List of Figures

Figure 1. Fishing mortality rate and biomass status of 19 groundfish stocks managed under the Northeast Multispecies FMP	xv
Figure 2. Median catch-weighted depth at capture of various groundfish species in NMFS bottom trawl surveys	pre
Figure 2 Desults of side by side tows made by NOAA D/Vs. Albertage IV and Delaware IV in paired towing in the	<i>XVI</i>
Figure 5. Results of side-by-side lows made by NOAA R/VS Albaiross IV and Delaware II in parted towing in u	
Figure A1a Total commercial landings of Coorgos Dank and 1802 2001	
Figure A1a. Total commercial landings of Georges Bank cod, 1060-2001	29
Figure A2 Standardized stratified mean catch per tow of Atlantic cod in NEESC spring and autumn research ver	29 real
bottom travil surveys on Georges Bank 1063 2001	20
Figure A3 Standardized stratified mean number per tow of Atlantic cod in NEESC and DEO spring and NEESC	
autumn research vessel bottom trawl surveys on Georges Bank 1963-2002	30
Figure A4 Trends in total commercial landings and fishing mortality for Georges Bank, cod. 1078-2001	
Figure A5. Trends in stock biomass and recruitment for Georges Bank Atlantic cod 1978-2001	32
Figure A6 Retrospective analysis of Georges Bank cod recruits at age 1 snawning stock hiomass and fishing	
mortality based on the final ADAPT VPA formulation 2001-1996	33
Figure A7 Fishing mortality and spawning stock biomass estimates from VPA calibrated using survey indices	
increased by 0% (hase) 10% (110) 25% (125) and 100 %(200)	34
Figure A8 Median and 80% confidence intervals of predicted spawning stock biomass and predicted catch for	
Georges Bank Atlantic cod under Frebuild = 0.10	
Figure B1. Total commercial landings of haddock from Georges Bank and south, 1904-2001	53
Figure B2. Georges Bank haddock research survey indices. 1963-2002.	54
Figure B3. Trends in spawning stock biomass and recruitment for Georges Bank haddock from 1931-2001	55
Figure B4. Trends in commercial landings and fishing mortality for Georges Bank haddock from 1931-2001	56
Figure B5. Retrospective analysis of Georges Bank haddock recruitment, spawning stock biomass and fishing	
mortality	57
Figure B6. Georges Bank haddock sensitivity to hypothetical NEFSC survey index adjustments due to trawl war	р
offsets during 2000-2002	58
Figure B7. Georges Bank haddock projection results for F=F _{REBUILD}	59
Figure C1. Total catch of Georges Bank yellowtail flounder	75
Figure C2. Survey indices of Georges Bank yellowtail flounder biomass	75
Figure C3. Survey indices of abundance at age	76
Figure C4. Summary of Georges Bank yellowtail flounder VPA results	77
Figure C5. Population abundance at age from VPA compared to equilibrium levels at MSY	78
Figure C6. Retrospective patterns in Georges Bank yellowtail flounder VPA	79
Figure C7. Point estimate and 80% confidence intervals for F and SSB in 2001 for the base run and three sensiti	vity
analyses which increased the impacted survey catches	80
Figure C8. Projected spawning stock biomass under F _{Rebuild} =0.22 in years 2003 through 2009 to achieve a 50%	
probability of Bmsy in 2009	81
Figure C9. Mean biomass of Georges Bank yellowtail flounder and fishing mortality on biomass	82
Figure D1. Total catch of southern New England yellowtail flounder	97
Figure D2. Survey indices of southern New England yellowtail flounder biomass	97
Figure D3a. Estimates of fishing mortality, recruitment and spawning stock biomass for southern New England yellowtail flounder from VPA	98
Figure D3b. Abundance at age of southern New England yellowtail flounder	99
Figure D4. Retrospective analysis of the southern New England yellowtail flounder VPA	.100
Figure D5. Stochastic projection of spawning biomass and total catch under two scenarios of recruitment and a constant F of $F_{rebuild} = 0.10$.	.101
Figure D6. Mean biomass of southern New England vellowtail flounder and fishing mortality on biomass	.102
Figure D7. Sensitivity of results to increasing NEFSC indices since 2000 by 10%. 25% and 100%	.103
Figure E1. Total catch of Cape Cod yellowtail flounder	.118
Figure E2. Survey indices of Cape Cod yellowtail flounder biomass	.118
Figure E3. Cape Cod yellowtail flounder VPA results	.119
Figure E4. Retrospective analysis of the Cape Cod yellowtail flounder VPA	.120
Figure E5. Stochastic projection of Cape Cod yellowtail flounder for F _{rebuild} =0.12	.121

