Assessment of 20 Northeast Groundfish Stocks through 2001

A Report of the Groundfish Assessment Review Meeting (GARM), Northeast Fisheries Science Center, Woods Hole, Massachusetts,

October 8-11, 2002

Recent Issues in This Series

01-20 Assessment of 19 Northeast Groundfish Stocks through 2000: A Report to the New England Fishery Management Council's Multi-Species Monitoring Committee. By Northern Demersal and Southern Demersal Working Groups, Northeast Regional Stock Assessment Workshop. December 2001.

02-01 Workshop on the Effects of Fishing Gear on Marine Habitats off the Northeastern United States, October 2325, 2001, Boston, Massachusetts. By Northeast Region Essential Fish Habitat Steering Committee. February 2002.

02-02 The 2001 Assessment of the Gulf of Maine Atlantic Cod Stock. By R.K. Mayo, E.M. Thunberg, S.E. Wigley, and S.X. Cadrin. [A report of Northeast Regional Stock Assessment Workshop No. 33.] March 2002.

02-03 An Age-Structured Assessment Model for Georges Bank Winter Flounder. By J.K.T. Brodziak. [A report of Northeast Regional Stock Assessment Workshop No. 34.] March 2002.

02-04 Re-Evaluation of Biological Reference Points for New England Groundfish. By Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. March 2002.

02-05 Biological Characteristics, Population Dynamics, and Current Status of Redfish, Sebastes fasciatus Storer, in the Gulf of Maine - Georges Bank Region. By R.K. Mayo, J.K.T. Brodziak, M. Thompson, J.M. Burnett, and S.X. Cadrin. [A report of Northeast Regional Stock Assessment Workshop No. 33.] April 2002.

02-06 Report of the 34th Northeast Regional Stock Assessment Workshop (34th SAW): Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. [By Northeast Regional Stock Assessment Workshop No. 34.] April 2002.

02-07 Report of the 34th Northeast Regional Stock Assessment Workshop (34th SAW): Public Review Workshop. [By Northeast Regional Stock Assessment Workshop No. 34.] April 2002.

02-08 Description of the 2001 Oceanographic Conditions on the Northeast Continental Shelf. By M.H. Taylor, C. Bascuñán, and J.P. Manning. May 2002.

02-09 A Compilation of Reported Fish Kills in the Hudson-Raritan Estuary during 1982 through 2001. By R.N. Reid, P.S. Olsen, and J.B. Mahoney. July 2002.

02-10 Northeast Fisheries Science Center Publications, Reports, and Abstracts for Calendar Year 2001. By L. Garner and J.A. Gibson. August 2002.

02-11 Status of the Northeast U.S. Continental Shelf Ecosystem: A Report of the Northeast Fisheries Science Center's Ecosystem Status Working Group. By J.S. Link and J.K.T. Brodziak, editors, with contributions from (listed alphabetically) J.K.T. Brodziak, D.D. Dow, S.F. Edwards, M.C. Fabrizio, M.J. Fogarty, D. Hart, J.W. Jossi, J. Kane, K.L. Lang, C.M. Legault, J.S. Link, S.A. MacLean, D.G. Mountain, J. Olson, W.J. Overholtz, D.L. Palka, and T.D. Smith. August 2002.

02-12 Proceedings of the Fifth Meeting of the Transboundary Resources Assessment Committee (TRAC), Woods Hole, Massachusetts, February 5-8, 2002. By R.N. O'Boyle and W.J. Overholtz, TRAC co-chairmen. [A report of Transboundary Resources Assessment Committee Meeting No. 5]. September 2002.

02-13 Report of the 35th Northeast Regional Stock Assessment Workshop (35th SAW): Public Review Workshop. [By Northeast Regional Stock Assessment Workshop No. 35.] September 2002.

02-14 Report of the 35th Northeast Regional Stock Assessment Workshop (35th SAW): Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. [By Northeast Regional Stock Assessment Workshop No. 35.] September 2002.

02-15 Report of the Workshop on Trawl Warp Effects on Fishing Gear Performance, Marine Biological Laboratory, Woods Hole, Massachusetts, October 2-3, 2002. [By Workshop on Trawl Warp Effects on Fishing Gear Performance, Marine Biological Laboratory, Woods Hole, Massachusetts, October 2-3, 2002.] October 2002.

Assessment of 20 Northeast Groundfish Stocks through 2001

A Report of the
Groundfish Assessment Review Meeting (GARM), Northeast Fisheries Science Center, Woods Hole, Massachusetts, October 8-11, 2002

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Northeast Region
Northeast Fisheries Science Center
Woods Hole, Massachusetts

Northeast Fisheries Science Center Reference Documents

This series is a secondary scientific series designed to assure the long-term documentation and to enable the timely transmission of research results by Center and/or non-Center researchers, where such results bear upon the research mission of the Center (see the outside back cover for the mission statement). These documents receive internal scientific review but no technical or copy editing. The National Marine Fisheries Service does not endorse any proprietary material, process, or product mentioned in these documents.

All documents issued in this series since April 2001, and several documents issued prior to that date, have been copublished in both paper and electronic versions. To access the electronic version of a document in this series, go to http://www.nefsc.noaa.gov/nefsc/publications/series/crdlist.htm. The electronic version will be available in PDF format to permit printing of a paper copy directly from the Internet. If you do not have Internet access, or if a desired document is one of the pre-April 2001 documents available only in the paper version, you can obtain a paper copy by contacting the senior Center author of the desired document. Refer to the title page of the desired document for the senior Center author's name and mailing address. If there is no Center author, or if there is corporate (i.e., non-individualized) authorship, then contact the Center's Woods Hole Laboratory Library (166 Water St., Woods Hole, MA 02543-1026).

This document may be cited as:
[Northeast Fisheries Science Center.] 2002. Assessment of 20 Northeast groundfish stocks through 2001: a report of the Groundfish Assessment Review Meeting (GARM), Northeast Fisheries Science Center, Woods Hole, Massachusetts, October 8-11, 2002. Northeast Fish. Sci. Cent. Ref. Doc. 02-16. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026.

Table of Contents

Page
Executive Summary v
Section 1 Introduction 1
1.1 Introduction 1
1.2 Terms of Reference 2
1.3 Participants 3
1.4 Assessed Stocks 4
1.5 Overview 5
1.6 Acknowledgements 9
1.7 References 9
Section 2 Stock Assessments 11
A. Georges Bank Cod 12
B. Georges Bank Haddock 36
C. Georges Bank Yellowtail Flounder 60
D. Southern New England Yellowtail Flounder 83
E. Cape Cod Yellowtail Flounder 104
F. Gulf of Maine Cod 123
G. Witch Flounder 146
H. American Plaice 171
I. Georges Bank Winter Flounder 195
J. Southern New England/Mid Atlantic Winter Flounder 208
K. White Hake 234
L. Pollock 249
M. Acadian Redfish 265
N. Ocean Pout 275
O. Gulf of Maine/Georges Bank Windowpane Flounder 283
P. So. New England/Mid-Atlantic Windowpane Flounder 288
Q. Mid-Atlantic Yellowtail Flounder 293
R. Gulf of Maine Haddock 298
S. Atlantic Halibut 306
T. Gulf of Maine Winter Flounder 314
Section 3 Examination of Possible Trawl Survey Time-Series Interventions Beginning in 2000 329
3.1 Description of Warp Offset Problem 329
3.2 Frequency of Damaged Bottom Trawl Gear in NEFSC Surveys 337
3.3 Evaluation of Fish Size in Relation to Offsets 347
3.4 Evaluation of Gear Mensuration Data from the R/V Albatross IV Trawl Warp Offset Experiment 352
3.5 Models to Evaluate Changes in Relative Efficiency 358
3.6 Mean versus.Variance Relationships 361
3.7 Chenges in Observed Depth Distribution 382
3.8 Changes in Abundance Indices Pre- and Post Warp Intervention 431
3.9 Trends in Relative Fishing Power for NEFSC Bottom Trawl Surveys During 2000-2002 434
3.10 VPA Performance 450
3.11 Comparative Fishing Power Studies - Albatross IV and Delaware II 452
Section 4 GARM Summary Comments on Evidence for Interventions in Trawl Survey Data beginning in 2000 457
Section 5 Summary of Assessments and Management Implications 461
5.1 Summary of Assessments 461
5.2 Sensitivity of Stock Assessment Calculations to Potential Warp Offsets 467
5.3 Consistency of NMFS Bottom Trawl Survey Data 470
Section 6 Comments and Recommendations 473
6.1 Projections 473
6.2 Use of Exploitation Ratios 474
6.3 Quality of Catch-at-Age Sampling 475
6.4 Recommendations 478
Appendices
A1 Comments by Reviewers from the Center for Independent Experts 479
A2 Additional Information on Trawl Warp Offset Analyses 510
List of Tables 513
List of Figures 517

Executive Summary

The Groundfish Assessment Review Meeting (GARM) is a regional peer review process developed this year to provide assessment updates for the 20 stocks managed under the Northeast Multispecies Fishery Management Plan (Multispecies FMP). The meeting occurred during October 8-11, 2002, in Woods Hole, Massachusetts. The terms of reference were to:
(a) provide updated catch information (landings and discards, where appropriate) for the stocks to be assessed. Catch-at-age data (based on port sampling) will be estimated, where applicable,
(b) provide updated research vessel survey indices (through spring 2002) for all appropriate survey series, including NMFS spring and autumn series, Canadian series, and state surveys,
(c) estimate 2001 fishing mortality rates (or appropriate proxies) for all 20 stocks, and provide estimates of 2001 stock sizes and measures of uncertainty,
(d) evaluate stock status relative to applicable biological reference points ($\mathrm{F}_{\mathrm{MSY}}$ and $\mathrm{B}_{\mathrm{MSY}}$),
(e) provide updated estimates of F-Rebuild (the fishing mortality rate required to rebuild biomasses to $\mathrm{B}_{\text {MSY }}$ by 2009) for all applicable stocks,
(f) evaluate and comment on the potential sensitivity of assessment results to trawl warp marking discrepancies that occurred in bottom trawl surveys conducted between winter 2000 and spring 2002.

Initial stock assessments were developed by the Northern and Southern Demersal Working Groups of the Stock Assessment Workshop (SAW), and the ASMFC Winter Flounder Technical Committee. These working groups and the Technical Committee met at various times before the GARM meeting to develop draft assessment documents. Additionally, work related to the trawl warp offset issue was coordinated through the SAW Assessment Methods Working Group.

Most stock assessments reviewed at the GARM were routine updates of assessments previously reviewed in the SAW or elsewhere. However, the Gulf of Maine winter flounder assessment was newly developed (by the ASMFC Technical Committee), and is scheduled to be peer reviewed at SAW 36 (December 2002). Accordingly, the details of the analytical stock assessment modeling are not incorporated herein, pending that "benchmark" review. The results are, however, summarized (Table 1; Figure 1), and input data are presented and evaluated.

The GARM meeting incorporated peer reviews by both regional stock assessment scientists (both NMFS and non-NMFS people) and external experts. The Center for Independent Experts (CIE, University of Miami) provided two individuals for the meeting. The roles of the CIE
experts were to comment on analyses presented at the GARM, and to provide written critiques; attached as appendices to this report.

Stock Assessment Results

Results of the stock assessment updates are summarized as fishing mortality rates and biomasses in 2001, relative to management reference points (Table 1; Figure 1). Of the 19 stocks for which 2001 fishing mortality (or its proxy) can be estimated, 10 were fished below F-MSY in 2001, and 9 above. Additionally, the biomass of eight of the stocks was at or above $1 / 2$ B-MSY, while 12 stocks were below their biomass thresholds. Stock biomasses have improved in 19 of the 20 stocks since 1995 (the exception being Mid-Atlantic yellowtail flounder), with a median percent increase in biomass for all stocks of 177% (range: -33 to 2430 percent). Landings of the complex of 20 groundfish stocks have increased by 40% since 1995, primarily driven by increases from four Georges Bank stocks (haddock, yellowtail flounder, cod and winter flounder). Fishing mortality (F) rates declined for 15 of 19 stocks between 1994 and 2001. In the case of Georges Bank yellowtail flounder, F has declined by about 90% since the mid-1990s. Numerous other stocks have experienced reductions in F of 20-50\%, including Georges Bank and Gulf of Maine cod, Georges Bank haddock, witch flounder and American plaice. For several of the stocks where harvest rates are measured by landings to survey biomass ratios (exploitation index methods), relative Fs have been reduced by 50% or more (e.g., Gulf of Maine haddock, pollock and windowpane flounder). The four stocks showing increases in F since 1994 were Cape Cod and Mid-Atlantic yellowtail flounder, white hake and Southern New England/Mid-Atlantic winter flounder.

Two stocks continue to have extremely high fishing mortality rates (Mid-Atlantic yellowtail flounder and Cape Cod yellowtail flounder). In the former case, assessment scientists will present analyses to SARC 36 recommending that the Mid-Atlantic and Southern New England yellowtail resources be combined. The case of Cape Cod yellowtail flounder remains enigmatic, in that the apparent mortality rates on the stock remain exceptionally high despite the reductions in F seen in co-occurring stocks (e.g., Gulf of Maine cod, and winter flounder). The GARM recommended additional biological studies, including tagging, to better understand the relationships between Cape Cod yellowtail and adjacent stocks of the same species.

For the remaining seven stocks where fishing mortality exceeded F-MSY, the average reduction necessary to reach that level was 52\% (range: 37\% for Southern New England/Mid-Atlantic winter flounder to 64% for witch flounder). Fishing mortality rates on the two cod stocks were below those projected based on 2000 assessment results Maximum fishing mortality rates necessary to rebuild the stocks to B-MSY by the target dates (2009 for most stocks) were computed using medium-term projection methodologies. The percent reductions in F necessary to achieve B-MSY by the target dates varied by stock and were primarily dictated by the strength of incoming recruitment. For Gulf of Maine cod, F in 2001 declined, but F-rebuild also declined despite the presence of a strong 1998 year class, because of below average recruitment in 1999 and a poor 2000 year class.

Short-term projections of target TACs for the 2003-2004 fishing year and medium-term projections for calculating F-Rebuilds assumed that F in 2002 (calendar year) would be 85% of that in 2001, based on assumptions provided by the Multispecies Plan Development Team (PDT).

Evidence for Interventions in Trawl Survey Data Due to Warp Offsets

The GARM reviewed the results of a series of 10 different studies to evaluate evidence for an intervention in the NMFS trawl survey data associated with the use of mis-calibrated trawl warps (the wire ropes attaching the trawl doors to the vessel). There were eight affected surveys (winter 2000, 2001 and 2002; spring 2000, 2001 and 2002; and fall 2000 and 2001). Information collected from dockside warp measurements indicated that the warp mis-calibration was related to the initial biased marking of the 50 meter intervals on one warp and was not due to progressive wire stretch. Therefore, the degree of intervention was thought to be approximately equal in all surveys since winter 2000.

