application of SPARROW models. The parameters of SPARROW models are statistically estimated with 
nonlinear regression techniques by spatially correlating water-quality flux estimates at monitoring stations with 
watershed data on sources, and landscape and surface-water properties that affect transport. The calibrated 
models are then used to predict flux, total and disaggregated by contributing source, for stream reaches 
throughout a river network. A “flow” diagram is shown in figure 1.5 below to illustrate the functional linkages 
between the major spatial components of SPARROW models. Details of the SPARROW model specifications 
and mathematical equations supported by these components are presented in section 1.4.  

 

 

Figure 1.5. Schematic of the major SPARROW model components. [Modified from Alexander, Elliott, and others (2002).] 

In the following subsections, we briefly outline the pre-processing steps that are required to develop 
reach-level information for the major components of the SPARROW model infrastructure shown in figure 1.5. 
Monitoring station flux estimation refers to the estimates of long-term flux used as the response variable in the 
model. Flux estimates at monitoring stations are derived from station-specific models that relate contaminant 
concentrations from individual water-quality samples to continuous records of streamflow and time. The 
methods required to derive these estimates are described in section 1.3.1. The stream reach (and its incremental 
contributing drainage basin) is the most elemental spatial unit of the infrastructure used to estimate and apply 
the basic SPARROW models described in this report. Stream reaches typically define the length of stream 
channel that extends from one stream tributary junction to another. In section 1.3.2, we provide a conceptual 
description of the stream reach network to support SPARROW modeling. The remaining sections describe in 
general terms the explanatory data required for input to SPARROW water-quality models. Explanatory data 
(e.g., climate, topography, land use) are frequently compiled according to geographic units that are not 
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coincident with the drainage basin boundaries of river reaches. These data may be collected at different spatial 
scales and according to spatial units that reflect political (e.g., counties) or other non-hydrologic features of the 
landscape. Basic methods are discussed for the assignment of explanatory variable characteristics to reaches, 
and references to other methods that use conventional GIS software to obtain watershed properties by reach are 
provided.  

1.3.1. Monitoring station flux estimation 
The estimation of a SPARROW model requires estimates of long-term mean flux from a spatially 

distributed set of monitoring stations within the study area. To produce such estimates, a monitoring station 
must have a sufficiently long period of record. Because water quality is rarely measured with the frequency 
necessary to directly estimate long-term mean flux, an indirect method is needed to estimate flux from available 
measurements to account for hydrologic conditions during periods when water-quality measurements are not 
made. The estimation procedure must account for the fact that water-quality measurements are not always 
collected in a random manner, implying the arithmetic average of flux is not a reliable estimate of mean flux. 
Rather, the measurements of flux must be related in some way to other information, collected on a continuous 
basis, which exhibits a close relation to flux. Invariably, this other information is streamflow. The limitation, 
therefore, in constructing a mass-balance model using long-term mean flux is that only water-quality 
measurements that can be associated with a continuous record of streamflow will be suitable for model 
estimation. 

In order to reliably estimate the effects of processes affecting contaminant transport, it is necessary to 
include data from a diverse set of monitoring stations, inclusive of a wide range of spatial scales and expressing 
considerable variation in predictor variable conditions. Unfortunately, a problem often arises in developing such 
a set of stations: monitoring stations commonly have different periods of record. Long-term variations in 
hydrologic conditions, combined with long-term trends in water quality, imply mean fluxes computed over 
different periods may not be directly comparable. If there are trends in water quality, the estimate of long-term 
mean water-quality flux will depend on the period or window through which the water-quality data are acquired. 

The problem of incomparable periods of record is perhaps best understood in the context of two nested 
stations—the situation in which one station is located upstream from another station. In SPARROW, the flux 
estimate for an upstream station is used to determine the flux at a downstream station (see section 1.4.1 for 
details). This conditioning of downstream flux on upstream flux serves to minimize error and reduces the 
correlation of errors between nested basins. If the two stations exhibit trend, however, and there are differences 
in the period of record, the measured mean flux between the two stations could be gained or lost for reasons that 
are unrelated to intervening processes affecting flux. Under ideal conditions, the incomparability of station 
record simply creates additional noise in the model. But bias could result if, as is typically the case, record 
length is a function of stream characteristics. For example, it is common for stations on larger rivers to have 
longer periods of record than stations on smaller rivers. 