Figure E6.	Sensitivity of results to excluding NEFSC survey indices and increasing NEFSC indices since 2000 b	y 122
Eisense El	1070, 2570 and 10070	122
Figure F1.	Diamons indices for Culf of Maine and from NEECC sutumn bottom travel surveys	1.1.39
Figure F2.	Trands in landings and fishing mortality for Culf of Maine and	140
Figure F3.	Trends in rearritment and hiemass for Culf of Maine and	141
Figure F5	Petrospective analysis of estimates of terminal year E recruitment and SSB from the VDA for Gulf of	. 142 F
Figure 1'5.	Maine Cod	1/2
Eiguro E6	Sonaitivity of VDA actimates of E and SSD in 2001 to program d differences in survey establishility dur	. 145
Figure Fo.	2000, 2002 based on 1000 bootstran replications of the base VPA	11A
Figure F7	Drojected SSR recruitment and catch for Gulf of Maine cod	1/15
Figure G1	Historical USA witch flounder landings the Grand Banks in the mid 1080's	163
Figure G2	Number of witch flounder at age in the total catch by fishery 1982-2001	-165
Figure G3	Stratified mean weight per tow and mean number per tow of witch flounder in the NFFSC spring and	105
i iguit 05	autumn bottom trawl surveys 1963-2002	166
Figure G4	Trends in total catch and fishing mortality for witch flounder 1982-2001	167
Figure G5	Trends in spawning stock biomass and recruitment for witch flounder	167
Figure G6	Retrospective analysis results of fishing mortality spawning stock biomass and age 3 recruitment	168
Figure G7	Stock status of witch flounder in 2001 and three sensitivity analyses.	169
Figure G8	Projected median spawning stock biomass and median catch with 80% confidence intervals	170
Figure H1	Total commercial landings of Gulf of Maine-Georges Bank American plaice, 1960-2001	187
Figure H2	Number American plaice at age in the total catch, 1980 – 2001	-189
Figure H3	. Standardized stratified mean weight per tow of American plaice in NEFSC spring and autumn researc	ch
U	vessel bottom trawl survey in the Gulf of Maine-Georges Bank region, 1963-2002	190
Figure H4	. Standardized stratified mean number per tow of American plaice in NEFSC spring and autumn resear	rch
-	vessel bottom trawl survey in the Gulf of Maine-Georges Bank region, 1963-2002	190
Figure H5	. Trends in total commercial landings and fishing mortality for Gulf of Maine-Georges Bank American	ı
	plaice, 1980-2001	.191
Figure H6	. Trends in recruitment and spawning stock biomass for Gulf of Maine-Georges Bank American plaice	,
	1980-2001	.191
Figure H7	. Retrospective analysis of Gulf of Maine-Georges Bank American plaice recruits at age 1, spawning s	tock
	biomass, and fishing mortality, based on the final ADAPT VPA formulation, 2001-1996	.192
Figure H8	Fishing mortality and spawning stock biomass estimates from VPA calibrated using survey indices	
	increased by 0% (base), 10% (110), 25% (125), and 100 %(200)	193
Figure H9	. Median and 80% confidence intervals of predicted spawning stock biomass and predicted landings fo	r
E' 11	American place under $F_{rebuild} = 0.10$	194
Figure II.	Total commercial landings of Georges Bank winter flounder during 1964-2001	.203
Figure 12.	Relative biomass indices of Georges Bank winter flounder from NEFSC spring (1968-2002) and autur	nn
E. 13	(1963-2001) bottom trawl surveys and the Canadian spring (1987-2002) bottom trawl survey	.203
Figure 13.	I rends in total landings and fishing mortality rates for Georges Bank winter flounder during 1964-	204
E: 14	2001 Tran la in Carnera Daul - inter flam la tetal li incere articula d'America ACDIC Li ancere danamice	.204
Figure 14.	rends in Georges Bank winter flounder total biomass, estimated from an ASPIC biomass dynamics	204
Figure 15	Detrognactive analysis of ASDIC derived estimates of fishing mortality rates and total biomass for	.204
Figure 15.	Georges Bank winter flounder during 1005 2001	205
Figure 16	Deliges Dalik while Hounder during 1993-2001	.203
Figure 10.	2001 generated from a bootstrapped nominal run of an ASPIC biomass dynamics model and three	ig
	sensitivity runs including increased NEESC survey biomass indices during spring 2000-2002 for the	
	Georges Bank winter flounder stock	206
Figure 17	Median and 80% confidence intervals of projected yield and total biomass of Georges Bank winter	200
1 19410 17.	flounder under F_{MeV} fishing mortality rates (F=0.32) during 2003-2010	207
Figure J1	Commercial landings (1964-2001), commercial discards (1981-2001) recreational landings (1981-200	1).