Information on the potential effects of the warp offset on trawl survey performance evaluated by the GARM included studies of rates of gear damage over time, calculations of trawl geometry as a function of the warp offsets, by depth; patterns in mean/variance relationships in trawl survey catch data by stock, and depth-at-capture information from pre- and post-warp misaligned cruises. Additionally, the GARM evaluated trends (directional changes from year-to-year) in abundance measures before and after the warp mis-marking. The results from side-by-side trawling experiments conducted by the Albatross and Delaware to estimate their relative fishing power, conducted before and after the warp mis-marking on the Albatross were also considered. Standardized catch-rates from surveys conducted with mismatched warps were compared to survey CPUEs from surveys with comparable spatial and temporal coverage, and unaffected by the problem (e.g., Canadian trawl surveys and USA sea scallop surveys). The GARM also examined evidence for differences in length distributions from survey catches pre- and post warp offset by evaluating the relative size composition in Canadian and USA spring surveys in overlapping survey areas (e.g. eastern Georges Bank). Monkfish size composition data collected on industry-based surveys and the winter 2001 Albatross survey were also compared, as were length compositions with data obtained in side-by-side trawling of the Albatross and Delaware in spring 2002.

The GARM examined information on wing-spread and headrope height measurements from experimental warp offsets as presented at the Trawl Warp Workshop conducted during October 2-3, 2002. These data were collected during the September 25-27 warp experiment. Additionally, the GARM examined video information collected in that same experiment.

It was postulated by gear experts at the Trawl Warp Workshop that the warp offset would induce changes in gear efficiency resulting from the "long" trawl wing being more prone to damage (as it would be potentially more susceptible to hang-ups). The GARM found no significant change in the frequency of trawl tows experiencing minor or major damage associated with the warp offset as compared to previous surveys.

It was postulated at the Trawl Warp Workshop that one effect of misaligned warps might be the differential loss of large fish in survey catches. Based on examinations of size distributions of cod and haddock, not only was there little difference in the proportions of large fish but there was little apparent difference in the entire size frequency, by survey series, of these stocks preand post-warp offset in comparisons of USA and Canadian survey series in areas they overlap (northeast Georges Bank). The small relative differences in USA mean length distributions of cod and haddock for the three years before and three years after the warp offset were similar to the differences in the Canadian series in pre- and post-warp periods. Differences in the size composition of large monkfish between industry and Albatross winter surveys were minimal. Size compositions from Albatross-Delaware paired towing experiments in spring 2002 also indicated no loss of large fish due to the Albatross warp mis-marking.

Trawl mensuration data indicate that wing spread and head rope height did not vary appreciably with offsets that occurred in depths where groundfish typically occur (warp offset up to about 9 feet), and the net remained open with warp offsets up to 18 feet. Consistent trawl performance within this range of warp offsets is supported by the absence of detectible effects as indicated by the other information reported herein. The GARM noted that catching efficiency might be related to other factors such as bottom contact by the foot rope and vibrations associated with the offset gear. Video information on the former was equivocal (as concluded at the Trawl Warp Workshop where some participants thought the foot rope contact changed with offsets while others did not). Measurements on vibrations and pressure waves in relation to warp offsets were not made.

Calculations based on geometry of the trawl in the offset condition (a worst-case scenario) and the postulated increase in the potential problem in relation to species catches-at-depth indicate that reductions on the order of 50% in trawl survey catches are implausible.

It was postulated by the GARM that if there were a trawl warp effect, more variable catches might result from a misaligned net, influencing the relationship between the variance and the mean. Empirical plots of catch data indicated no apparent differences in the variance compared to mean relationships for the species examined, and plots of the coefficient of variation (standard deviation divided by the mean) of catches in numbers by survey stratum over time showed no obvious differences pre- and post warp offsets.

Since the warp offset increased proportionally with depth, it was postulated that if the catch efficiency of the trawl decreased accordingly, then this would result in a shallower apparent depth of capture for the deeper-dwelling species in the post-offset period as compared with the pre-offset surveys. There were no detectable differences in the catch-weighted depth of capture of any species examined relative to the warp offset, however (Figure 2).

There was no evidence for a trend in the direction of abundance index changes associated with the warp offset, when comparing pairs of adjacent years. For each pair of years (e.g., 1998 vs. 1999,1999 vs. 2000, etc.), the direction of the abundance index change was evaluated. While the evaluation of the changes in abundance indices is potentially confounded by underlying changes in resource abundance, the number of stock/index combinations showing positive
increases in abundance was virtually identical between 1998-1999 and 1999-2000 (when the intervention was made). The abundance indices for the deepest dwelling stocks did not show differential reductions between years pre- and post-warp offsets.

Albatross trawl survey data were compared to independent surveys conducted by other vessels (e.g. Canadian trawl survey and sea scallop dredge surveys aboard Albatross but using a single warp). The frequency of species showing positive relative changes in abundance in Albatross surveys was nearly the same in the three years before (50%) and the three years after (54%) the warp change. For all species, the relative fishing power of Albatross post-warp change was slightly, but not statistically significantly, greater than the comparison vessels.

In examining the stock assessments, there was no obvious improvement in VPA residual patterns (e.g., reduced serial correlation) or tightness of the fit when trawl survey catches were arbitrarily increased by $10 \%, 25 \%$ and 100%. In fact, VPA model fits showed, on average, a 4% decrease in model fit when survey indices in 2000-2002 were arbitrarily increased by 100%. Similarly, retrospective patterns that occur in some VPA models persisted even with the arbitrarily increased survey catches. The stock assessment models integrate catch-at-age information and the full time series from the surveys, thereby damping the influence of variation in recent survey indices.

Fishing power studies were conducted between the Albatross and the Delaware in 2002 (after the warp change on the Albatross) and in 1982, 1983, and 1988. Estimates of fishing power coefficients (ratio of Albatross to Delaware catches) were similar between vessels in experiments before and after the warp change on the Albatross IV (Figure 3). There was only one statistically significant change in this ratio after the warp change in 10 species examined. In this one case, the ratio of Albatross to Delaware catch of yellowtail flounder increased between the 1980s and 2002. These paired comparison tests (although not intended for that purpose at the time) provide a robust means to test the warp effects (and include any other systematic changes in the fishing system since 1988). Specifically, because these paired trawl studies were conducted simultaneously before and after the warp offset they are not confounded by underlying changes in the abundance of the groundfish stocks. Based on information from 2002, the catch ratio test can detect differences of between 12% and 35%, depending on species. Therefore hypothesized large reductions (greater than 40-50\%) in catchability of the Albatross survey during the period of the warp offset are highly unlikely. For all species combined, the ratio of Albatross-Delaware catches was 0.88 before the warp offset and 0.91 after, suggesting negligible change.

Based on the evidence cited above, there is no indication of a systematic reduction in trawl survey fish catch efficiency due to the trawl warp offsets.

Sensitivity of Stock Assessment Calculations to Potential Warp Offsets

Given the absence of measurable intervention effects associated with the warp offsets, the GARM endorsed the nominal assessment calculations as the basis for management decisionmaking. However, in order to examine the robustness of the management advice to potential
variations in the survey catches, the GARM also carried out a series of sensitivity analyses examining survey catchability.

Sensitivity runs conducted for the various assessments included arbitrary increases in trawl survey catches for affected surveys of $10 \%, 25 \%$ and 100%. The first two scenarios consider decreases in survey catch rates that are at or below the limits of detection of the analyses of offset effects carried out at the GARM. The 100% increase is not supported by results of analyses carried out at the meeting, the increase is only included for illustrative purposes. An effect of this magnitude would likely have been detectable in the various exploratory data analyses. It should be noted that these arbitrary increases in survey catches were used in assessment calculations across all species, including those found in shallow depths (and thus less likely to be negatively influenced by warp offsets, e.g., yellowtail flounder, winter flounder, windowpane flounder).

The confidence intervals from the $+10 \%$ and $+25 \%$ sensitivity runs overlapped the nominal assessment results for all stocks, thus changes of this magnitude have no statistically significant impact on estimates of F and SSB. The stock assessment models integrate unaffected catch information from commercial and recreational fisheries and the full time series from the research vessel surveys, reducing the influence of variations in recent survey indices.

In only three of 20 stocks did the qualitative status determination for overfished (i.e., $\mathrm{B}<1 / 2 \mathrm{~B}$ MSY) change from overfished to not overfished by adding arbitrary increases in survey abundance indices (Table 2). In two cases (American plaice, and Gulf of Maine haddock), the stocks were near $1 / 2$ BMSY based on nominal assessment results. In these cases the hypothesized 10% increases in survey catches were sufficient to change biomass status determination. Of the 18 other cases, arbitrary increases in recent survey catches of 100% changed only the biomass status for white hake (from overfished to not overfished).

The status determination with respect to overfishing (fishing mortality rate) did not change under this sensitivity analysis in 19 of 20 stocks. The only instance of a change from 'overfishing' to 'not overfishing' was for Southern New England yellowtail flounder under the assumption of a 100% increase in survey catchability.

The overall management advice is robust to variations in recent survey catch rates.

Recommendations

The GARM evaluated the level of port sampling used for catch-at-age estimation for all stocks assessed with age-based models. Port sampling provides samples of the length distribution of landings (by market category), and sub-samples for age determination. Overall, the level of port sampling increased in 2000 and 2001 as compared to previous years, in some cases substantially. For example, for several of the most important stocks (Georges Bank and Gulf of Maine cod, Georges Bank and Southern New England yellowtail flounder), the numbers of samples/lengths/ages obtained from the ports in recent years were as follows:

	1999			2000			2001		
Stock	Samples	Lengths	Ages	Samples	Lengths	Ages	Samples	Lengths	Ages
GM Cod	15	1305	350	61	4687	1300	113	7326	2436
GB Cod	68	5987	1503	155	12219	2951	108	8389	2389
GB YTF	11	3066	300	11	3678	605	30	3768	814
SNE YTF	9	834	333	28	1146	984	18	1454	1224

Sustaining relatively high levels of port sampling is considered a priority for these assessments.
The GARM considered short-and medium-term projection methodologies used to estimate target TACs and F-rebuild. In general, it was concluded that all sources of uncertainty are not adequately addressed in such projections, and the GARM recommended a retrospective analysis to evaluate the performance of past projections.

The GARM was concerned about the adequacy of sea sampling to estimate discarded portions of the catch-at-age. Increased sea sampling coverage, initiated in 2002, should allow more precise estimation of discards for inclusion in catch at age estimates.

Numerous recommendations and comments pertaining to individual assessments are provided in the stock-specific chapters of the report.

Table 1. Summary of fishing mortality rate and biomass status for 20 Northeast groundfish stocks in 2001. Projections of maximum F to achieve B-MSY (F-Rebuild) assume F in $2002=0.85 * \mathrm{~F}$ in 2001, and stocks should be rebuilt by 2009, unless otherwise noted.

Species	Stock	F-MSY	F-2001	$\% \text { F }$ Reduction to achieve F-MSY	F-Rebuild	$\% \text { F }$ Reduction to achieve F-Rebuild	$\begin{aligned} & \text { B-MSY } \\ & \text { (‘000 mt) } \end{aligned}$	$\begin{gathered} \text { B-2001 } \\ \text { (‘000 mt) } \end{gathered}$	$\begin{gathered} \text { B-2001 } \\ \text { \% of } \\ \text { B-MSY } \end{gathered}$
Cod	GM	0.23	0.47	51	0.11	76	82.8	22.0	27
	GB	0.18	0.38	53	0.15*	61	216.8	29.2	14
Haddock	GM	0.23+	0.12	none	0.20	none	22.17\#	10.31	47
	GB	0.26	0.22	none	0.20	10	250.3	74.4	30
Yellowtail	CC	0.21	1.97	89	0.12	94	8.4	1.9	23
	GB	0.25	0.13	none	0.22	none	58.8	38.9	66
	SNE	0.27	0.46	41	0.10**	78	45.2	1.9	4
	MA	0.33+	2.17	85	0.30	86	12.91\#	0.21	2
Witch Flounder		0.16	0.45	64	-	none	19.9	11.3	57
American Plaice		0.17	0.43	60	0.10	77	28.6	13.8	48
Winter Flounder	GM	0.26	0.14	none	-	none	5.4	5.37	99
	GB	0.32	0.25	none	-	none	9.4	9.8	104
	SNE-MA	0.32	0.51	37	0.12	76	30.1	7.6	25
White Hake		0.55+	1.36	60	0.50	63	7.70\#	2.35	31
Pollock		5.88+	3.55	none	4.83	none	3.0\#	1.60	53
Redfish		0.04	0.01	none	0.01***	none	236.7	119.6	51
Ocean Pout		0.31+	0.007	none	n/a	n/a	4.90\#	2.46	50
Windowpane	Northern	1.11+	0.1	none	-	none	0.94\#	0.79	84
	Southern	0.98+	0.69	none	0.73	none	0.92\#	0.21	23
Atlantic Halibut		0.06	unknown	unknown	unknown	unknown	5.4	0.2	4

+ = fishing mortality rate proxy is catch divided by the survey abundance index
\# = biomass target based on survey abundance index
* = rebuilding period is 2019 for GB cod
** = the SNE YT stock cannot be rebuilt to long-term biomass target by 2009 even if $\mathrm{F}=0.0$ (using recruitment from last 10 years)
*** $=$ rebuilding period is 2051 for redfish

Table 2. Summary of status determinations for 20 New England groundfish stocks. Sensitivity of status determination to arbitrary increases in trawl survey abundance indices for 2000 to spring 2002 are given for three levels of increase $(+10 \%,+25 \%$ and $+100 \%)$. Overfishing refers to the current fishing mortality rate relative to F-MSY. Overfished refers to the current biomass relative to B-MSY. Asterisks $\left(^{*}\right.$) indicate cases where the 80% bootstrap confidence interval for a particular criterion does not overlap that from the nominal assessment run. Shaded cells are where status determination changes from the nominal assessment when survey catch data are increased. SSB is spawning stock biomass, TSB is total stock biomass.