Another context in which trend in water quality creates problems for the mass balance approach arises 
in relating water quality to its predictor variables, principally the source variables. Ideally, the source variables 
will consist of a time series of estimates, and these source variables would be included in SPARROW as long-
term averages in the same way the flux estimates are included. A problem with this formulation is that source 
information is rarely available for multiple periods. Even if source information is available over time, the period 
over which it is compiled will rarely match the period of the flux information; for example, point-source and 
land-use data are infrequently available due to the high cost of compiling this information. Other information, 
such as atmospheric deposition and soil erosion, is compiled on a periodic schedule, but the periods covered by 
these data generally differ from those covering the water-quality data. 

To address the problem of incompatibility in periods of record, a SPARROW model is typically 
specified for a single base year; that is, all water-quality and source information is assumed to pertain to a given 
point in time. The severest constraint on the period of the analysis is imposed by source information that is 
available only for a single year. Consequently, the base year is generally selected to be in the middle of the 
range of available years for this ‘one-time’ information. For other information that is available over a range of 
years, such as contaminant flux, the base year estimate is constructed by detrending the data.  
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Figure 1.6. A graphical depiction of a detrended series. 

The effect of detrending data is shown graphically in figure 1.6. The original time series, shown in gray, 
displays an erratic upward trend. The first step in the process of detrending is to fit a simple function of time, in 
this case a straight line, through the data (see the upward sloping line in the figure). A constant is then subtracted 
from the function of time to create an adjustment function to be applied to the original series; the constant used 
to create the adjustment function is chosen to make the adjustment function equal to zero for a particular point in 
time, , referred to as the ‘base date.’ The detrended series is then obtained by simply subtracting the 

adjustment function, a function of time only, from the original series. In the figure, the subtraction of the 
adjustment function produces the erratic but non-trending series shown in red. Note that the effect of the 
adjustment is to shift the original positive trending series upward for periods before the base date  and 

downwards for periods after the base date ; the value of the series is unchanged for the base period, . The 

detrended series can be interpreted as the series that would have been observed if the dynamic factors causing 
trend, whatever they might be, were held constant throughout the entire period, equal to the values they had on 
the base date ; all other dynamic factors determining the short-term variations in the series are left unchanged. 

This is a purely counterfactual scenario, a ‘what-if’ exercise in which the factors determining trend are frozen 
for all time at their base period values. Thus, for example, peak flow events affecting the original series would 
remain in the detrended series; however, gradual improvements in water quality resulting from the adoption of 
improved technology over time would be substituted for technology that was in place on the base date, . 

0T

0T

0T 0T

0T

0T
In mathematical terms, the process of detrending can be described as follows. Let h(t) be the function of 

time used to describe trend through the original series X(t). The detrended series X*(t) is given by  
 

(1.1) ( ) ( ) ( ) ( )( )0*X t X t h t h T= − − . 

In equation (1.1), the term ( ) ( )0h t h T−  is the adjustment function and the constant  is the constant that 

causes the adjustment to equal zero for the base date, . 

( )0h T

0T
It is important that the function of time ( )h t  used to detrend a series not be so variable that it removes 

cyclical or short-term variations. In the parlance of spectral analysis, detrending only filters out the power in the 
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lowest frequencies of the series, the frequencies corresponding to the long-term variation in the data; detrending 
should not affect the power of the higher frequencies associated with the short-term variations in the data. 
Simple functions that meet this requirement are the linear and quadratic functions of time. A step function in 
time would also be acceptable, as long as the number of steps is not too large. Another common filter for 
removing trend is the first difference, in which the previous value of the series is subtracted from the current 
value. This method is not typically used for detrending water-quality data because the data are not sampled with 
a fixed frequency. 

Because the function that describes trend, ( )h t , must be estimated from the data, the act of detrending 

necessarily introduces uncertainty into the analysis. This uncertainty can be reduced by estimating the trend 

function as accurately as possible. Generally, this implies the estimation of ( )h t  in the context of a model that 

explains as much as possible the variation in the original series, . For many applications, the requirement 

that a model be specified in order to remove trend introduces little additional burden into the analysis; if  

is a water-quality variable, a model is already required in order to extrapolate the infrequently sampled water-
quality data to other periods so as to obtain a better estimate of long-term mean flux. The only additional 

consideration arising from trend removal is that the specified model must include a time component, 

( )X t

( )X t

( )h t . For 

other analyses, such as the detrending of streamflow, the data are often continuously available. In these cases, 
the specification and estimation of a model represents an additional step that would otherwise not be required. 