-8	recreational discards (1981-2001) and total fishery catch (1981-2001) for the SNE/MA winter flounde	er
	stock complex	.226
Figure J2.	Trends in research survey biomass indices for SNE/MA w inter flounder	.227
Figure J3.	T rends in research survey recruitment indices for SNE/MA winter flounder	-229
Figure J4.	Total catch and fishing mortality rate for SNE/MA winter flounder	.230

Figure J5.	Spawning stock biomass and recruitment for SNE/MA winter flounder	231
Figure J6.	Retrospective VPAs for SNE/MA winter flounder	232
Figure J7.	SNE/MA winter flounder VPA sensitivity to hypothetical NEFSC winter, spring, and fall survey index	
Eigung V1	Total londings and discourse of white holes from the Culf of Maine to Mid Atlantic region 10(4)	233
Figure KI	1 Total landings and discards of white nake from the Guil of Maine to Mid-Atlantic region, 1964-	245
Eigene VO	2001	245
Figure K2	White helps in faire a fly indices of blomass by size class.	240
Figure K3.	white nake indices of biomass and abundance from the NEFSC bottom trawl spring and autumn survey $\frac{1}{2}$	eys
D' U A	in the Gulf of Maine to Northern Georges Bank region, 1963-2002	24 /
Figure K4	Six-panel plot depicting relationship between relative F and replacement ratio, trend in replacement ra	1110,
Б' Т 1	relationship between biomass and relative F, trend in biomass, trend in catch, and trend in relative F.	248
Figure L1.	I rends in total and USA landings of pollock from Divisions 4VWX and Subareas 5 and 6, and NEFSC) 2 - 0
D ¹ I A	autumn survey biomass index, 1963-2001	258
Figure L2.	Trends in total landings of pollock from Divisions 4VWX and from Subareas 5 and 6, and NEFSC	~ ~ ~
D ¹ I A	autumn survey biomass index, 1963-2001	258
Figure L3.	rends in total landings of pollock from Divisions 4VWX and Subareas 5 and 6, and indices of relative exploitation, 1963-2001	e 259
Figure L4.	Trends in total landings of pollock from Subareas 5 and 6, and indices of relative exploitation, 1963-	259
Figure I 5	Trends in the NEESC autumn survey biomass index for nollock from Subgross 5 and 6, 1062, 2001	259
Figure I 6	Trends in total landings of nollock from Subareas 5 and 6, 1063-2001	200 260
Figure L0.	Trends in relative E for pollock in Subareas 5 and 6, 1963-2001	200
Figure I 8	Trends in replacement ratio for pollock in Subareas 5 and 6, 1963-2001	201
Figure Lo.	Polationship between the replacement ratio and relative E for pollock in Subgroup 5 and 6, 1062	201
Figure L9.	2001	าเก
Eigura I 10	2001	202
riguie LI	ord 6, 1062, 2001	15 5
Eiguro I 11	ally 0, 1903-2001	202
Figure L1	replacement ratios for pollock in Subgroup 5 and 6, 1062, 2001	762
Eiguro M1	Total commercial landings of Acadian radfish from the Gulf of Maine Georges Dank ragion 1024	205
rigule MI	2001	272
Figure M2	. Commercial landings and biomass index derived from NEFSC autumn survey biomass indices for	
	Acadian redfish, 1963-2001	273
Figure M3	. Commercial landings and exploitation ratios derived from NEFSC autumn survey biomass indices for	ſ
	Acadian redfish	274
Figure N1.	Trends in landings and NEFSC spring survey biomass (kg/tow) for ocean pout, 1968-2002	281
Figure N2.	Exploitation indices for ocean pout, 1970-2002	281
Figure N3	Ocean pout stock status in 2001 and three sensitivity analyses in which NEFSC spring survey biomass was arbitrarily adjusted by 10%, 25% and 100%	5 282
Figure O1	Commercial landings of Gulf of Maine-Georges Bank windownane flounder during 1975-2001	286
Figure O2	Relative biomass indices for Gulf of Maine-Georges Bank windowpane flounder from the NEFSC	
1.8410 02	autumn bottom trawl surveys during 1963-2001	286
Figure O3	Relative exploitation indices and landings of Gulf of Maine-Georges Bank windownane flounder duri	ng
1.8410 000	1975-2001	287
Figure P1	Landings of Southern New England-Mid-Atlantic Bight windownane flounder during 1963-2001	291
Figure P2	Relative biomass indices for Southern New England- Mid-Atlantic Bight windownane flounder from t	he