Species	Stock	Status Criterion	Nominal Status	Status +10\%	Status +25\%	Status +100\%
Atlantic Cod	Gulf of Maine	F	overfishing	overfishing	overfishing	overfishing
		SSB	overfished	overfished	overfished	overfished *
	Georges Bank	F	overfishing	overfishing	overfishing	overfishing *
		SSB	overfished	overfished	overfished	overfished *
Haddock	Gulf of Maine	F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	overfished	not overfished	not overfished	not overfished
	Georges Bank	F	no overfishing	no overfishing	no overfishing	no overfishing
		SSB	overfished	overfished	overfished	overfished *
Yellowtail Flounder	Cape Cod	F	overfishing	overfishing	overfishing	overfishing
		SSB	overfished	overfished	overfished	overfished
	Georges Bank	F	no overfishing	no overfishing	no overfishing	no overfishing *
		SSB	not overfished	not overfished	not overfished	not overfished *
	S. New England	F	overfishing	overfishing	overfishing	no overfishing *
		SSB	overfished	overfished	overfished	overfished *
	Mid-Atlantic	F	overfishing	overfishing	overfishing	overfishing
		TSB	overfished	overfished	overfished	overfished
Witch Flounder		F	overfishing	overfishing	overfishing	overfishing *
		SSB	not overfished	not overfished	not overfished	not overfished *
American Plaice		F	overfishing	overfishing	overfishing	overfishing
		SSB	overfished	not overfished	not overfished	not overfished *

Table 2 (continued).

Species	Stock	Criterion	Nominal	+10\%	+25\%	+100\%
Winter Flounder	Gulf of Maine	F	no overfishing	no overfishing	no overfishing	no overfishing
		SSB	not overfished	not overfished	not overfished	not overfished
	Georges Bank	F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	not overfished	not overfished	not overfished	not overfished
	S. New England-Mid-Atlantic	F	overfishing	overfishing	overfishing	overfishing *
		SSB	overfished	overfished	overfished	overfished *
White Hake		F	overfishing	overfishing	overfishing	overfishing
		SSB	overfished	overfished	overfished	not overfished
Pollock		F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	not overfished	not overfished	not overfished	not overfished
Acadian Redfish+		F	no overfishing	no overfishing	no overfishing	no overfishing
		SSB	not overfished	not overfished	not overfished	not overfished
Ocean Pout		F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	Not overfished	not overfished	not overfished	not overfished
Windowpane Flounder	Northern	F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	not overfished	not overfished	not overfished	not overfished
	Southern	F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	overfished	overfished	overfished	overfished
Atlantic Halibut		F	unknown	unknown	unknown	unknown
		SSB	overfished	overfished	overfished	overfished

$+=$ Assessment models were not updated for Acadian redfish
unknown $=$ estimates of F or proxy are not available for Atlantic halibut

Groundfish Stock Status - 2001

Figure 1. Fishing mortality rate (F) and biomass status of 19 groundfish stocks managed under the Northeast Multispecies FMP. Fishing mortality and biomass in 2001 are expressed as a proportion of F-MSY and B-MSY.Status determination statements are given for each quadrant: overfishing refers to fishing mortality greater that F-MSY; overfished refers to biomasses < $1 / 2 \mathrm{~B}-\mathrm{MSY}$.

Median Catch-Weighted Average Depths: '63-99 v '00-02

Figure 2. Median catch-weighted depth at capture of various groundfish species in NMFS bottom trawl surveys pre and post trawl warp offset problems. The amount of warp offset, as measured dockside, is also given. Note that most catches of these species are made in depths where the offset was less than about 9 feet. The box plots give the median value surrounded by the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of the distributions of depths of occurrence.

Paired Tow Experiments

Figure 3. Results of side-by-side tows made by NOAA R/Vs Albatross IV and Delaware II in paired towing in the 1980s and 2002. Data are mean and 95% confidence intervals of the ratio (Albatross to Delaware) of catch rates by species. In only one case (yellowtail flounder) was there a significant change between time periods, and that difference was a positive change in the post warp period.

Section 1

1.1 Introduction

The Groundfish Assessment Review Meeting (GARM) is a regional peer review process developed this year to provide assessment updates for the 20 stocks managed under the Northeast Multispecies Fishery Management Plan (Multispecies FMP). The meeting occurred during October 8-11, 2002, in Woods Hole, Massachusetts.

The GARM is distinct from the Northeast Stock Assessment Review Committee (SARC) process, which produces "benchmark" stock assessments and related management advice. The purpose of the GARM was to provide assessment updates, using existing model formulations and data sources.

The goals of the GARM were to provide peer review of assessment updates, summarize stock status for individual components and the resource as a whole, and provide estimates of adjustments in fishing mortality rates, as necessary, to achieve biological reference points. The GARM also reviewed the results of data exploration studies for evidence of changes in trawl survey efficiency associated with trawl warps that were misaligned on the NOAA R/V Albatross IV on trawl surveys occurring from winter 2000 to spring 2002. Last, the GARM provided numerous comments and recommendations regarding specific stock assessments and generic data collection and analysis procedures.

Background and History

In the Northeast region, stock assessments are peer reviewed through the Northeast Regional Stock Assessment Workshop (SAW) process. The SAW provides for a thorough review of new or revised assessment methodology over a cycle, for any one stock, that is two to five years long. In addition, the transboundary Georges Bank stocks of cod, haddock and yellowtail flounder are jointly assessed by Canadian and US scientists at regular meetings of the Transboundary Resource Assessment Committee or TRAC. Since the SAW and TRAC cannot reassess every stock every year, the assessment peer review process also includes more frequent stock assessment updates to ensure that management actions are based on the most recent status information available.

There are 12 species of groundfish, comprising 20 distinct stocks, managed under the New England Fishery Management Council's Northeast Multispecies Fishery Management Plan (Groundfish FMP). The status of all the stocks in the complex was updated in 1999 and again in 2000 to provide current status information relevant to annual management adjustments. (Northern and Southern Demersal SAW Working Groups, 1999, Assessment of 19 Northeast Groundfish Stocks through 1999; Northern and Southern Demersal SAW Working Groups, 2000, Assessment of 19 Northeast Groundfish Stocks through 2000).

In March of this year, partly in response to a Federal court request for re-evaluation of current stock reference points, a special panel was convened to update reference points for all the stocks in the complex and to determine the fishing mortality rate that would provide for stock recovery (to the biomass target) by 2009 ($\mathrm{F}_{\text {REBUILD }}$; NEFSC 2002a). The most recent data available to the Working Group, however, was through 2000 (augmented by some 2001 survey indices), now a year old. Since the New England Council is finalizing actions on a major amendment to the Groundfish FMP (Amendment 13) which would readjust management measures so as to attain biomass targets by 2009 , it was necessary to update the groundfish assessments through 2001.

In September of this year the NEFSC found that the marks on the wire ropes attaching scientific survey gear to the vessel were not at true 50 m length intervals they are intended to indicate. The marks are used by the vessel crew to determine how much towing wire is deployed. The warps were most recently replaced in February 2000, and used in eight bottom trawl surveys, beginning with Winter 2000 and ending with Spring 2002.

Since the mis-measured warps may have affected survey catchability, two additional sets of analyses are included in the GARM report: analysis of the sensitivity of assessment results to hypothesized increases of $10 \%, 20 \%$ and 100% in abundance indices; and, as an independent study, 10 separate analyses of trawl survey data to determine whether or not the mis-marking could be detected via comparative analysis of existing survey data.

1.2 Terms of Reference

Terms of reference for the meeting were:
(a) provide updated catch information (landings and discards, where appropriate) for the stocks to be assessed. Catch-at-age data (based on port sampling) will be estimated, where applicable,
(b) provide updated research vessel survey indices (through spring 2002) for all appropriate survey series, including NMFS spring and autumn series, Canadian series, and state surveys,
(c) estimate 2001 fishing mortality rates (or appropriate proxies) for all 20 stocks, and provide estimates of 2001 stock sizes and measures of uncertainty (see Section 2),
(d) evaluate stock status relative to applicable biological reference points ($\mathrm{F}_{\text {MSY }}$ and $\mathrm{B}_{\mathrm{MSY}}$; Section 2),
(e) provide updated estimates of F -Rebuild (the fishing mortality rate required to rebuild biomasses to $\mathrm{B}_{\mathrm{MSY}}$ by 2009) for all applicable stocks (Section 2),
(f) evaluate and comment on the potential sensitivity of assessment results to trawl warp marking discrepancies that occurred in bottom trawl surveys conducted between winter 2000 and spring 2002 (Sections 3-5).

1.3 Participants

The following individuals participated in some or all of the GARM (October 8-11, 2002):

External -

Steven Correia -Massachusetts Division of Marine Fisheries
Chris Darby - Center for Independent Experts (United Kingdom, England)
Joe Hunt - Department of Fisheries and Oceans (Canada)
Jon Helge Volstad - Center for Independent Experts (Maryland)
Chris Kellogg - New England Fishery Management Council
Chad Demerest - New England Fishery Management Council
NEFSC -
Frank Almeida
Jon Brodziak
Steve Cadrin
Laurel Col
Dvora Hart
Lisa Hendrickson
Larry Jacobson
Chris Legault
Ralph Mayo (Chair, Northern Demersal WG)
Steve Murawski (Meeting Chair)
Paul Nitschke
Loretta O'Brien
Paul Rago (Chair, Assessment Methods WG)
Anne Richards
Fred Serchuk
Gary Shepherd
Kathy Sosebee
Mark Terceiro (Chair, Southern Demersal WG)
Michele Thompson
Susan Wigley
Jim Weinberg
Additionally, the following individuals participated in the ASMFC Winter Flounder Technical Committee Meeting (September 24-25) which supplied Southern New England and Gulf of Maine winter flounder assessments for consideration at the GARM:

Jay Burnett NEFSC
Steve Cadrin NEFSC
Steve Correia MADMF, Chair
Laura Lee ASMFC, RIDMF
Chris Legault NEFSC
Anne Mooney NYDEC
Lydia Munger ASMFC
Paul Nitschke NEFSC
Sally Sherman MEDNR
David Simpson CTDEP
Kathy Sosebee NEFSC
Mark Terceiro NEFSC
Susan Wigley NEFSC

1.4 Assessed Stocks

The GARM reviewed the status of 20 fishery stocks included as the large mesh species complex in the Northeast Multispecies Fishery Management Plan (FMP). Earlier assessment reviews for this species complex (e.g., NEFSC 2001) had included 19 stocks, since the status of Gulf of Maine winter flounder had never before been assessed. Stocks considered at this meeting (and letter designations of order in the report) are:
A. Georges Bank Cod
B. Georges Bank Haddock
C. Georges Bank Yellowtail Flounder
D. Southern New England Yellowtail Flounder
E. Cape Cod Yellowtail Flounder
F. Gulf of Maine Cod
G. Witch Flounder
H. American Plaice
I. Georges Bank Winter Flounder
J. Southern New England/Mid Atlantic Winter Flounder
K. White Hake
L. Pollock
M. Acadian Redfish
N. Ocean Pout
O. Gulf of Maine/Georges Bank Windowpane
P. Southern New England/Mid-Atlantic Windowpane
Q. Mid-Atlantic Yellowtail Flounder
R. Gulf of Maine Haddock
S. Atlantic Halibut
T. Gulf of Maine Winter Flounder

1.5 Overview

Initial stock assessments were developed by the Northern and Southern Demersal Working Groups of the SAW (Stock Assessment Workshop), and the ASMFC Winter Flounder Technical Committee. These working groups and the Technical Committee met at various times before the GARM meeting to develop draft assessment documents. Additionally, work related to the trawl warp offset issue was coordinated through the Assessment Methods Working Group.

Most stock assessments reviewed at the GARM were routine updates of assessments previously reviewed in the SAW or elsewhere. However, the Gulf of Maine winter flounder assessment was newly developed (by the ASMFC Technical Committee), and is scheduled to be peer reviewed at SAW 36 (December 2002). Accordingly, the details of the analytical stock assessment modeling are not incorporated herein, pending that "benchmark" review. The results are, however summarized, and input data are presented and evaluated.

The GARM meeting incorporated peer reviews by both regional stock assessment scientists (both NMFS and non-NMFS people) and external experts. The Center for Independent Experts (CIE, University of Miami) provided two individuals for the meeting. The roles of the CIE experts were to comment on analyses presented at the GARM, and to provide written critiques, which are attached as appendices to this report.

Stock Assessment Results

Results of the stock assessment updates are provided as fishing mortality rates and biomasses in 2001, relative to management reference points (section 2). The biological reference points (F-MSY and B-MSY) are, in most cases, those proposed by the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish (NEFSC 2002a). In one case (white hake) the GARM rejected the analytical stock assessment results (based on an ASPIC surplus production model) and substituted an index-based assessment evaluation. Appropriate index-based reference points based on the replacement ratio method (NEFSC 2002a) are thus proposed for white hake (section $2-\mathrm{K})$. Additionally, no reference points have yet been proposed for the Gulf of Maine winter flounder stock, although the ASMFC Technical Committee's Report analyzes F40\% maximum spawning potential as a candidate for F-MSY, and considers B-MSY based on mean recruitment multiplied by spawning biomass-per-recruit at F-MSY (section 2-T).

Of the 19 stocks for which 2001 fishing mortality (or its proxy) can be estimated, 10 were fished below F-MSY in 2001, and 9 above. Additionally, the biomass of eight of the stocks was at or above $1 / 2$ B-MSY, while 12 stocks were below the threshold. Stock biomasses have improved in 19 of the 20 stocks since 1995 (the exception being MidAtlantic yellowtail), with a median percent increase in biomass for all stocks of 177% (range: -33 to 2430 percent). Landings of the complex of 20 groundfish stocks have
increased by 40% since 1995, primarily driven by increases from four Georges Bank stocks (haddock, yellowtail, cod and winter flounder). Fishing mortality (F) rates declined for 15 of 19 stocks between 1994 and 2001, with the median percent decline in F of 70% (range +48 to 95 percent). The four stocks showing increases in F since 1994 were Cape Cod and Mid-Atlantic yellowtail, white hake and Southern New England/MidAtlantic winter flounder.

Two stocks continue to have extremely high fishing mortality rates (Mid-Atlantic yellowtail flounder and Cape Cod yellowtail flounder). In the former case, SAW Working Groups will present analyses to SARC 36 recommending that the Mid-Atlantic and Southern New England yellowtail flounder resources be combined. The case of Cape Cod yellowtail flounder remains enigmatic, in that the apparent mortality rates on the stock remain exceptionally high despite the reductions in F seen in co-occurring stocks (e.g., Gulf of Maine cod, and winter flounder). The GARM recommended additional biological studies, including tagging, to better understand the relationships between Cape Cod yellowtail and adjacent stocks of the same species.

The percent reductions in F necessary to achieve B-MSY by the target dates varied by stock and were primarily dictated by the strength of incoming recruitment. Short-term projections of target TACs for the 2003-2004 fishing year and medium-term projections for calculating F-Rebuilds assumed that F in 2002 (calendar year) would be 85% of that in 2001, based on assumptions provided by the Multispecies Plan Development Team (PDT).