The detrending of water-quality flux serves another purpose that is perhaps more useful than its role in 
equalizing station records. In forming an estimate of the long-term mean flux, it is advantageous to base the 
estimate on a long and rich history of hydrologic events. Many streamflow stations, in fact, have very long 
records to support this objective. The same is not generally true, however, for water-quality stations. A conflict 
arises if the relatively short water-quality record expresses a trend: How reliably can the trend estimated from a 
short water-quality record be extrapolated to the entire period for which streamflow data are available? 
Detrending provides a conservative means of extrapolating the water-quality model without having to accept a 
potentially misspecified relation with trend. If the trend relation is not misspecified, detrending reduces the 
sampling error arising from excessive extrapolation of the model beyond the conditions under which it is 
estimated. Conversely, if trend is misspecified, the process of detrending effectively erases the bias induced by 
improper extrapolation of trend. The final result is an estimate of flux having reduced error. 

1.3.1.1 Model specification for monitoring station flux estimation 

The extrapolation of infrequently sampled water-quality data and removal of trend dictates the 
specification of a model of flux. To be used for extrapolation, the model must relate infrequently measured data 
to variables that are measured continuously over time, and to accommodate detrending, the model must include 
a function of time. For water-quality applications, these requirements suggest a model that relates infrequently 
measured concentration to the variables streamflow and time. The inclusion of streamflow as an explanatory 
factor serves another purpose in the analysis. Because flux is typically positively related to streamflow, it has 
become common practice to bias water-quality sampling towards high flow events. The inclusion of flow in the 
water-quality model effectively conditions the estimation of flux so as to remove the effects of high-flow 
sampling bias. 

The estimation of mean flux by a station-specific model need not account for all the processes affecting 
flux within a basin; this task is assigned to the SPARROW model. All that is required is that the estimated mean 
flux at a station be reflective of long-term average processes within the basin. This association with process 
could be realized by explicitly accounting for processes via the inclusion of explanatory variables; but it is also 
implicitly revealed in the values taken by the estimated coefficients of a less refined station-specific flux model. 
Thus, the station-specific flux models need not be structurally accurate; they need only be predictively accurate. 
A causal explanation of flux is ultimately obtained through application of a SPARROW model, whereby 
variations in mean flux conditions across stations, estimated either explicitly or implicitly, are correlated with 
variations in basin attributes across space. 

There are a number of ways to specify the relation between water-quality data and the explanatory 
variables streamflow and time. Cohn, Caulder, and others (1992) have suggested a simple seven-parameter 
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model in which the logarithm of contaminant concentration c is related via a linear model to an intercept, the 
logarithm of flow , the square of the logarithm of flow, decimal time T  (decimal time is time expressed as a 
decimal number, with whole numbers representing the year and decimal numbers representing the fraction of the 
year), decimal time squared, and a seasonal harmonic consisting of two trigonometric terms—the sine and 
cosine of 2 times decimal time. The quadratic flow term is included to account for nonlinearity in the water-
quality/flow relation; for example, it is common to observe the percentage increase in sediment concentration 
from a percentage increase in flow become greater for very high flows. 

�
q�

π

The seven-parameter model for period t is written as 
 

(1.2) ( ) ( )2 2
2 2

0 sin 2 cos 2t q t t T t t s t c tq T
c q q T T T Tγ γ γ γ γ γ π γ π= + + + + + + +� � � te

c

, 

where  are coefficients to be estimated, and  is an independent, normally 

distributed error term, uncorrelated with each of the predictor variables, having mean zero and variance . 