1 15010 1 2.	NEESC autumn research vessel bottom trawl surveys during 1963-2001	291
Figure P3	Relative exploitation indices and landings of Southern New England-Mid-Atlantic Bight windownane	271
i iguie i 5.	flounder during 1975-2001	292
Figure O1	Landings and exploitation index of Mid Atlantic vellowtail flounder	296
Figure O2	Indices of Mid Atlantic vellowtail flounder biomass	206
Figure O2	Sensitivity of results to increasing NFFSC indices since 2000 by 10% 25% and 100%	207
Figure QJ	Gulf of Maine haddock commercial landings during 1056-2001 and provisional representational landings	
i iguit Itl.	during 1982-2001	303
Figure R7	Northeast Fisheries Science Center research standardized and stratified survey abundance and biomass	202
1 15010 112.	indices for Gulf of Maine haddock from 1963-2002	, 30/
Figure D2	Observed and smoothed exploitation rate indices for Gulf of Maine haddock 1063-2001	305
- 15art ICJ.	sources and smoothed exploration rate markes for Gun of matthe naddock, 1705-2001	505

Figure S1. A	tlantic halibut landings from the Gulf of Maine- Georges Bank region during 1893-2001
Figure S2. Tr	rends in swept-area biomass indices of Atlantic halibut from NEFSC spring and autumn bottom trawl arveys
Figure S3. T	rends in Atlantic halibut landings from the Gulf of Maine and Georges Bank in comparison to 5-year
Figure S4. T	rends in exploitation rate indices for Atlantic halibut from the Gulf of Maine and Georges Bank based n 5 -year moving averages of NEFSC spring and autumn survey indices, 1967-2001 Exploitation Rate
In	ndex
Figure T1. G	ulf of Maine winter flounder landings by gear
Figure T2. R	ecreational landings in numbers and metric tons for Gulf of Maine winter flounder
Figure 13. N	eFSC Spring survey stratified mean numbers and mean weight per tow for Gulf of Maine winter 324
Figure 14. N	ersc Fall survey stratified mean numbers and mean weight per tow for Gulf of Maine winter ounder
Figure T5. M to	Iassachusetts Division of Marine Fisheries spring survey stratified mean numbers and mean weight per w for Gulf of Maine winter flounder
Figure T6. M	Iassachusetts Division of Marine Fisheries Fall survey stratified mean numbers and mean weight per
Figure T7. So	eabrook Nuclear Power Plant in spring and fall survey mean numbers per tow for Gulf of Maine winter ounder
Figure 3.1.1	Difference between port and starboard warp marks vs fishing depth 335
Figure 3.1.2.	Predicted effect of trawl offset on reduction in area swept for fishing depths from 0 to 400 m
Figure 3.2.1.	Location of tows by the <i>R/V Albatross IV</i> with "any" damage in NEFSC fall, spring and winter surveys
dı	uring 1983-2002
Figure 3.2.2.	Location of tows by the <i>R/V Albatross IV</i> with "major" damage in NEFSC fall, spring and winter urveys during 1983-2002
Figure 3.2.3.	Proportion of tows with any, minor and major damage in NEFSC fall, spring and winter surveys during 983-2002
Figure 3.2.4.	Estimated warp effects in the final GAM model for the frequency of any damage during NEFSC
St Figure 3.2.5	Irvey lows
se	eparate GAM models for surveys during 2000-2002 with mis-marked warps and surveys during 1983-
20 Eigung 2-2-1	John without mis-marked warps
Figure $3.3-1$.	Length composition data for baddook on Georges Bank in spring surveys
Figure $3.3-2$.	Length composition data for vallowing flounder on Georges Bank in spring surveys
Figure 3.3-4.	Length composition data for wonkfish during 2001 in the NEFSC winter survey and commercial
Ve Eigure 2.2.5	assels in the Cooperative Monkrish Survey
rigure 5.5.5. ez	speriment during the spring of 2002
Figure 3.4.1.	Locations of stations where video and trawl sensor data were collected to assess the effects of warp with a first and the travely and trawl sensor data were collected to assess the effects of warp 25.4
	ngth offsets on the trawl performance of the K/V Albatross IV during 25-26 September, 2002
Figure 3.4.2. R	<i>A Albatross IV</i> at stations sampled during a 25-26 September, 2002 warp length offset experiment, 355
Figure 3.4.3.	