Evidence for Interventions in Trawl Survey Data Due to Warp Offsets

The GARM reviewed the results of a series of 10 different studies to evaluate evidence for an intervention in the NMFS trawl survey data associated with the use of miscalibrated trawl warps (sections 3 and 4). There were eight affected surveys (winter 2000, 2001 and 2002; spring 2000, 2001 and 2002; and fall 2000 and 2001). Information collected from dockside warp measurements indicated that the warp miscalibration was related to the initial biased marking of the 50 meter intervals on one warp and was not due to progressive wire stretch. Therefore, the degree of intervention was thought to be approximately equal in all surveys since winter 2000.

Information on the potential effects of the warp offset on trawl survey performance evaluated by the GARM included studies of rates of gear damage over time, calculations of trawl geometry as a function of the warp offsets, by depth, patterns in mean/variance relationships in trawl survey catch data by stock, and depth-at-capture information from pre- and post-warp misaligned cruises. The results of trawl warp offset experiments, including video and sensor data, presented at the Trawl Warp Workshop (NEFSC 2002b), were also considered. Additionally, the GARM evaluated trends (directional changes from year-to-year) in abundance measures before and after the warp mis-marking. The results from side-by-side trawling experiments conducted by the Albatross and Delaware vessels to estimate their relative fishing power, conducted before and after the warp mismarking on the Albatross were also considered. Standardized catch-rates from surveys
conducted with mismatched warps were compared to survey CPUEs from surveys with comparable spatial and temporal coverage, and unaffected by the problem (e.g., Canadian trawl surveys and USA sea scallop surveys). The GARM also examined evidence for differences in length distributions from survey catches pre- and post warp offset by evaluating the relative size composition from various sources.

Based on evidence reviewed from each of these 10 studies there was no indication of a systematic reduction in trawl survey catch efficiency due to the trawl warp offsets.

Sensitivity of Stock Assessment Calculations to Potential Warp Offsets

Given the absence of measurable intervention effects associated with the warp offsets, the GARM endorsed the nominal assessment calculations as the basis for management decision-making. However, in order to examine the robustness of the management advice to potential variations in the survey catches, the GARM also carried out a series of sensitivity analyses examining survey catchability (Section 5).

Sensitivity runs conducted for the various assessments included arbitrary increases in trawl survey catches for affected surveys of $10 \%, 25 \%$ and 100%. The results of these analyses are presented in each stock assessment section of this report (Section 2). Specifically, each assessment contains a "cross" plot, of the mean and 80% confidence intervals of the estimated 2001 F and biomass. The status determination levels (F-MSY and $1 / 2 \mathrm{~B}-\mathrm{MSY}$) are given in each cross plot as frames of reference. Four such crosses are computed for each stock, giving the nominal, $+10 \%,+25+$ and $+100 \%$ results (e.g., see Figure F6 for Gulf of Maine cod). The confidence intervals from the $+10 \%$ and $+25 \%$ sensitivity runs overlapped the nominal assessment results for all stocks, thus changes of this magnitude have no statistically significant impact on estimates of F and SSB. The stock assessment models integrate unaffected catch information from commercial and recreational fisheries and the full time series from the research vessel surveys, reducing the influence of variations in recent survey indices.

In only three of 20 stocks did the status determination for overfished (i.e., B-2001<1/2 BMSY) change from overfished to not overfished (Table 2). In two cases (American plaice, and Gulf of Maine haddock), the stocks were near $1 / 2$ BMSY based on nominal assessment results. In these cases the hypothetical 10% increases in survey catches were sufficient to change biomass status determination. Of the 18 other cases, arbitrary increases in recent survey catches of 100% (i.e., doubling the catch) changed only the biomass status for white hake.

In only one case (Southern New England yellowtail flounder) did the status determination regarding the overfishing criterion (fishing mortality rate) change with arbitrary increases in survey catches up to 100%. The overall management advice is thus robust to variations in recent survey catch rates.

Recommendations

The GARM participants considered a number of generic recommendations for improving stock assessments and associated management advice:

- Based on considerations outlined in section 6.1, a retrospective evaluation of the performance of stock projections used in support of management is recommended. Such an analysis could shed light on the utility of various recruitment assumptions and other sources of uncertainty in stock and landings projection approaches.
- Index methods for biomass and fishing mortality status determination are used for a number of the groundfish stocks for which age- or length-based catch and abundance information are lacking. The performance of these indices should be evaluated and uncertainty measures routinely incorporated in the determination of stock status.
- Port sampling for estimating landings-at-age is an important component of stock assessment. The overall levels of port sampling have increased since 1998, as landings have increased. Maintenance, and in some cases, improvement in the rates of sampling are required to ensure adequate levels of sampling for estimating the catch-at-age. Further, a simulation (re-sampling) study is recommended to evaluate the reliability of catch-at-age estimates in relation to the rates of sampling.
- Estimation of fishery discards remains problematic for these stocks, as the overall level of sea sampling prior to 2002 was low and variable by fishery type. Increased rates of sea sampling coverage (occurring in 2002) should allow a statistical evaluation of the reliability of discard estimates, and the development of target sampling rates in order to reliably estimate discard mortalities at age for inclusion in assessments.
- Some stocks might have sufficient age and length-based information to upgrade the assessment type from an index basis to an age structured assessment (e.g., Gulf of Maine haddock). Age-structured modeling, even with partial information, may improve the basis for status determination for these stocks, and these improvements should be investigated.
- The GARM considered a variety of studies, including comparative fishing experiments developed to evaluate ship effects, to understand better the potential for effects on survey indices owing to the warp offset issue. The GARM notes that in order to evaluate the warp offset issue more directly, appropriately designed experimentation with warp offset and warp aligned tows is considered the most direct method for testing.

Numerous recommendations and comments pertaining to individual assessments are provided in the stock-specific chapters of the report.

1.6 Acknowledgements

The GARM participants extend their appreciation to Mr. Edgar Kleindinst for technical support and in particular the set up and maintenance of the local area network that allowed for a near-paperless meeting environment. Mr. Henry Milliken provided video tape and narration for Albatross IV warp offset experiments. Ms. Colleen Close and Ms. Betty Holmes solved innumerable logistical difficulties to allow for the smooth running of the meeting. Additionally, the GARM appreciates the extraordinary efforts of the Working Groups, the ASMFC Technical Committee and other individuals involved in supplying information upon which these assessments and data summaries are based (e.g., aging information, research vessel survey abundance indices, port sampling and sea sampling, and landings data). Last, the GARM appreciates the support of Manoj Shivlani of the University of Miami's Center for Independent Experts, and Stephen Brown, NMFS Office of Science and Technology, for expediting the inclusion of additional external reviewers in the process.

1.7 References

NEFSC 2001. Assessment of 19 Northeast Groundfish Stocks through 2000: a report to the New England Fishery Management Council's Multi-Species Monitoring Committee. Northeast Fisheries Science Center Reference Document 01-20. 217 p.

NEFSC 2002a. Final report of the Working Group on re-evaluation of biological reference points for New England groundfish. Northeast Fisheries Science Center Reference Document 02-04. 123 p.

NEFSC 2002b. Report of the Workshop on Trawl Warp Effects on Fishing Gear Performance, 2-3 October, 2002, Woods Hole, MA. Northeast Fisheries Science Center Reference Document 00-15. 80 pp .

Section 2. Stock Assessments

A. Georges Bank Atlantic Cod - L. O'Brien, N. J. Munroe, and L. Col

1.0 Background

This stock was last assessed and peer reviewed in April 2001 (O’Brien and Munroe 2001; Transboundary Resources Assessment Committee 2001). Landings were 9,189 mt in 2000 and fully recruited F (ages 4-8, unweighted average) was estimated to be 0.22 in 2000, the lowest in the time series (1978-2000). Spawning stock biomass was 29,003 mt in 2000 and continued the increasing trend from the record low estimate of $19,233 \mathrm{mt}$ in 1994. Since 1991, recruiting year classes have all been below the long term average and the 1997 and 2000 year classes were the lowest in the time series. The NEFSC spring and autumn bottom trawl survey recruitment indices continued to remain near record low values. Autumn recruitment indices for age 2 fish from the 1994, 1995, 1996, 1997, and 1998 year classes were all below the time series (19632000) average. The most recent above-average autumn recruitment index occurred in 1993.

A benchmark assessment review was conducted by the TRAC in February 2002 (NEFSC 2002). Several recommendations were made by the TRAC to rectify the strong retrospective pattern in F. These included estimating the population sizes for ages 1-9 in the terminal year and for age 9 in the three years prior to the terminal year. For the remaining years, F on the oldest age (9) would be estimated as a weighted F of ages 7 and 8 . These recommendations will be addressed in the next assessment. The current assessment presented here is considered an update and the methodology has remained the same as used by the Working Group on Re-Evaluation of Biological Reference Points (NEFSC 2002).

2.0 Fishery

Total commercial landings of Georges Bank cod (Table A1, Figure A1) increased 39\% in 2001 to $12,769 \mathrm{mt}$. USA landings increased $40 \%(10,635 \mathrm{mt})$ and Canadian landings increased 36% $(2,134 \mathrm{mt})$ in 2001 (Table A1). Recreational landings were estimated at 550 mt in 2001, a decline of about 48% from 2000.

3.0 Research Surveys

NEFSC spring and autumn survey biomass and abundance indices fluctuated slightly during 2000 to 2002, and continue to remain below the long term average (Table A2, Figure A2-A3). The recruitment indices for age 1 and 2 from the 2001 NEFSC autumn bottom trawl survey were well below average (Table A3a). The Canadian spring survey index of abundance increased in 2002 but also is below the time series average (Figure A3, Table A3b).

4.0 Assessment

Input data and Analyses

The current assessment is an update assessment and employs the same VPA formulation as in the 2000 assessment (O'Brien and Munroe 2001). A slight variation from the previous assessment is that the number of surveys available as tuning indices in the terminal year increases from two to three since the USA 2002 spring survey was available at the time the assessment was conducted.

Catch at age (1-10+) has been updated with total 2001 landings (USA and Canadian). The total number of commercial length samples in 2001 was less than in 2000, however, the number of samples collected during these two years was the highest since 1985 (Table A4). The number of quarterly samples was adequate for all market categories except for the fourth quarter scrod samples (Table A5). Spatial coverage was poor for eastern Georges Bank (SA 561, 562), as it has been for several years. As in the last assessment, length samples from western Georges Bank and combined US and Canadian age samples from eastern Georges Bank were applied to characterize the landings from eastern Georges Bank. Landings were dominated in numbers by age 3 fish in both the US and Canadian fisheries and in weight by age 3 fish in the USA fishery and by age 3 and age 5 fish in the Canadian fishery. The total catch at age includes total landings from both the USA and Canadian fisheries (Table A6). No discards at age estimates are derived for stock.

Research survey indices were estimated from the 2002 NEFSC and Canadian Department of Fisheries and Oceans (DFO) spring (ages 1-8) and the NEFSC 2001 autumn (ages 1-6) bottom trawl surveys.

The ADAPT calibration method (Parrack 1986, Gavaris 1988, Conser and Powers 1990) was used to derive estimates of instantaneous fishing mortality and beginning year stock sizes in 2002. A conditional non-parametric bootstrap procedure (Efron 1982) was used to evaluate the precision of fishing mortality, spawning stock biomass, and mean biomass estimates. A retrospective analysis was performed for terminal year fishing mortality, spawning stock biomass, and age 1 recruitment.

Assessment results

Fully recruited fishing mortality (age 4-8) was estimated at 0.38 in 2001 (Figure A4). Spawning stock biomass in 2001 was estimated at $29,170 \mathrm{mt}$, a 12% increase from 2000 and a 53% increase from the record low in 1994 (Table A7, Figure A5). Recruitment of the 2001 year class (1.7 million age 1 fish) is estimated to be similar to the 2000 year class (1.6 million age 1 fish) and the 1994 year class (3.9 million age 1 fish) (Table A7, Figure A5). The survival ratio of recruit/SSB was above average for the 1996 and 1998 year classes and below average for the more recent year classes.

VPA Diagnostics

Stock size estimates for ages $1-8$ were well estimated with CVs ranging from 0.21 to 0.47 . The distribution of F estimates from the bootstrap analysis ranged from 0.25 to 0.56 with an 80% probability that F in 2001 was between 0.33 and 0.44 . The distribution of SSB estimates from the bootstrap analysis ranged from $21,000 \mathrm{mt}$ to $43,000 \mathrm{mt}$ with an 80% probability that SSB in 2000 was between $25,250 \mathrm{mt}$ and $31,845 \mathrm{mt}$.

A retrospective pattern exists in this model formulation back to 1994 (Figure A6). The terminal year estimates of fishing mortality are less than converged estimates since 1993, and SSB estimates are greater than converged estimates since 1993. The terminal year estimates of recruits are less than converged estimates from 1992 to 1999 and more than the converged estimates from 2000-2001. The TRAC recommended a different formulation of the ADAPT calibration to address the retrospective pattern and these recommendations will be applied in the next assessment (NEFSC 2002).

Sensitivity Analyses

Analyses were conducted to determine the sensitivity of fishing mortality and spawning stock biomass estimates to changes in the magnitude of the research survey indices used to calibrate the VPA. NEFSC spring and autumn survey indices for 2000-2002 were arbitrarily increased by $10 \%, 25 \%$ and 100% and used to re-calibrate the VPA (Figure A7). Results are summarized in Section 5.2 (Summary of Assessment Advice).

5.0 Projections

Long term forecasts of catch and SSB were conducted with $\mathrm{F}_{2002}=0.85 \mathrm{~F}_{2001}$. Input data and results for 2002-2004 are presented in Table A8. The $\mathrm{F}_{\text {rebuild }}$ that would enable 50% probability of reaching Bmsy by 2019 was 0.15 (Table A8). The current estimate of $\mathrm{F}_{\text {rebuild }}$ is similar to the previous estimate of 0.17 (NEFSC 2002) which was based on the assessment results from 2000 (O'Brien and Munroe 2001). Median SSB and catch with 80% confidence intervals projected under $\mathrm{F}_{\text {rebuild }}=0.15$ are presented in Figure A8.

6.0 Biological Reference Points

Biological reference points were established for Georges Bank cod based on a Beverton-Holt stock recruit model (NEFSC 2002) as :

MSY $=35,236 \mathrm{mt}$
$\mathrm{SSB}_{\mathrm{MSY}}=216,780 \mathrm{mt}$ and
$\mathrm{F}_{\mathrm{MSY}}=0.175$
In 2001, spawning stock biomass was estimated at $29,170 \mathrm{mt}$, about 13% of the target $\mathrm{SSB}_{\mathrm{MSY}}$.