Higher order harmonics, given by 

2 20 ,  ,  ,  ,  ,  ,  and q T sq T
γ γ γ γ γ γ γ te

2
eσ

( )sin 2 tj Tπ  and (cos 2 t )j Tπ  terms, where j is an integer greater than 1, 

could be included in equation (1.2) to account for more complex seasonal patterns. 
Vecchia (2000) has argued that there are important long-term lags affecting the relation between water 

quality and flow. He suggests a specification that relates the log of contaminant concentration to a set of 
compound flow terms consisting of moving averages of flows, of various lengths, in addition to time trend 
terms. A specification that generalizes both the seven-parameter and the lag flow models takes the form 

 

(1.3) ( ) ( )t t Q t T t Xc T= + +M Q β h β X β� te+ , 

where  is a p-element row vector consisting of current and lagged logarithms of flow, ; tQ { }1, ,t t t pq q − +=Q � �…

( )tM Q  is a vector function that transforms the p-element logged flows into a qK  element row vector;  is a qβ

qK  element vector consisting of coefficients associated with the transformed flow terms;  is a  

element row vector function of decimal time;  is a  element vector of coefficients associated with the 

transformed decimal time terms;  is a element row vector of other exogenous variables affecting water 

quality;  is a  element vector of coefficients associated with the other exogenous variables; and  is the 

normally distributed error term, independent over time and uncorrelated with each of the predictor variables, 
having a mean of zero and variance . In the sequel, a model variable displayed in bold font pertains to a 

vector or matrix. 

( )tTh TK

Tβ TK

tX XK

Xβ XK te

2
eσ

The function ( )tM Q  is quite general and can accommodate many different specifications of the flow 

variables. For example, in the seven-parameter model p equals one,  equals , and tQ tq� ( )tM Q  is a two-element 

row vector function with elements { . In the compound flow model developed by Vecchia (2000), the 

function 

}2,t tq q� �

( )tM Q  forms various moving averages of the current and lagged flow terms. The only restriction to 

be placed on ( )tM Q  is that it be continuous in its arguments. 

The function  is included to account for long-run variations in water quality that are unrelated to 

flow. Typically, these changes are assumed to arise from management changes that affect water quality—for 
example, the construction of new wastewater treatment plants or the imposition of regulations that affect the 

runoff of contaminants from farms. In the case of the seven-parameter model,  consists of two elements, 

with 

( )tTh

( )tTh
( ) { 2,t t tT T T=h } . Alternatively,  could specify a step change function to account for one-time ( )tTh
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permanent changes in water quality within a basin. Note that  does not represent cyclical or other short-

term variations in time, such as the sine and cosine terms in equation (1.2); these variations are assumed to be 
included in the other exogenous variables, . 

( )tTh

tX
An important feature of equation (1.3) is that it is linear in its parameters. If no censored observations 

are included in the water-quality data, the model can be estimated easily using ordinary least squares. If 
censored observations are present, Cohn, Gilroy, and others (1992) suggest using the maximum likelihood 
method for parameter estimation. For Type I censored data, corresponding to data in which the censoring 
threshold is known, the appropriate maximum likelihood method is given by the Tobit model (Cohn, Gilroy, and 
others, 1992). The Tobit model is nonlinear and must be estimated using iterative methods (see section 1.5 for a 
description of nonlinear estimation methods in the context of SPARROW model estimation). Consequently, the 
small sample properties of the coefficient estimates are not easily obtained. However, being a maximum 
likelihood method, the estimated parameters are consistent and efficient in large samples. Moreover, it has been 
shown (see Maddala, 1983) that the model with linear coefficients, as in equation (1.3), has a single maximum, 
corresponding to its global maximum, assuring the convergence of iterative methods. 

The likelihood function of the Tobit model is given as follows. Let  represent the row vector of all 

explanatory variables in (1.3), so that 

tZ

( ) ( )t t tT t
⎡ ⎤= ⎣ ⎦Z M Q h X , and let Q T X

′⎡ ⎤′ ′ ′= ⎢ ⎥⎣ ⎦β β β β  be a 1K×  

vector of the combined associated coefficients; let the water-quality sample consist of N observations; let tc  

represent the censoring threshold (in logarithm space) for observation t; and let  be an indicator variable that 

equals 1.0 if observation t is censored and equals zero otherwise. In the context of estimating equation (1.3), the 
Tobit log likelihood function is given by 

td

 

(1.4) ( ) ( )ln 1t t t t
e t t

t e e

c cL N d dσ φ
σ σ

⎛ ⎞ ⎛− −⎟ ⎟⎜ ⎜⎟ ⎟∝− + Φ + −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠ ⎝
∑ Z Z ⎞

⎠

β β�� �� , 

where ( )Φ ⋅�  and  are the natural logarithms of the standard normal cumulative distribution and density 

functions.  