Figure 3.4.4.	Means and standard deviations of headrope height and wing spread measurements of the Yankee 36 et of the R/V <i>Albatross IV</i> , at starboard and port trawl warp length offsets of 0 ft., 2 ft., 4 ft., 6 ft., 12 ft.,
fc	or stations 906, 907,908 and 909 combined
Figure 3.5.1.	Example behavior of Model 2 for varying levels of θ
Figure 3.6.1.	Box plots of stratum-specific coefficients of catch for Georges Bank stock of cod for fall, spring, and inter NEFSC trawl surveys
Figure 3.6.2.	Box plots of stratum-specific coefficients of catch for Gulf of Maine stock of cod for fall, spring, and inter NEESC trawl surveys
Figure 3.6.3.	Box plots of stratum-specific coefficients of catch for Georges Bank stock of haddock for fall, spring, ad winter NEESC trawl surveys
Figure 3.6.4.	Box plots of stratum-specific coefficients of catch for Gulf of Maine stock of haddock for fall, spring,
ar	ad winter NEFSC trawl surveys

Figure 3.6.	5. Box plots of stratum-specific coefficients of catch for Georges Bank stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	.6. Box plots of stratum-specific coefficients of catch for Southern New England stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	7. Box plots of stratum-specific coefficients of catch for Cape Cod stock of yellowtail flounder for fall,
Figure 3.6.	8. Box plots of stratum-specific coefficients of catch for American plaice for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	9. Box plots of stratum-specific coefficients of catch for Georges Bank stock of winter flounder for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	10. Box plots of stratum-specific coefficients of catch for Southern New England stock of winter flounder for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	.11. Box plots of stratum-specific coefficients of catch for Acadian redfish for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	12. Box plots of stratum-specific coefficients of catch for white hake for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	13. Box plots of stratum-specific coefficients of catch for pollock for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	.14. Box plots of stratum-specific coefficients of catch for northern stock of windowpane flounder for fall, spring, and winter NEFSC trawl surveys.
Figure 3.6.	15. Box plots of stratum-specific coefficients of catch for southern stock of windowpane flounder for fall, spring, and winter NEFSC trawl surveys.
Figure 3.6.	16. Box plots of stratum-specific coefficients of catch for ocean pout for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	17. Box plots of stratum-specific coefficients of catch for spiny dogfish for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	18. Box plots of stratum-specific coefficients of catch for summer flounder for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	.19. Box plots of stratum-specific coefficients of catch for longhorn sculpins for fall, spring, and winter NEFSC trawl surveys
Figure 3.6.	20. Box plots of stratum-specific coefficients of catch for fourspot flounders for fall, spring, and winter NEFSC trawl surveys
Figure 3.7.	1. Temporal trends in catch weighted average depth for Georges Bank Cod stock for fall, winter and spring surveys
Figure 3.7.	2. Temporal trends in catch weighted average depth for Gulf of Maine Cod stock for fall, winter and spring surveys
Figure 3.7.	3. Temporal trends in catch weighted average depth for Georges Bank Haddock stock for fall, winter and spring surveys
Figure 3.7.	4. Temporal trends in catch weighted average depth for Gulf of Maine Haddock stock for fall, winter and spring surveys
Figure 3.7.	5. Temporal trends in catch weighted average depth for Georges Bank Yellowtail stock for fall, winter and spring surveys
Figure 3.7.	6. Temporal trends in catch weighted average depth for Southern New England Yellowtail stock for fall, winter and spring surveys
Figure 3.7.	7. Temporal trends in catch weighted average depth for Cape Cod Yellowtail Flounder stock for fall, winter and spring surveys
Figure 3.7.	8. Temporal trends in catch weighted average depth for Witch Flounder stock for fall, winter and spring
Figure 3.7.	9. Temporal trends in catch weighted average depth for American Plaice stock for fall, winter and spring