The stock is considered to be overfished. F was estimated at 0.38 , therefore overfishing is occurring on this stock.

7.0 Summary

Georges Bank Atlantic cod are overfished and overfishing is occurring. Fishing mortality had been steadily declining since 1997, however, F increased about 9% in 2001 to 0.38 . Spawning stock continues to slowly increase from the record low in 1994, however, the increase appears to be primarily due to growth.

The 1996 year class accounts for the majority of the US catch and both the 1998 and 1996 year classes account for the majority of the Canadian catch. The 1996 (10.5 million age 1 fish) and 1998 (10.3 million age 1 fish) year classes, while below the long term average (14 million age 1 fish), represent the strongest year classes since the last above-average year class that occurred in 1990 (17.9 million agel fish). The 1999, 2000, and 2001 year classes are among the lowest in the time series.

The NEFSC and DFO survey biomass and abundance indices fluctuated slightly during 2000 to 2002, however, all the indices continue to remain below the long term average The most recent surveys indicate that the 1999 year class may be similar in size to the 1998 year class.

The lack of strong recruitment in the last decade suggests that recovery of this stock will be largely dependent on reducing fishing mortality.

8. 0 Sources of Uncertainty

Landings data for 1994-2001 are derived by proration and are provisional.
The retrospective analysis indicates a pattern in the estimates of F, SSB, and recruits in the VPA. The terminal year estimates of fishing mortality are less than the converged estimates and SSB estimates are greater than the converged estimates.

There is inadequate data to characterize both the recreational and discarded catch, particularly if these components increase. The TRAC previously rejected using poorly sampled recreational catch since a recreational catch at age with a similar age structure to the commercial catch at age would only be a scaling factor.

9.0 GARM Panel Comments

Sampling of commercial landings is stratified by market category. When evaluating sampling intensity, it may be useful to note the ages that comprise the various market categories to relate sampling to the age structure of the catch.

The residual pattern from the calibrated VPA was discussed at length. It was noted that the residual pattern on the older ages is strongest, and this may lead to the retrospective pattern on F . The retrospective pattern on SSB, however, is not as severe after 1999. A domed-shaped pattern in partial recruitment was again apparent in this assessment. Many factors may be responsible for this pattern which is generally caused by a mismatch between the age composition of the catch and the population as estimated by the survey. This may be influenced by the extensive closed areas on Georges Bank since 1995. The panel reiterated the recommendation of the TRAC that F on the oldest age be estimated directly for several of the most recent years so that a flat-topped PR not be assumed.

10.0 References

Conser, R. J. and J. E. Powers. 1990. Extensions of the ADAPT VPA tuning method designed to facilitate assessment work on tuna and swordfish stocks. Int. Comm. Conserv. Atlantic Tunas, Coll. Vol. Sci. Pap. 32: 461-467.

Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Phila. Soc. Ind. and Appl. Math. 34: 92 p.

Gavaris, S. 1988. An adaptive framework for the estimation of population size. CAFSAC Res.Doc. 88/29: 12 p.

NEFSC 2001. TRAC Advisory Report on Stock Status - A Report of the Fourth Meeting of the Transboundary Resources Assessment Committee, St. Andrews Biological Station, St. Andrews, New Brunswick, April 17-20, 2001. NEFSC Ref. Doc. 01-08. 22p.

NEFSC 2002. Proceedings of the Fifth Meeting of the Transboundary Resources Assessment Committee (TRAC), 5-8 February 2002, Woods Hole, MA, by R.N. O'Boyle and W.J. Overholtz, TRAC co-chairs. NEFSC Ref. Doc. 02-12 . 64 p.

NEFSC 2002. Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. NMFS/NEFSC, Reference Document 02-04, 254p.

O’Brien, L. and N. J. Munroe 2001. Assessment of the Georges Bank cod stock for 2001. Northeast Fish. Sci. Cent. Ref. Doc 01-10, 126 p.

Parrack, M.L. 1986. A method of analyzing catches and abundance indices from a fishery. Int Comm. Conserv. Atlantic Tunas, Coll. Vol. Sci. Pap. 24:209-221.

Table A1. Commercial landings (metric tons, live) of Atlantic cod from the Georges Bank and South (NAFO Division 5Z and Subarea 6) stock, 1960-2001 (* = Provisional data).

Year	Country					Other	Total
	USA	Canada	USSR	Spain	Poland		
1960	10834	19	-	-	-	-	10853
1961	14453	223	55	-	-	-	14731
1962	15637	2404	5302	-	143	-	23486
1963	14139	7832	5217	-	-	1	27189
1964	12325	7108	5428	18	48	238	25165
1965	11410	10598	14415	59	1851	-	38333
1966	11990	15601	16830	8375	269	69	53134
1967	13157	8232	511	14730	-	122	36752
1968	15279	9127	1459	14622	2611	38	43136
1969	16782	5997	646	13597	798	119	37939
1970	14899	2583	364	6874	784	148	25652
1971	16178	2979	1270	7460	256	36	28179
1972	13406	2545	1878	6704	271	255	25059
1973	16202	3220	2977	5980	430	114	28923
1974	18377	1374	476	6370	566	168	27331
1975	16017	1847	2403	4044	481	216	25008
1976	14906	2328	933	1633	90	36	19926
1977	21138	6173	54	2			27367
1978	26579	8778		2	-	-	35357
1979	32645	5978	-	-	-	-	38623
1980	40053	8063	-	-	-	-	48116
1981	33849	8499	-	-	-	-	42348
1982	39333	17824	-	-	-	-	57157
1983	36756	12130	-	-	-	-	48886
1984	32915	5763	-	-	-	-	38678
1985	26828	10443	-	-	-	-	37271
1986	17490	8411	-	-	-	-	25901
1987	19035	11845	-	-	-	-	30880
1988	26310	12932	-	-	-	-	39242
1989	25097	8001	-	-	-	-	33098
1990	28193	14310	-	-	-	-	42503
1991	24175	13455	-	-	-	-	37630
1992	16855	11712	-	-	-	-	28567
1993	14594	8519	-	-	-	-	23113
1994	9893*	5276	-	-	-	-	15169
1995	6759*	1100	-	-	-	-	7859
1996	7020*	1885	-	-	-	-	8905
1997	7537*	2898	-	-	-	-	10435
1998	6959*	1873	-	-	-	-	8832
1999	8061*	1819	-	-	-	-	9880
2000	7617*	1572	-	-	-	-	9189
2001	10635*	2134	-	-	-	-	12769

Table A2. Standardized stratified mean catch per tow in numbers and weight (kg)for Atlantic cod in NEFSC offshore spring and autumn research vessel bottom trawl surveys on Georges Bank (Strata 13-25), 1963-2000. [1,2,3]

	Spring		Aut umn	
Year	Nol Tow	Wt / Tow	Nol Tow	Wt / Tow
1963	-		4.37	17.8
1964	.	-	2.79	11.4
1965	-	-	4.25	11.8
1966	-	-	4.90	8. 1
1967			10.33	13.6
1968	4.73	12.7	3.31	8.6
1969	4.63	17.8	2. 24	8. 0
1970	4.34	15.8	5.12	12.6
1971	3.39	14.3	3. 19	9.8
1972	9.16	19.3	13.09	22.9
1973	57.81	94.5	12. 28	30.9
1974	14.74	36.4	3.49	8. 2
1975	6.89	26.1	6. 41	14.1
1976	7.06	18.6	10.43	17.7
1977	6.19	15.3	5. 44	12. 5
1978	12.31	31.2	8.59	23. 3
1979	5.00	16.2	5.95	16.5
1980	7.68	24.1	2.91	6.7
1981	10.44	26.1	9. 20	20.3
1982	32.96	101.9	3.34	6.1
1983	7.70	23.5	4.14	6.1
1984	4.08	15.3	4.73	10.0
1985	7.03	21.7	2. 31	3.1
1986	5.04	16.7	2. 99	3.7
1987	3.24	9.9	2.33	4.4
1988	5.87	13. 5	3.07	5. 6
1989	4.80	10.9	4.84	4.7
1990	4.79	11.7	4.78	11.5
1991	4.31	8.9	0.96	1.4
1992	2.67	7. 4	1. 72	3. 0
1993	2.40	7.0	2.15	2.2
1994	0.95	1. 2	1.82	3. 3
1995	3.29	8.4	3.62	5. 6
1996	2.70	7. 5	1.10	2.7
1997	2.32	5. 2	0.87	1.9
1998	4.36	11.7	1.87	2.8
1999	2. 15	4.7	1.02	3.0
2000	3.57	8. 2	1. 31	1.4
2001	1.86	5. 5	1. 05	2.1
2002	2.08	5.0		
Average	7. 50	19.3	4.29	9.2

Table A3a. Standardized (for vessel and door changes) stratified mean catch per tow at age (numbers) of Atlantic cod in NEFSC offshore spring and autumn bottom trawl surveys on Georges Bank (Strata 13-25), 1963-2002.

Year	0	1	2	3	AG 4	5	6	7	8	9	10+	No./tow
SPRING												
1968	0.513	0.136	1.615	0.825	0.665	0.385	0.246	0.140	0.083	0.056	0.058	4.722
1969	0.000	0.123	0.546	1.780	0.888	0.451	0.326	0.215	0.128	0.072	0.112	4.641
1970	0.000	0.338	0.804	0.430	1.241	0.162	0.844	0.263	0.058	0.056	0.147	4.342
1971	0.000	0.206	0.860	0.438	0.254	0.570	0.114	0.324	0.365	0.128	0.132	3.391
1972	0.056	3.000	1.838	2.732	0.445	0.166	0.323	0.084	0.285	0.071	0.158	9.159
1973	0.056	0.546	42.258	6.344	6.387	0.657	0.515	0.367	0.058	0.217	0.404	57.808
1974	0.000	0.444	4.558	5.971	0.761	1.988	0.442	0.100	0.265	0.064	0.144	14.735
1975	0.000	0.064	0.327	2.092	2.941	0.377	0.744	0.084	0.115	0.147	0.000	6.890
1976	0.111	1.298	1.955	0.915	0.661	1.607	0.153	0.261	0.029	0.000	0.068	7.058
1977	0.000	0.044	3.389	1.084	0.553	0.267	0.717	0.052	0.066	0.000	0.021	6.193
1978	3.312	0.372	0.192	5.531	0.972	0.778	0.142	0.712	0.065	0.141	0.096	12.312
1979	0.108	0.428	1.298	0.275	1.852	0.547	0.236	0.084	0.139	0.013	0.022	5.000
1980	0.105	0.031	2.217	2.690	0.212	1.705	0.374	0.186	0.031	0.030	0.096	7.676
1981	0.301	2.302	1.852	2.811	1.685	0.106	0.879	0.258	0.132	0.000	0.113	10.438
1982	0.169	0.508	5.435	9.502	8.324	6.208	0.293	1.866	0.369	0.082	0.203	32.958
1983	0.081	0.332	1.952	3.017	0.796	0.697	0.443	0.027	0.219	0.000	0.138	7.701
1984	0.000	0.402	0.431	0.761	1.238	0.422	0.400	0.209	0.000	0.215	0.000	4.078
1985	0.244	0.111	2.653	0.663	1.110	1.412	0.265	0.192	0.180	0.037	0.161	7.029
1986	0.092	0.872	0.409	1.844	0.365	0.540	0.618	0.062	0.125	0.101	0.015	5.044
1987	0.000	0.020	1.613	0.378	0.763	0.062	0.179	0.136	0.033	0.027	0.025	3.235
1988	0.180	0.720	0.609	3.150	0.409	0.644	0.064	0.037	0.049	0.000	0.007	5.868
1989	0.000	0.310	1.410	0.666	1.583	0.235	0.351	0.051	0.040	0.055	0.093	4.794
1990	0.042	0.173	0.922	1.737	0.674	0.912	0.130	0.143	0.013	0.016	0.027	4.790
1991	0.195	1.027	0.528	0.689	0.929	0.479	0.328	0.054	0.041	0.000	0.045	4.313
1992	0.000	0.123	1.252	0.468	0.168	0.273	0.142	0.159	0.020	0.037	0.028	2.670
1993	0.110	0.009	0.399	1.306	0.205	0.090	0.138	0.029	0.034	0.021	0.055	2.396
1994	0.030	0.125	0.272	0.200	0.217	0.033	0.006	0.044	0.000	0.019	0.000	0.945
1995	0.482	0.050	0.382	0.854	0.534	0.599	0.107	0.234	0.028	0.022	0.000	3.290
1996	0.000	0.073	0.214	0.736	1.247	0.174	0.209	0.028	0.018	0.000	0.000	2.699
1997	0.302	0.291	0.437	0.170	0.489	0.422	0.050	0.134	0.020	0.000	0.000	2.315
1998	0.018	0.111	0.665	1.298	0.848	0.755	0.533	0.102	0.031	0.000	0.000	4.360
1999	0.067	0.212	0.291	0.609	0.510	0.238	0.119	0.064	0.031	0.007	0.000	2.148
2000	0.053	0.221	0.807	0.830	1.141	0.370	0.102	0.026	0.020	0.000	0.000	3.569
2001	0.000	0.061	0.235	0.794	0.160	0.383	0.177	0.023	0.018	0.012	0.000	1.862
2002	0.018	0.065	0.093	0.383	0.993	0.239	0.225	0.039	0.000	0.000	0.028	2.083
average	0.301	0.433	2.420	1.828	1.206	0.713	0.312	0.194	0.089	0.047	0.068	7.500

Table A3a continued. Standardized (for vessel and door changes) stratified mean catch per tow at age (numbers) of Atlantic cod in NEFSC offshore spring and autumn bottom trawl surveys on Georges Bank (Strata 13-25), 1963-2001.

Table A3b. Stratified mean catch per tow at age (numbers) of Atlantic cod in Canadian spring bottom trawl survey on Georges Bank, 1986-2002.