( )φ ⋅�

Estimation by maximum likelihood requires finding the values of the parameters that 

maximize equation (1.4). Because of the global convexity of  (Maddala, 1983), this is equivalent to finding 
the roots of the first-order partial derivatives . The covariance matrix of the maximum likelihood 

estimates, , is given by (Cramer, 1986) 

eσ
′⎡ ⎤′= ⎣ ⎦θ β

L�
0θ =L�

θ̂
 

(1.5) , ( ) ( ) ( )
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− −

′
⎡ ⎤ ⎡ ′=− =⎢ ⎥ ⎢⎣ ⎦ ⎣ θ θθθV θ � � ⎤

⎥⎦
�

where the expectation is over alternative realizations of the dependent variable sample, . For independent 
observations, the covariance matrix can be consistently estimated by 

c�
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where, 
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and  and  are the maximum likelihood estimates of the parameters β  and . Equation (1.6) is a popular 

estimator in applied work due to its ease of computation. 

β̂ ˆeσ eσ

1.3.1.2 Monitoring station flux prediction (advanced) 

The coefficient estimates from the water-quality sample can be used to predict flux for every day in 
which there is a complete observation of the explanatory variables. A complication in making this estimate is the 
need to retransform the estimates from logarithm space, the space in which the model is estimated, back into real 
space, the space that supports mass balance. Because the model is estimated in logarithm space, the 
retransformation to real space requires an application of the exponential function. The convexity of the 
exponential function implies a random variable having a zero mean in logarithm space will have an expectation 
that is greater than 1.0 upon transformation into real space. This deviation from 1.0 of the expected transformed 
random variable is called retransformation bias. Two sources of uncertainty contribute to retransformation bias: 
uncertainty in the estimated model coefficients—sometimes called sample error because the error is eliminated 
in large samples—and uncertainty caused by model error, the variation in flux that is unexplained by the 
model’s explanatory variables. 

To demonstrate the full nature of the retransformation bias, consider first the unbiased estimate of flux 
in the case that model coefficients are known. In this case, the only source of uncertainty is the model error. 
Because model error cannot be removed, estimates of flux are expressed as expectations of flux conditioned on 
known components of the model. In logarithm space, actual flux in period t is given by 
 

(1.8) t t t tf q e= + +Z β � . 

The logarithm of actual flux depends on a modeled component, the modeled component of concentration , tZ β
plus the logarithm of streamflow (any conversion constants, in logarithm space being represented by additive 
constants, are assumed to be subsumed in the model intercept, an element of ), and a non-modeled tZ
component, given by the model error. 

Before deriving the conditional expectation of flux, we state a simple mathematical fact that is 
indispensable to understanding the retransformation problem. The fact is this: if x is a normally distributed 

variable with mean and variance μ 2
xσ , the expectation of ( )exp x  is ( 2exp 2xμ σ+ ) . From this fact, the 

conditional expectation of flux in real space is given by 
 

(1.9) ( ) ( ) ( )( ) ( ) ( )2exp exp exp exp 2tf
t t t t t tF E e q E e q σ= = + = +Z β Z β� � e . 

The conditional expectation of flux in real space is given by the conditional expectation of flux in logarithm 
space, transformed to real space (the first exponential term in the third equality in equation (1.9)), times a 
retransformation factor that depends on the variance of the model residual  (the second exponential term of 2

eσ

the third equality in equation (1.9)). Because the error variance  is necessarily positive, the retransformation 2
eσ

factor is necessarily greater than 1.0, and will be equal to 1.0 only if the model has no error. Consequently, 
unless the retransformation factor is included in the prediction, the estimated flux is biased downwards—a result 
that is obtained even if the coefficients of the model are known without error. 