Figure 3.7.	10. Temporal trends in catch weighted average depth for Acadian Redfish stock for fall, winter and spring
Figure 3.7.	11. Temporal trends in catch weighted average depth for White Hake stock for fall, winter and spring
Figure 3.7.	12. Temporal trends in catch weighted average depth for pollock stock for fall, winter and spring surveys

Figure 3.7.13. Temporal trends in catch weighted average depth for Georges Bank Winter Flounder stock for fall, winter and spring surveys
Figure 3.7.14. Temporal trends in catch weighted average depth for Southern New England Winter Flounder stock for fall, winter and spring surveys
Figure 3.7.15. Temporal trends in catch weighted average depth for Northern Windowpane Flounder stock for fall, winter and spring surveys
Figure 3.7.16. Temporal trends in catch weighted average depth for Windowpane Flounder stock for fall, winter and spring surveys
Figure 3.7.17. Temporal trends in catch weighted average depth for Ocean Pout stock for fall, winter and spring surveys
Figure 3.7.18. Temporal trends in catch weighted average depth for Spiny Dogfish stock for fall, winter and spring surveys
Figure 3.7.19. Temporal trends in catch weighted average depth for Summer Flounder stock for fall, winter and spring surveys
Figure 3.7.20. Temporal trends in catch weighted average depth for Fourspot Flounder stock for fall, winter and spring surveys
Figure 3.7. 21. Temporal trends in catch weighted average depth for Longhorn Sculpin stock for fall, winter and spring surveys
Figure 3.7.22. Temporal trends in catch weighted average depth for Halibut stock for fall, winter and spring surveys
Figure 3.7.23. Distribution of standardized difference in catch rates vs. depth interval for all species combined421 Figure 3.7.24. Distribution of standardized difference in catch rates vs. depth interval for gadoid species (GB cod, GOM cod, GB haddock, GOM haddock, white hake, and pollock
Figure 3.7.25. Distribution of standardized difference in catch rates vs. depth interval for flatfish species, GB winter flounder SNE winter flounder, summer flounder, and fourspot flounder
Figure 3.7.26. Distribution of standardized difference in catch rates vs. depth interval for flatfish species, GB winter flounder, GB cod, GOM cod, SNE winter flounder, summer flounder, fourspot flounder, ocean pout, longhorn sculpin, spiny dogfish
Figure 3.7.27 Distribution of standardized difference in catch rates vs. depth interval for flatfish species 425
Figure 3.7.28. Predicted reductions in relative efficiency of capture for cod in fall and spring surveys given hypothesized increases in overall abundance of 10, 25, and 100%
Figure 3.7.29. Predicted reductions in relative efficiency of capture for haddock in fall and spring surveys given hypothesized increases in overall abundance of 10, 25, and 100%
Figure 3.7.30. Predicted reductions in relative efficiency of capture for yellowtail flounder in fall and spring surveys given hypothesized increases in overall abundance of 10, 25, and 100%
Figure 3.7.31. Catch weighted average depths at capture for 16 species of groundfish taken in NEFSC bottom trawl surveys
Figure 3.7.32. Catch weighted average depths at capture for 16 species of groundfish taken in NEFSC bottom trawl surveys
Figure 3.8. Directional change in abundance (numbers per tow) of various species/stocks for pairs of years
Figure 3.9.1. Time series of survey catch rates for all species comparisons in this analysis
Figure 3.9.2. Time series of SLSCR indices of relative fishing power for all species comparisons in this analysis
Figure 3.11.1. Results of fishing power calibration studies for NOAA R/Vs <i>Albatross IV</i> and <i>Delaware II</i> during two time periods
Figure 3.11.2. Calculated ratios of <i>Albatross</i> to <i>Delaware</i> surveys that can be detected at the 0.05 level of significance, using a twotailed test
Figure 5.1.1. Status of 19 Northeast groundrish stocks relative to status determination criteria of fishing mortality and stock biomass
groundfish stocks, 1990-2001
between 1994 and 2001
Figure 5.5. There's in bouldin trawn survey abundance mulces, 1905-2001
Figure U.3. Summary of biological sampling for calculate age estimation, 1990-2001
levels of underestimation of abundance