Year	1	2	3	4	$\begin{gathered} \text { AGE } \\ 5 \end{gathered}$	6	7	8	9	10+	0+
SPRING											
1986	0.60	2.27	2.81	0.37	0.65	0.44	0.26	0.04	0.07	0.03	7.54
1987	0.25	2.13	0.93	1.09	0.34	0.12	0.22	0.08	0.03	0.07	5.26
1988	0.28	1.01	4.66	0.58	1.02	0.13	0.08	0.17	0.04	0.07	8.04
1989	1.63	2.78	1.38	2.85	0.36	0.42	0.05	0.10	0.12	0.06	9.75
1990	0.42	2.44	3.78	2.08	3.87	0.42	0.93	0.12	0.12	0.35	14.53
1991	1.18	1.16	1.84	2.15	1.05	1.31	0.16	0.22	0.03	0.09	9.19
1992	0.11	2.86	1.77	0.80	0.98	0.60	0.43	0.12	0.07	0.02	7.76
*1993	0.05	0.60	2.83	1.04	0.62	1.23	0.44	0.42	0.07	0.12	7.42
*1994	0.02	0.80	0.89	1.65	0.60	0.23	0.45	0.11	0.15	0.04	4.94
1995	0.07	0.67	1.50	0.86	0.60	0.19	0.04	0.05	0.02	0.02	4.02
1996	0.14	0.49	2.31	4.02	1.09	0.79	0.33	0.08	0.11	0.03	9.39
1997	0.32	0.53	0.55	1.25	1.23	0.27	0.06	0.03	0.02	0.01	4.27
1998	0.01	0.67	0.95	0.35	0.35	0.28	0.07	0.02	0.00	0.02	2.72
1999	0.33	0.32	1.49	1.09	0.41	0.26	0.15	0.01	0.02	0.01	4.09
2000	0.10	0.44	1.05	3.92	1.71	0.78	0.40	0.24	0.01	0.03	8.68
2001	0.00	0.06	0.64	0.42	1.11	0.52	0.26	0.17	0.16	0.06	3.40
2002	0.01	0.09	0.57	2.05	0.68	1.22	0.40	0.17	0.05	0.08	5.32

[^0]Table A4. USA and Canadian sampling of commercial Atlantic cod landings from the Georges Bank and South cod stock (NAFO Division $5 z$ and Subarea 6), 1978 - 2001.

USA					Canada			
	Length Samples		Age Samples		Length Samples		Age Samples	
Year	No.	\# Fish Measured	No.	\# Fish Aged	No.	\# Fish Measured	No.	\# Fish Aged
1978	88	6841	76	1463	29	7684	29	1308
1979	80	6973	79	1647	13	3991	12	656
1980	69	4990	67	1119	10	2784	10	536
1981	57	4304	57	1231	17	4147	16	842
1982	151	11970	147	2579	17	4756	8	858
1983	146	12544	138	2945	15	3822	14	604
1984	100	8721	100	2431	7	1889	7	385
1985	100	8366	100	2321	29	7644	20	1062
1986	94	7515	94	2222	19	5745	19	888
1987	80	6395	79	1704	33	9477	33	1288
1988	76	6483	76	1576	40	11709	40	1984
1989	66	5547	66	1350	32	8716	32	1561
1990	83	7158	83	1700	40	9901	40	2012
1991	88	7708	88	1865	45	10873	45	1782
1992	77	6549	77	1631	48	10878	48	1906
1993	82	6636	82	1598	51	12158	51	2146
1994	58	4688	54	1064	104	25845	101	1268
1995	40	2879	40	778	36	11598	36	548
1996	55	4600	54	1080	129	26663	129	879
1997	80	6638	80	1581	118	31882	38	1244
1998	80	7076	81	1545	139	26549	139	1720
1999	68	5987	67	1503	84	24954	84	918
2000	155	12219	154	2951	107	20782	107	1436
2001	108	8389	108	2389	108	18190	108	1509

Tab1e A5
USA sampling of commercial Atlantic cod landings, by market category, for the Georges Bank and South cod stock (NAFO Division 5z and Subarea 6), 1978-2001.

	Number of Samples, by Market Category \& Quarter															Annual Sampling Intensity			
	Scrod					Market					Large					No. of Tons Landed/Sample			
Year	Q1	Q2	Q3	Q4	Σ	Q1	Q2	Q3	Q4	Σ	Q1	Q2	Q3	Q4	Σ	Scrd	Mkt	Lge	Σ
1978	17	15	6	3	41	9	12	13	9	43	1	0	1	2	4	69	374	1922	302
1979	2	5	14	8	29	6	19	11	8	44	2	0	4	1	7	88	407	1742	408
1980	7	10	13	4	34	12	14	5	1	32	3	0	0	0	3	136	588	5546	580
1981	4	10	11	3	28	6	9	10	2	27	2	0	0	0	2	149	634	6283	594
1982	5	9	32	9	55	6	20	27	13	66	8	8	9	5	30	156	279	410	260
1983	4	12	17	10	43	12	19	22	14	67	2	15	16	3	36	185	291	259	252
1984	6	8	8	7	29	8	15	8	11	42	18	5	3	3	29	138	441	358	329
1985	6	7	16	5	34	11	11	12	8	42	4	8	7	5	24	201	299	310	268
1986	6	7	7	6	26	8	10	10	11	39	6	5	10	8	29	142	215	186	186
1987	7	8	6	8	29	6	8	9	10	33	6	6	4	2	18	240	220	267	238
1988	8	6	7	5	26	13	7	9	9	38	4	4	3	1	12	283	331	532	346
1989	2	7	9	9	27	7	8	8	7	30	3	4	1	1	9	210	450	660	380
1990	8	9	10	4	31	10	13	9	8	40	4	4	4	0	12	295	315	538	340
1991	6	11	7	5	29	12	13	8	8	41	4	6	3	5	18	158	293	423	275
1992	6	7	7	10	30	8	10	6	9	33	5	5	3	1	14	149	215	377	219
1993	5	16	7	6	34	10	10	7	9	36	6	1	3	2	12	126	173	339	178
1994	3	9	8	2	22	5	11	7	4	27	1	4	3	1	9	92	187	290	167
1995	2	3	13	2	20	2	4	10	2	18	0	1	0	1	2	83	181	880	167
1996	6	2	12	3	23	5	6	11	6	28	0	2	1	1	4	59	143	400	127
1997	3	11	3	10	27	5	16	9	9	39	3	6	0	5	14	50	105	148	94
1998	3	7	23	5	38	10	10	15	3	38	1	2	1	0	3	44	92	573	88
1999	5	3	10	1	21	7	13	10	5	38	2	4	2	0	9	80	118	205	118
2000	22	20	16	27	85	19	14	13	18	64	2	1	2	2	7	18	71	219	49
2001	11	9	13	3	36	9	10	8	10	37	6	12	6	10	34	72	163	55	98

Table A6. Landings at age (thousands of fish; metric tons) and mean weight (kg) and mean length (cm) at age of total commercial landings of Atlantic cod from the Georges Bank and South stock
(NAFO Division $5 Z$ and Subarea 6), 1978-2000.

Total Commercial Landings in Numbers (000 's) at Age

1978	2	393	7748	2303	830	131	345	47	40	15	11854	73.7	26.3
1979	34	1989	900	4870	1212	458	77	253	4	48	9845	81.2	18.8
1980	89	3777	5828	500	2308	1076	445	87	167	10	14287	80.9	19.1
1981	27	3205	4221	2464	235	1406	417	123	130	62	12290	84.1	15.9
1982	331	9138	3824	2787	2000	281	673	213	71	83	19401	74.1	25.9
1983	108	4286	8063	2456	1055	776	95	235	100	65	17239	72.2	27.8
1984	81	1307	3423	3336	840	516	458	44	171	121	10297	89.0	11.0
1985	134	6426	2443	1368	1885	412	218	203	21	97	13207	68.4	31.6
1986	156	1326	4573	797	480	627	87	72	47	29	8194	71.7	28.3
1987	26	7473	1406	2121	279	252	270	63	38	24	11952	64.2	35.8
1988	10	1577	8022	1012	1497	244	161	197	50	47	12817	71.6	28.4
1989	10	2088	2922	4155	331	541	82	43	50	18	10230	81.1	18.9
1990	7	4942	5042	1882	2264	229	245	36	17	38	14702	74.3	25.7
1991	52	1525	3243	3281	1458	1088	126	70	23	23	10889	67.7	32.3
1992	70	4177	2170	1038	1482	404	309	34	33	10	9727	58.7	41.3
1993	4	1033	4246	1115	440	472	159	143	32	17	7661	67.0	33.0
1994	2	398	1526	1825	394	96	137	46	38	6	4468	68.5	31.5
1995	0.1	392	1058	692	290	44	26	15	2	1	2520	86.9	13.1
1996	0.7	207	903	1234	241	123	15	3	5	0.2	2731	80.0	20.0
1997	3	517	639	881	794	131	84	16	9	4	3078	74.2	25.8
1998	0.2	739	1188	423	324	237	39	14	6	4	2975	81.9	18.1
1999	2	285	1927	706	201	97	119	16	2	3	3359	83.7	16.3
2000	6	811	710	1024	306	72	38	25	2	1	2994	84.5	15.5
2001	-	682	2381	647	595	163	46	22	11	2	4548	86.6	13.4

Total Commercial Landings in Weight (Tons) at Age

1978	1	515	18890	7990	3597	757	2549	395	465	198	35357	75.2	24.8
1979	30	2970	1936	20504	5923	3288	711	2611	44	606	38623	84.5	15.5
1980	75	5516	14382	1833	13036	7184	3735	793	1408	154	48116	83.2	16.8
1981	24	4789	9953	8416	1224	10156	3575	1212	1848	1151	42348	79.9	20.1
1982	253	12812	10187	10681	10705	1827	6303	2110	891	1388	57157	68.8	31.2
1983	105	6387	19167	8126	4891	4963	763	2418	1120	946	48886	75.2	24.8
1984	85	2137	8389	12074	4271	3401	4078	447	1938	1858	38678	85.1	14.9
1985	121	9111	5095	5319	9588	2644	1765	2073	246	1309	37271	72.0	28.0
1986	145	1955	11189	2917	2692	4505	776	717	596	409	25901	67.5	32.5
1987	19	11071	3509	8882	1619	1945	2416	633	426	360	30880	61.6	38.4
1988	8	2399	18923	3552	8085	1618	1412	1960	566	719	39242	67.0	33.0
1989	-	3375	6633	15673	1783	3625	669	455	588	298	33098	75.8	24.2
1990	5	7709	12412	6629	11075	1448	2069	382	222	552	42503	66.3	33.7
1991	59	2481	8265	11221	6955	6411	933	736	223	346	37630	64.2	35.8
1992	80	6441	5348	3991	6971	2486	2322	334	402	192	28567	59.0	41.0
1993	3	1585	9566	3717	2184	3012	1195	1315	316	220	23113	63.1	36.9
1994	2	581	3308	6673	1892	716	1095	430	364	103	15165	65.2	34.8
1995	0.1	577	2215	2649	1595	327	273	174	20	20	7851	86.1	13.9
1996	0.6	311	2199	4178	1183	817	127	21	59	2	8898	78.9	21.1
1997	3	816	1483	3114	3256	790	674	135	111	53	10435	72.2	27.8
1998	0.1	1096	2735	1477	1532	1408	323	117	82	61	8832	78.8	21.2
1999	1	446	4283	2437	985	622	874	159	27	45	9880	81.6	18.4
2000	6	1386	1731	3644	1478	424	283	213	14	9	9189	82.9	17.1
2001	-	1034	5627	2038	2582	899	283	180	110	20	12772	83.3	16.7

Table A6 continued. Landings at age (thousands of fish; metric tons) and mean weight (kg) and mean length (cm) at age of total commercial landings of Atlantic cod from the Georges Bank and South stock
(NAFO Division 5Z and subarea 6), 1978-2001.

Table A7. Estimates of beginning year stock size (thousands of fish), instantaneous fishing mortality (F), mean biomass (mt), spawning stock biomass (mt), and
percent mature of Georges Bank cod, estimated from virtual population analysis (VPA), calibrated using the commercial catch at age ADAPT formulation, 1978-2001,

Stock Numbers (Jan 1) in thousands

	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	27711	23512	20109	41393	17470	9614	27389	8671	42749	16376	23445	15674	9196	17857	6619	8175	5335	3940	6884	10464	4307	10259	4969	1556	1651
2	4270	22686	19219	16383	33865	14004	7774	22351	6978	34859	13384	19186	12833	7523	14573	5356	6690	4366	3226	5636	8565	3526	8398	4063	1274
3	25527	3140	16774	12318	10513	19458	7587	5182	12485	4513	21778	9531	13819	6035	4779	8152	3450	5117	3220	2454	4146	6344	2629	6142	2709
4	7933	13889	1756	8460	6266	5148	8635	3115	2032	6084	2423	10572	5159	6752	2006	1949	2832	1444	3232	1819	1431	2320	3450	1510	2874
5	2877	4411	6965	986	4697	2608	1992	4051	1312	943	3062	1068	4896	2521	2559	703	587	667	556	1530	692	789	1260	1898	651
6	1127	1604	2515	3614	594	2036	1181	871	1611	640	519	1152	575	1960	745	754	178	124	284	237	534	273	464	755	1016
7	1414	804	899	1085	1687	232	965	500	340	752	296	204	454	263	620	244	191	59	62	121	76	223	136	315	471
8	67	846	588	334	511	772	104	375	212	200	371	97	93	150	102	228	56	32	25	37	23	27	75	77	216
9	147	12	463	403	162	226	419	46	124	108	107	126	40	44	60	52	57	4	13	17	16	6	7	39	43
10+	55	148	27	191	187	145	293	208	76	68	99	45	89	43	18	27	9	2	1	1	10	9	4	7	25

\qquad

Fishing Mortality

	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	0	0	0	0	0.02	0.01	0	0.02	0	0	0	0	0	0	0.01	0	0	0	0	0	0	0	0	0
2	0.11	0.1	0.24	0.24	0.35	0.41	0.21	0.38	0.24	0.27	0.14	0.13	0.55	0.25	0.38	0.24	0.07	0.1	0.07	0.11	0.1	0.09	0.11	0.21
3	0.41	0.38	0.48	0.48	0.51	0.61	0.69	0.74	0.52	0.42	0.52	0.41	0.52	0.9	0.7	0.86	0.67	0.26	0.37	0.34	0.38	0.41	0.35	0.56
4	0.39	0.49	0.38	0.39	0.68	0.75	0.56	0.66	0.57	0.49	0.62	0.57	0.52	0.77	0.85	1	1.25	0.75	0.55	0.77	0.4	0.41	0.4	0.64
5	0.38	0.36	0.46	0.31	0.64	0.59	0.63	0.72	0.52	0.4	0.78	0.42	0.72	1.02	1.02	1.18	1.35	0.65	0.65	0.85	0.73	0.33	0.31	0.43
6	0.14	0.38	0.64	0.56	0.74	0.55	0.66	0.74	0.56	0.57	0.73	0.73	0.58	0.95	0.91	1.18	0.91	0.5	0.65	0.94	0.67	0.5	0.19	0.27
7	0.31	0.11	0.79	0.55	0.58	0.6	0.74	0.66	0.33	0.51	0.92	0.59	0.91	0.75	0.8	1.27	1.58	0.67	0.31	1.45	0.84	0.89	0.37	0.18
8	1.49	0.4	0.18	0.52	0.62	0.41	0.63	0.91	0.47	0.43	0.88	0.68	0.56	0.72	0.46	1.18	2.37	0.73	0.15	0.65	1.1	1.09	0.46	0.38
9	0.36	0.44	0.51	0.44	0.66	0.67	0.6	0.71	0.54	0.49	0.73	0.58	0.63	0.87	0.95	1.12	1.31	0.72	0.57	0.85	0.54	0.43	0.36	0.38
10+	0.36	0.44	0.51	0.44	0.66	0.67	0.6	0.71	0.54	0.49	0.73	0.58	0.63	0.87	0.95	1.12	1.31	0.72	0.57	0.85	0.54	0.43	0.36	0.38
mn4-8, ${ }^{\text {u }}$	0.542	0.348	0.49	0.466	0.652	0.58	0.644	0.738	0.49	0.48	0.786	0.598	0.658	0.842	0.808	1.162	1.492	0.66	0.462	0.932	0.748	0.644	0.346	0.38