We now extend the analysis by assuming the coefficients of the model are not known but must be 
estimated. Assume the water-quality data contain no censored values so that the water-quality model given by 
equation (1.3), with explanatory variables denoted by the row vector , can be estimated efficiently without tZ
bias using ordinary least squares. Let c  denote the N×1 vector of logarithm transformed water-quality �
concentration measurements, Z the N×K matrix of explanatory variables, and e the N×1 vector of independent, 



 Part 1: A Theoretical and Practical Introduction to SPARROW 25

identically normally distributed errors with variance . The predicted flux for period t in logarithm space is 2
eσ I

given by 
 

(1.10) 
( )
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A naïve estimate of flux in real space is simply an exponential transformation of the predicted flux t̂f  given in 

equation (1.10) 
 

(1.11) , ( ) ( )ˆ ˆˆ exp expt t tF f= = +Z β �tq

with expectation given by  
 

(1.12) ( ) ( ) ( )( )121
2

ˆ exp expt t t e tE F q σ
−′ ′= +Z β Z Z Z Z� t . 

The ratio of the actual conditional expectation of flux given in equation (1.9) and the naïve estimate in equation 
(1.12) represents the inverse of the retransformation bias factor associated with the naïve estimate. The inverse 
retransformation bias factor is  
 

(1.13) 

( )
( )( )( )121

2exp 1
ˆ
t

e t t

t

F

E F
σ

−′ ′= −Z Z Z Z . 

The term in the exponential function on the right-hand side of the equality in equation (1.12) can be positive or 
negative, implying the bias factor associated with the naïve estimator can be greater than or less than 1.0—
although it is likely to be positive if the model is not greatly extrapolated to conditions outside the range of 
explanatory variables for the sample. A somewhat more complicated expression for the inverse retransformation 
bias factor is obtained if the water-quality data include censored data.  

The problem of retransformation bias is solved if it is possible to derive a sample-based correction 

factor that is independent of t̂f  and has an expectation equal to the right-hand side of equation (1.12). Cohn, 

Gilroy, and others (1992) describe a method that can be used to remove first-order retransformation bias for 

cases with and without censored data. The method consists of first transforming the  vector so that it is β̂
uncorrelated with . The transformation takes the form , where  is the correlation coefficient ˆeσ ˆˆ ˆeσ= −w β γ γ

between  and  as determined from the covariances estimated in equation (1.6). For the case without β̂ ˆeσ
censoring, the ordinary least squares estimates of  and  are already uncorrelated, so no adjustment is β̂ ˆeσ

needed. In large samples,  and  are normally distributed so the lack of correlation between  and  β̂ ˆeσ ŵ ˆeσ
implies they are independent; because  is simply the squared value of , it must also be independent of . 2ˆeσ ˆeσ ŵ

It can be shown that the inverse retransformation bias factor for a naïve estimate of flux based on  ŵ
depends critically on  and , both unknowns. The retransformation bias problem is solved, therefore, by eσ

2
eσ

deriving a function  that has an expectation equal to the inverse retransformation bias factor. Finney ( )2ˆt ep σ
(1941) derives the appropriate function in the case of no censored data; Cohn, Gilroy, and others (1992) derive 
an analogous function to be used for data that include censored observations.  
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The unbiased estimate of flux in real space, for period t, is given by 
 

(1.14) ( ) ( )2*ˆ ˆ ˆexpt t tF p σ= Z w e , 

the expectation of which is equation (1.9). An estimate of mean daily flux is obtained by averaging these period 

t estimates over all days in the prediction period PT
N PT   

 

(1.15) 1* *ˆ ˆ
P

P
tT

t T

F N F−

∈

= ∑ . 

To ensure that seasonal patterns in flux are equally represented in the mean estimate, it is best to include 
predictions for only those days in which a complete year of estimates is available. 

Gilroy and others (1990) and Cohn, Gilroy, and others (1992) derive the standard error of the mean flux 
as 
 

(1.16) ( )*

1
ˆ

* *ˆ ˆCov ,P
P P

t sTF
t T s T

N Fσ −

∈ ∈

= ∑∑ F , 

where  
 

(1.17)  
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The second equality in (1.17) follows because (approximately)  and  are independent and the estimator ŵ 2ˆeσ
*
t̂F  is unbiased. Cohn, Gilroy, and others (1992) derive explicit expressions for the expectation terms in the 

second equality. 
The retransformation problem discussed above will be encountered again in section 1.6 where we 

discuss the prediction methodology for the SPARROW model. Many of the concepts developed here will 
reappear in that discussion, although a different method will be proposed for resolving the problem. The 
discussion of the standard error of the mean flux estimate given in equation (1.16) will also have relevance to 
SPARROW model estimation and prediction, as will be shown in sections 1.5.3.5 and 1.6.6.1. 

1.3.1.3 Mean detrended flux (advanced) 

There are two sources of trend in the standard water-quality model given by equation (1.3) and both 
must be evaluated in order to obtain estimates of mean detrended flux. The primary source is the time trend term 

in the model, represented above by the function . The second source is streamflow, the current and lagged ( )th
values of which affect water quality through the function ( )tM Q .  

Let the base year for detrending be denoted . The detrending of the time trend term in the 
00 tT T≡

water-quality model is straightforward; simply replace  with the constant  in the  vector used to ( )tTh ( )0Th tZ
predict water quality in period t. Because the standard error of the mean flux also depends on , use of the tZ
modified  vector in the standard error calculation (equations (1.16) and (1.17)) fully accounts for the effect of tZ
detrending the time trend term on the uncertainty of mean flux. 

The removal of trend due to streamflow is more complicated. One approach, which is consistent in large 

samples, is to replace the streamflow vector  in the function tQ ( )tM Q  with a detrended streamflow vector 
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D
tQ . This requires the estimation of a streamflow model that includes trend terms. Let the equation for the 

logarithm of streamflow in period t be given by 
 

(1.18) , ( )t t T t xq T= +g α x α� tu+

where ( )tTg  is a gK -element row vector of deterministic functions of time, excluding seasonal variations; xt is 

an exogenous process (possibly deterministic as well), including an intercept; and ut is a normally distributed, 
possibly serially correlated residual. 

The efficient estimation of the streamflow model coefficients requires specification of the serial 
correlation structure of the residual. Generally, it is our experience that a high-order autoregressive process is 
sufficient to capture the serial correlation in the daily streamflow residuals. A Box-Ljung chi-square test based 
on the estimated autocorrelations can be used to determine if a sufficient order for the autoregressive process has 
been specified (see SAS, 1993). If the streamflow record contains data gaps, then the estimation method may 
use a Kalman filtering procedure (see Hamilton, 1994). 

Let the matrix  represent a tG gp K× matrix consisting of the current and lagged row vectors of ( )tTg , 

and let  be the  matrix evaluated at the base period . We have, 0G tG 0t
 

(1.19) 
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Using equation (1.1), given estimates of the coefficient vector , the detrended streamflow vector ˆ Tα
D
tQ  is given 

by 
 

(1.20) . ( )0 ˆD
t t t= + −Q Q G G αT

Let  represent the row vector of detrended water-quality explanatory variables. ( ) ( ){ 0, ,D D
t t T=Z M Q h X }t

Detrended flux for period t is obtained simply by substituting the detrended explanatory variables D
tZ  for  in tZ

equation (1.14), and the mean detrended flux is obtained by using the detrended period t fluxes to estimate 
equation (1.15).  

The substitution of detrended streamflow for actual streamflow in the determination of mean detrended 
water-quality flux introduces two effects on the standard error of mean detrended flux. The first and most 
important effect is the change in the standard error calculation (equations (1.16) and (1.17)) caused by 

uncertainty in the  coefficients interacting with the change in caused by substituting the series of ˆ
Qβ tZ

detrended streamflow vectors D
tQ  for actual streamflow vectors . Because equation (1.17) is conditioned on tQ

tZ , the effect of this substitution is fully accounted for in the estimation of flux uncertainty.  

A secondary effect on uncertainty in detrended water quality arises because the  vector used to Tα
compute D

tQ  is estimated with uncertainty. There are two reasons why this effect is likely to be negligible 

relative to the first effect. First, the streamflow model is generally estimated with considerably more 
observations than the water-quality model, implying the estimates of  are quite precise relative to the ˆ Tα

estimates of . Second, if the streamflow equation consists of a simple linear time trend, the variance of the ˆ
Qβ

estimated trend coefficient is of order , where  is the number of streamflow observations, as ( 2
qO N− ) qN
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compared to ( )1O N−  for coefficients associated with non-trending variables. For these reasons, we do not 

derive a more complete estimate of uncertainty for the mean detrended streamflow to account for sample error 
in the  coefficients. ˆTα

1.3.1.4 Tools for flux estimation 

If the water-quality data do not include any censored observations, the water-quality models described 
above can be easily estimated using ordinary least squares. For cases in which the water-quality data include 
censored observations, Cohn, Gilroy, and others (1992) suggest estimation via adjusted maximum likelihood. In 
large samples, the method of maximum likelihood is consistent and efficient (Cohn, Gilroy, and others, 1992). 
The standard maximum likelihood method to apply to type I censored data (that is, data for which the censoring 
threshold is known) is the Tobit model, so named after its inventor, economist James Tobin (1958). The method 
of adjusted maximum likelihood combines the Tobit model with an adjustment to correct for first-order bias in 
the coefficient estimates caused by estimation using a small sample. 