Table A7 continued. Estimates of beginning year stock size (thousands of fish), instantaneous fishing mortality (F), mean biomass (mt), spawning stock biomass (mt),
and percent mature of Georges Bank cod, estimated from virtual population analysis (VPA), calibrated using the commercial catch at age ADAPT formulation, 1978-2001

Mean biomass (mt)

Age	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	17756	18930	15201	33078	11990	8411	26099	7069	35925	10766	16698	11493	6923	18001	6848	6460	4380	3235	5503	9047	2260	7717	4749	1241
2	4816	29255	22650	19782	36452	15600	10449	24024	8343	41183	17250	26448	14056	9839	17044	6647	8562	5536	4253	7653	10972	4782	12331	5068
3	47057	5118	29978	21112	20017	31666	12313	7019	21789	8384	36579	16162	24293	9321	7775	11337	4993	8595	5973	4402	7240	10561	4918	10168
4	20817	42243	4894	21839	16000	10999	21920	8106	5191	18429	5806	27812	12975	14781	4777	3783	5477	3563	7708	4119	3770	5995	9241	3217
5	9449	16495	28841	4033	17037	8352	6888	13463	5247	4126	10555	4295	15689	6947	6950	1899	1431	2464	1838	3882	2135	2993	4770	6120
6	5533	8742	11357	18264	2510	9170	5214	3621	8109	3448	2245	5019	2527	6859	2764	2614	799	660	1266	851	2112	1265	2277	3316
7	8154	6341	4785	6532	10957	1273	5563	2718	2353	4828	1564	1164	2322	1259	2944	961	713	420	405	478	384	995	769	1630
8	275	6555	4453	2347	3458	5943	717	2321	1538	1486	2266	691	696	1030	732	1141	189	243	175	216	112	145	464	482
9	1326	107	2801	4217	1355	1693	3264	341	1107	894	774	1020	345	260	427	282	287	29	114	128	142	58	46	287
10+	553	1376	303	2611	2091	1408	3101	1838	751	735	985	532	880	406	201	201	76	21	4	11	108	97	30	66

SSB at the start of the spawning season - males and females (mt)

	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Age																								
1	912	1104	850	1962	1200	902	3122	773	8515	2226	3479	2475	634	1962	761	639	73	54	88	1006	191	746	127	28
2	1411	7540	6911	5784	16138	6347	4303	11650	5030	25330	8897	13716	6608	4218	9018	3434	2814	1868	1404	3598	5521	1822	4177	2114
3	33839	3730	22412	15924	15649	26065	10500	6878	18776	7101	32836	14539	22020	9014	7415	11466	5170	7871	5264	3858	6596	9575	4447	10333
4	20179	38255	4300	21375	15792	12655	21656	8075	4841	17022	6131	27183	12814	16502	5219	4528	6388	3549	7601	4541	3691	5907	8782	3637
5	8796	16541	30441	3962	17468	9635	7117	14908	5434	3936	12372	4192	18056	8431	8374	2444	1813	2594	2092	4785	2425	2985	4728	6718
6	4892	8127	12487	20324	2961	10514	5653	4251	8583	3704	2763	5933	2950	8685	3351	3286	898	658	1486	1066	2277	1342	2340	3602
7	8094	5563	5914	7240	12174	1464	6221	3163	2355	5363	2023	1326	2841	1539	3492	1299	1012	453	446	672	446	1225	854	1793
8	366	6672	5047	2693	4108	6842	815	2980	1702	1701	2931	811	769	1213	777	1508	307	265	220	273	156	191	528	546
9	1339	111	3841	4111	1557	2059	3957	420	1245	1030	965	1192	408	372	554	411	422	36	136	146	147	59	60	320
10+	657	1674	376	3178	2704	1825	3942	2407	941	907	1296	673	1126	554	279	290	115	27	5	15	135	117	35	79

Percent Mature (females)

	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
Age																								
1	7	7	7	7	13	13	13	13	28	28	28	28	12	12	12	12	2	2	2	13	13	13	3	3
2	34	34	34	34	47	47	47	47	67	67	67	67	52	52	52	52	39	39	39	57	57	57	44	44
3	78	78	78	78	84	84	84	84	91	91	91	91	90	90	90	90	95	95	95	92	92	92	95	95
4	96	96	96	96	97	97	97	97	98	98	98	98	99	99	99	99	100	100	100	100	100	100	100	100
5-10+	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Table A8. Input parameters and results of stochastic projection analysis using a Beverton-Holt stock recruit model for Georges Bank Atlantic cod for 2002-2019 for F2002 $=0.85$ F2001.

Input for Projections:

Age	Fishing		Average Weight	
	Mortality(PR)	\% Mature	Stock	Landed
1	0.00	0.03	0.677	0.884
2	0.15	0.44	1.151	1.515
3	0.60	0.95	1.887	2.361
4	1.00	1.00	2.920	3.614
5	1.00	1.00	4.232	4.996
6	1.00	1.00	5.693	6.543
7	1.00	1.00	7.332	8.245
8	1.00	1.00	8.914	9.679
9	1.00	1.00	10.432	11.301
$10+$	1.00	1.00	15.231	14.642

Projection results for 2002-2004

Year	Recruitment	F	Median Landings
$(000$ fish $)$	$(000 \mathrm{mt})$	Median SSB	
		$(000 \mathrm{mt})$	

F2002 $=0.85$ F2001

2002	7295	0.32	8.083	27.031
2003	6994	0.15	3.787	25.250
2004	7626	0.15	3.979	28.781

Figure A1a. Total commercial landings of Georges Bank cod (NAFO Division 5 Z and Subarea 6), 1893-2001.

Figure A1b. Total commercial landings of Georges Bank cod (NAFO Division $5 Z$ and Subarea 6), 1960-2001.

Figure A2. Standardized stratified mean catch per tow (kg) of Atlantic cod in NEFSC spring and autumn research vessel bottom trawl surveys on Georges Bank, 1963-2001.

Figure A3. Standardized stratified mean number per tow of Atlantic cod in NEFSC and DFO spring and NEFSC autumn research vessel bottom trawl surveys on Georges Bank, 1963-2002.

Figure A4. Trends in total commercial landings and fishing mortality for Georges Bank cod, 1978-2001.

Figure A5. Trends in stock biomass and recruitment for Georges Bank Atlantic cod, 1978-2001. Horizontal line is the average recruitment for the time serioes.

Figure A6. Retrospective analysis of Georges Bank cod recruits at age 1(A), spawning stock biomass (B), and fishing mortaity (C) (average F, aged 4-8, unweighted), based on the final ADAPT VPA formulation, 2001-1996.

GB Cod Sensitivity Runs ($80 \% \mathrm{CI}$)

Figure A7. Fishing mortality and spawning stock biomass estimates from VPA calibrated using survey indices increased by 0% (base), 10\% (110), 25\% (125), and $100 \%(200)$.

Figure A8. Median and 80\% confidence intervals of predicted spawning stock biomass (panel A) and predicted catch (panel B) for Georges Bank Atlantic cod under Frebuild $=0.10$.

B. Georges Bank Haddock by Jon Brodziak, Michele Thompson and Russell Brown

1.0 Background

The Georges Bank haddock stock was last assessed at the Transboundary Resources Assessment Committee Meeting in 2001. Based on the 2001 assessment, spawning biomass was increasing (59,700 mt in 2000) from a near-record low of $11,400 \mathrm{mt}$ in 1993 and fishing mortality was relatively low ($\mathrm{F}=0.19$ in 2000). In this report, we update the Georges Bank haddock assessment using fishery data for 2001 and available survey data for 2001-2002. Updated estimates of spawning biomass and fishing mortality are used for stock status determination. Sensitivity of assessment results to survey trawl warp marking discrepancies during 2000-2002 is evaluated. An updated estimate of the fishing mortality required to rebuild the spawning biomass to $\mathrm{B}_{\text {MSY }}$ by 2009 ($\mathrm{F}_{\text {REBUILD }}$) is provided.

2.0 Assessment for 2002

2.1 2001 Landings

US haddock landings were prorated into Georges Bank and Gulf of Maine stock components using a standard algorithm. US Georges Bank haddock landings totaled 4,637 mt in 2001, a 38% increase over 2000 (Table B1, Figure B1). Canadian landings totaled 6,712 mt in 2001, a 24% increase over 2000. US sea sampling data indicated discard rates of $0-5 \%$ in 2001 for primary fishing gears. There were no changes in regulatory measures which might have increased discarding. As a result, discards were assumed to be negligible as in the 2000 and 2001 assessments (Brown and Munroe 2000).

US Commercial fishery sampling increased in 2001 (Table B2) for total number of samples $(+41 \%)$, fish lengths ($+43 \%$), and fish ages ($+58 \%$) over 2000 sampling. Commercial fishery sampling on western Georges Bank was adequate to compute US catch-at-age on a quarterly basis (Table B2). Sampling was not adequate on eastern Georges Bank to characterize fishery length compositions due to a lack of large and scrod haddock sampling in the second half of the year (Table B2). US Landings are relatively low on eastern Georges Bank (608 mt in 2001) versus western Georges Bank ($4,028 \mathrm{mt}$ in 2001). Fisheries in both areas use otter trawl gear and length selectivity is similar. As a result, US catch-at-age data for eastern Georges Bank was computed on a quarterly basis using the commercial fishery length composition of western Georges Bank landings with the addition of all US length samples from eastern Georges Bank (Table B2). Canadian commercial fishery age-length keys from eastern Georges Bank were used for quarters 2,3 , and 4 , while the Canadian spring survey age-length key was used for quarter 1 . Canadian commercial fishery length sampling ($\mathrm{n}=67,905$ fish) was over 10 -fold greater than US fishery length sampling ($\mathrm{n}=5,276$ fish). Canadian commercial fishery age sampling ($\mathrm{n}=1,393$ fish) was comparable to US fishery length sampling ($n=1,985$ fish). The US fishery catch-at-age data was combined with the Canadian fishery catch-at-age data to compute total catch at age (Table B3).

2.2 Survey Indices

US spring survey indices were computed for 2001-2002 (Table B4) and US autumn survey indices were computed for 2001 (Table B5) using standardized data. Canadian survey indices for 2001-2002 (Table B6) were provided by DFO, Canada (Stratis Gavaris, personal
communication). Canadian survey indices in 2001-2002 were lower than the record high 2000 index which included unusually large catches in stratum 5Z8. Survey maturity-at-age analyses from the 2001 assessment were used for computing spawning biomass.

3.0 Assessment Results

3.1 VPA Results

An updated VPA analysis for Georges Bank haddock was conducted. The VPA formulation was identical to that used for the 2001 assessment, with the exception that the US spring survey was used for tuning in the terminal year. The updated VPA had a total of 30 new survey index values for calibration. VPA diagnostics indicated a good fit to the survey data with maximal coefficients of variation of catchability ranging from 0.14 to 0.34 across surveys.

VPA results indicate that total stock size increased (Table B7) from 80.5 million fish in 2000 to 111.4 million fish in $2002(+38 \%)$. Spawning biomass increased (Table B8, Figure B3) from $59,000 \mathrm{mt}$ in 2000 to $74,400 \mathrm{mt}$ in $2001(+26 \%)$. Fishing mortality (average ages $4-7$, unweighted) increased from 0.19 in 2000 to 0.22 in 2001 ($+16 \%$; Table B9, Figure B4). Results indicate that the 1998 (39.5 million) and 2000 (75.1) year classes are the strongest since 1978. Preliminary indications are that the 2001 year class may be well below average. Retrospective analysis suggests a random pattern of retrospective estimation errors (Figure B5). Bootstrap analysis indicates that estimates of spawning biomass and F in 2001 are relatively precise with coefficients of variation of $9-10 \%$.

3.2 Sensitivity Analyses

3.2.1 Potential Survey Trawl Warp Inconsistencies during 2000-2002

Measurements of NEFSC survey trawl warps in autumn 2002 suggested that right and left warps may have been offset by up to several feet during winter 2000 through spring 2002 surveys. To evaluate the sensitivity of VPA results to potential undercapture of fish, NEFSC spring and autumn survey indices were arbitrarily adjusted upwards by $10 \%, 25 \%$, and 100% for spring 2000 through spring 2002 (Figure B6). Results are summarized in Section 5.2 (Summary of Assessment Advice).

3.2.2 Influence of Survey Index Time Series Selection

VPA analysis for Georges Bank haddock includes three survey index time series (US spring, US fall, and Canadian spring). To evaluate sensitivity of baseline results to selection of survey index time series, VPA analyses were conducted using only one index for calibration. Results indicate that the baseline results are closely matched by one-index results for US spring and US fall indices while one-index results for the Canadian spring index produce higher spawning biomass and lower F estimates than the baseline.

4.0 Sources of Uncertainty

- US catch-at-age data for eastern Georges Bank haddock landings are less certain than for western Georges Bank haddock. Improved sampling of US landings from eastern Georges Bank haddock would improve precision of US catch-at-age data.
- Proration of landings are based on preliminary logbook data and are subject to change.

5.0 Summary Stock Status

5.1 Biological Reference Points

For Georges Bank haddock, spawning biomass ($\mathrm{B}_{\mathrm{MSY}}$) and the proxy fishing mortality ($\mathrm{F}_{\mathrm{MSY}}$) to produce MSY are $\mathrm{B}_{\mathrm{MSY}}=250,300 \mathrm{mt}$ and $\mathrm{F}_{\mathrm{MSY}}=0.263$ (NEFSC 2002). The overfished threshold $\left(B_{\text {THRESHoLD }}\right)$ for Georges Bank haddock is $B_{\text {THRESHoLD }}=1 / 2 B_{\text {MSY }}=125,200 \mathrm{mt}$. The overfishing threshold ($\mathrm{F}_{\text {THRESHOLD }}$) for Georges Bank haddock is $\mathrm{F}_{\text {THRESHOLD }}=\mathrm{F}_{\text {MSY }}=0.26$.