The method of adjusted maximum likelihood is implemented within the recently released USGS 
program LOADEST 2000 (Runkle and others, 2004). In addition to estimates of the parameters and their 
covariance matrix, the program uses the retransformation methods described above to produce unbiased 
estimates of daily and annual flux. A simple averaging of the daily or annual estimates over all days or years 
yields an estimate of long-term mean flux. Unfortunately, the program does not compute a standard error for the 
long-term mean estimate, and detrending the estimates requires additional processing of the daily results. 

The estimation of the model used to detrend flow requires a maximum likelihood method capable of 
correcting for serial correlation in the errors. This capability is included in the PARMA model developed by 
Vecchia (2000), but can also be implemented using standard statistical packages such as SAS (SAS, 1993). 

More recently, a program called Fluxmaster developed by G.E. Schwarz (principal author of this 
documentation) includes methods to estimate the time-series flow model using maximum likelihood, detrend 
flow, and estimate the water-quality model via adjusted maximum likelihood. The program also computes 
unbiased detrended estimates of long-term mean flux, and provides an estimate of the associated standard error. 
The exact methods used to implement adjusted maximum likelihood and correct for the retransformation bias in 
Fluxmaster differ from those used in LOADEST 2000, but they are a close approximation and exactly the same 
if there are no censored observations. The difference pertains to parameter estimation arising from the correction 
of maximum likelihood coefficient estimates for first-order bias (the uncorrected parameter estimates of 
Fluxmaster and LOADEST 2000 are the same aside from slight differences due to differences in numerical 
optimization methods). The correction for first-order bias depends on an estimate of the parameter covariance 
matrix. Fluxmaster estimates the covariance matrix using a numerical method to estimate the expectation of the 
numerically approximated Hessian matrix; conversely, LOADEST 2000 estimates the covariance matrix using 
analytic derivatives of the likelihood function for individual observations evaluated at sample data values.  

The similarity between the LOADEST 2000 and Fluxmaster methods can be demonstrated via a Monte 
Carlo experiment. Figure 1.7 and table 1.2 present results from a Monte Carlo analysis consisting of 1,000 cases 
in which 365 days of streamflow and water-quality values are randomly generated. The logarithm of streamflow 
is generated from a standard normal distribution; the logarithm of water quality equals the logarithm of 
streamflow plus a standard normal random error. All values of the logarithm of water quality below zero are 
censored, resulting in a 50 percent censoring threshold. For each case, a sample consisting of 52 water-quality 
values, one value per week, was selected and used to estimate annual flux using the Fluxmaster and LOADEST 
2000 flux estimation algorithms. Figure 1.7 shows close agreement between the two algorithms. As is evident 
from table 1.2, both methods exhibit virtually identical bias and precision. 
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Figure 1.7. Monte Carlo analysis comparing flux estimates from the programs Fluxmaster and LOADEST 2000. The comparison 
consists of 1,000 replications of simulated streamflow and water-quality data, where the logarithm of streamflow is generated from 
a standard normal distribution and the logarithm of water quality equals the logarithm of streamflow plus a standard normal 
random variable, the sum of which is censored at zero (approximately 50 percent censoring). 

 

 

Table 1.2. Monte Carlo evaluation of Fluxmaster and LOADEST 2000 annual flux estimates. 
 
[Analysis consists of 1,000 repetitions, with 52 observations per case, 50 percent of which are censored; the logarithm of 
streamflow is generated from a standard normal distribution; the logarithm of water quality equals the logarithm of 
streamflow plus a standard normal random variable] 

 
  Fluxmaster LOADEST 2000 

Bias (percent) -4.1 -4.0 

Standard Error (percent) 66.4 65.3 

Ratio Standard Error to Mean Estimated Standard 
Error (percent) 120 114 
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