5.2 Stock Status in 2001

In 2001, spawning biomass was $74,400 \mathrm{mt}\left(59 \%\right.$ of $\mathrm{B}_{\text {THRESHoLD }}$ and 30% of $\left.\mathrm{B}_{\text {MSY }}\right)$. Therefore, the Georges Bank haddock stock was overfished in 2001. In 2001, the fishing mortality was 0.22 (85% of $\mathrm{F}_{\text {THREShold }}$). Therefore, overfishing was not occurring on the Georges Bank haddock stock in 2001.

5.3 Projections

Age-structured projections were conducted to compute $\mathrm{F}_{\text {REbuild }}$ for 2003-2009. A two-stage resampling model using the cumulative distribution function of observed recruitment with a cutoff spawning biomass value of $75,000 \mathrm{mt}$ was updated using recruitment results from the baseline VPA and updated mean weights at age and selectivities based on 1999-2001 averages. The assumed value of fishing mortality in 2002 was $\mathrm{F}_{2002}=0.85 * \mathrm{~F}_{2001}=0.19$. The assumed 15% reduction in F from 2001 to 2002 is based on environmental impact analyses of the probable impacts of implementing the Settlement Agreement for the Amendment 9 groundfish lawsuit during fishing year 2002.

Projection results indicate that $\mathrm{F}_{\text {Rebuild }}=0.197$ (Table B10, Figure B7). Median projected spawning biomass and landings in 2009 under $\mathrm{F}_{\text {Rebuild }}$ are $250,300 \mathrm{mt}$ and $38,300 \mathrm{mt}$. Median projected landings in 2002, 2003, and 2004 are $12,500,17,800$, and $19,400 \mathrm{mt}$, respectively. Average projected landings for fishing years 2002-2003 and 2003-2004 are 15,000 and 18,600 mt .

6.0 References

Brown, R. W., and N. J. Munroe. 2000. Stock assessment of Georges Bank haddock, 1931-1999. Northeast Fisheries Science Center Ref. Doc. 00-12, NEFSC, Woods Hole, MA 02543.

Northeast Fisheries Science Center [NEFSC]. 2002. Final Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. NEFSC Reference Document 02-04, Woods Hole, MA, 02543.

Table B1. Commercial landings (mt) of haddock from Georges Bank and south (NAFO Division 5Z and Subarea 6), 1960-2001. ${ }^{1}$

Year	U.S.	Canada	USSR	Spain	Other	Total
1960	40800	77	0	0	0	40877
1961	46384	266	0	0	0	46650
1962	49409	3461	1134	0	0	54004
1963	44150	8379	2317	0	0	54846
1964	46512	11625	5483	2	464	64086
1965	52823	14889	81882	10	758	150362
1966	52918	18292	48409	1111	544	121274
1967	34728	13040	2316	1355	30	51469
1968	25469	9323	1397	3014	1720	40923
1969	16456	3990	65	1201	540	22252
1970	8415	1978	103	782	22	11300
1971	7306	1630	374	1310	242	10862
1972	3869	609	137	1098	20	5733
1973	2777	1563	602	386	3	5331
1974	2396	462	109	764	559	4290
1975	3989	1358	8	61	4	5420
1976	2904	1361	4	46	9	4324
1977	7934	2909	0	0	0	10843
1978	12160	10179	0	0	0	22339
1979	14279	5182	0	0	0	19461
1980	17470	10017	0	0	0	27487
1981	19176	5658	0	0	0	24834
1982	12625	4872	0	0	0	17497
1983	8682	3208	0	0	0	11890
1984	8807	1463	0	0	0	10270
1985	4273	3484	0	0	0	7757
1986	3339	3415	0	0	0	6754
1987	2156	4703	0	0	0	6859
1988	2492	$4046{ }^{2}$	0	0	0	6538
1989	1430	3059	0	0	0	4489
1990	2001	3340	0	0	0	5341
1991	1395	5446	0	0	0	6841
1992	2005	4061	0	0	0	6066
1993	687	3727	0	0	0	4414
1994	$218{ }^{3}$	2411	0	0	0	2629
1995	$218{ }^{3}$	2064	0	0	0	2282
1996	$313{ }^{3}$	3643	0	0	0	3956
1997	888^{3}	2622	0	0	0	3510
1998	$1841{ }^{3}$	3371	0	0	0	5212
1999	2775^{3}	3680	0	0	0	6455
2000	3366^{3}	5402	0	0	0	8768
2001	4637^{3}	6712	0	0	0	11349

${ }^{1}$ All landings 1960-1979 are from Clark et al. (1982); U.S. landings 1980-1981 are from Overholtz et al. (1983); U.S. landings 1982-1993 are from NMFS, NEFSC Detailed Weighout Files and Canvas data; Canadian landings 1980-1998 from Gavaris and Van Eeckhaute (1999); Canadian landings in 1999-2001 from S. Gavaris (Personal Communication). ${ }^{2} 1895$ tons were excluded because of suspected misreporting (Gavaris and Van Eeckhaute 1995).
${ }^{3}$ U.S. landings from 1994-1999 are prorated using Vessel Trip Report data and are considered provisional.

Table B2. U.S. sampling of commercial haddock landings for length and age composition from Georges Bank and south (NAFO Division 5Z and Subarea 6), 1982-2001. Eastern Georges (statistical areas 561, 562, 523 and 524), Western Georges (521, 522, 525, 526, 537, 538, 539 and Subarea 6). Q1, Q2, Q3, Q4, denote quarters $1,2,3$, and 4, respectively.

Table B3. Total catch at age ($000^{\prime} \mathrm{s}$) and mean weight (kg) at age of commercial landings and discards of haddock from Georges Bank and south (NAFO Division 5Z and Statistical Area 6), 1982-2001.

Table B3. Continued.

$\underline{\text { Total Commercial Landings Mean Weight }{ }^{1}(\mathrm{~kg}) \text { at Age }}$

Year	1	2	3	4	5	6	7	8	$9+$
1963	0.57	0.87	1.18	1.47	1.68	2.15	2.35	3.04	3.10
1964	0.50	0.83	1.12	1.43	1.64	2.01	2.40	2.64	2.97
1965	0.58	0.69	1.03	1.35	1.67	1.99	2.26	2.66	3.11
1966	0.58	0.73	0.89	1.26	1.70	2.07	2.28	2.87	3.18
1967	0.66	0.70	0.95	1.18	1.42	2.05	2.31	2.66	3.10
1968	0.59	0.81	1.05	1.32	1.57	2.10	2.32	2.62	2.86
1969	0.52	0.78	1.10	1.69	1.75	1.99	2.52	2.99	3.63
1970	0.71	1.27	1.22	1.93	2.19	2.39	2.58	3.23	3.75
1971	(0.67)	1.03	1.31	1.74	2.39	2.81	2.92	3.10	3.72
1972	0.62	1.03	1.74	2.04	2.42	2.92	3.06	3.44	3.66
1973	0.60	1.03	1.58	2.13	2.41	3.29	3.42	3.86	3.94
1974	0.72	1.06	1.82	2.32	2.83	3.76	4.05	3.92	4.26
1975	0.62	0.98	1.63	2.21	2.20	2.94	4.00	4.05	4.33
1976	0.50	0.99	1.39	1.99	2.66	(3.08)	3.69	4.67	4.94
1977	(0.53)	1.07	1.44	2.17	2.73	3.21	4.15	4.00	4.99
1978	(0.53)	0.94	1.50	2.04	2.79	3.19	3.37	3.61	5.11
1979	(0.53)	1.00	1.28	2.02	2.51	3.14	3.78	3.79	4.87
1980	0.55	0.94	1.21	1.73	2.17	2.82	3.60	3.56	3.87
1981	0.39	0.87	1.24	1.83	2.30	2.72	3.71	4.04	4.44
1982	0.22	0.97	1.45	1.88	2.37	2.76	3.24	3.96	4.09
1983	(0.33)	1.02	1.37	1.83	2.21	2.65	3.25	3.36	4.27
1984	(0.33)	0.92	1.32	1.83	2.20	2.67	2.96	3.41	3.72
1985	(0.33)	0.99	1.39	1.98	2.46	2.72	3.06	3.72	3.80
1986	0.45	0.94	1.36	1.83	2.56	2.83	2.96	3.46	3.78
1987	(0.43)	0.83	1.43	2.00	2.25	2.63	3.02	3.77	4.29
1988	0.42	0.98	1.34	1.68	2.06	2.45	2.97	3.49	3.96
1989	(0.53)	0.89	1.48	1.79	2.21	2.57	3.24	3.56	3.82
1990	0.64	0.97	1.48	1.78	2.12	2.55	2.81	2.99	4.16
1991	0.581	1.201	1.311	1.817	2.183	2.645	2.852	3.048	4.337
1992	0.538	1.175	1.639	1.768	2.186	2.519	2.967	3.365	4.267
1993	0.659	1.169	1.728	2.171	2.119	2.628	2.649	3.123	4.014
1994	0.447	1.093	1.643	2.209	2.628	2.728	2.902	3.783	4.546
1995	0.429	0.967	1.489	2.025	2.542	2.815	3.275	3.091	3.981
1996	0.456	1.098	1.497	1.838	2.325	2.543	3.423	3.516	3.712
1997	0.416	0.998	1.690	1.891	2.213	2.547	3.1 .4	3.380	3.655
1998	0.511	0.968	1.485	1.917	2.333	2.688	3.027	3.038	4.070
1999	0.678	1.101	1.527	1.830	2.111	2.339	2.697	2.973	3.682
2000	0.664	1.133	1.464	1.893	2.252	2.372	2.732	2.991	3.298
2001	0.394	1.228	1.465	1.761	2.159	2.527	2.622	2.736	3.395

${ }^{1}$ Data 1963-1979 from Clark et al. (1982); Data 1980-1981 from Overholtz et al. (1983); Data 1982-1990 from Hayes and Buxton (1992); data from 1991-1994 from O'Brien and Brown (1996); data from 1995-2001 from current assessment, Gavaris and Van Eekhaute (1999), and S. Gavaris (personal communication).
${ }^{2}$ Of this total, approximately 1.0 million fish were added to the catch at age to account for high discards in 1974.
${ }^{3}$ Of this total, approximately 12.8 million fish were added to the catch at age to account for high discards in 1977.
${ }^{4}$ Of this total, approximately 5.0 million fish were added to the catch at age to account for high discards in 1978.
${ }^{5}$ Of this total, approximately 20.0 million fish were added to the catch at age to account for high discards in 1980.
${ }^{6}$ Total includes discards resulting from trip limit regulations for most year classes.

Table B4. Stratified mean catch per tow (numbers) for haddock in NEFSC offshore spring research vessel bottom trawl surveys on Georges Bank (Strata 01130-01250, 01290-01300), 1968-2002. Indices have been corrected to account for changes in catchability due to changes in research vessels and doors.

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9+	Total
1968	0.40	2.83	0.46	0.70	6.72	1.68	0.25	0.45	0.34	13.83
1969	0.00	0.07	0.58	0.25	0.42	4.23	1.03	0.28	0.46	7.32
1970	0.67	0.25	0.00	0.33	0.46	0.46	2.00	0.98	0.85	6.00
1971	0.00	1.16	0.25	0.00	0.12	0.12	0.09	0.82	0.22	2.78
1972	4.02	0.09	0.61	0.12	0.03	0.04	0.13	0.03	1.30	6.37
1973	30.68	4.84	0.00	0.54	0.09	0.00	0.18	0.01	1.28	37.62
1974	2.13	13.29	2.86	0.00	0.24	0.00	0.01	0.10	0.37	19.00
1975	0.94	0.97	3.32	0.63	0.00	0.13	0.09	0.01	0.15	6.24
1976	80.79	0.30	0.60	0.92	0.43	0.00	0.04	0.00	0.10	83.18
1977	0.61	33.41	0.42	1.22	0.60	0.45	0.00	0.04	0.12	36.87
1978	0.07	0.97	15.93	0.36	0.94	0.82	0.16	0.06	0.10	19.41
1979	36.12	1.58	1.13	5.71	0.33	0.16	0.37	0.06	0.04	45.50
1980	5.20	46.70	0.51	1.04	4.87	0.67	0.37	0.46	0.24	60.06
1981	3.30	3.29	19.49	2.19	0.76	1.78	0.24	0.11	0.05	31.21
1982	0.76	1.53	0.94	4.07	0.42	0.28	0.61	0.00	0.00	8.61
1983	0.43	0.55	0.58	0.22	2.41	0.01	0.04	1.16	0.18	5.58
1984	2.09	1.18	0.64	0.63	0.58	0.72	0.07	0.04	0.30	6.25
1985	0.00	4.96	0.76	0.40	0.87	0.34	1.17	0.10	0.25	8.85
1986	2.49	0.18	2.06	0.24	0.11	0.21	0.12	0.33	0.11	5.85
1987	0.00	3.62	0.06	0.81	0.08	0.10	0.05	0.22	0.01	4.95
1988	1.55	0.04	0.99	0.13	0.32	0.12	0.11	0.12	0.00	3.38
1989	0.02	3.49	0.45	0.71	0.14	0.41	0.06	0.05	0.01	5.34
1990	0.86	0.00	5.72	0.33	0.58	0.06	0.13	0.00	0.01	7.69
1991	0.54	1.07	0.24	1.85	0.09	0.10	0.02	0.04	0.02	3.97
1992	0.40	0.18	0.11	0.07	0.33	0.03	0.03	0.03	0.00	1.18
1993	1.17	0.65	0.18	0.14	0.12	0.37	0.06	0.02	0.02	2.73
1994	0.70	2.68	1.00	0.15	0.10	0.07	0.16	0.02	0.05	4.92
1995	0.50	1.29	2.32	0.91	0.17	0.11	0.03	0.18	0.11	5.61
1996	1.09	4.59	8.86	5.21	2.62	0.35	0.07	0.08	0.00	22.86
1997	1.79	1.02	3.35	3.66	2.01	0.89	0.13	0.07	0.00	12.92
1998	0.82	2.95	1.25	1.06	0.85	0.21	0.06	0.01	0.06	7.28
1999	10.21	2.03	2.14	0.72	0.64	0.51	0.20	0.20	0.02	16.67
2000	1.83	2.37	4.10	2.01	1.11	1.11	1.01	0.48	0.27	14.29
2001	10.01	0.86	2.44	0.83	0.30	0.21	0.12	0.08	0.07	14.92
2002	0.18	19.25	6.72	3.22	1.09	0.48	0.61	0.17	0.53	32.25

Table B5. Stratified mean catch per tow (numbers) for haddock in NEFSC offshore autumn research vessel bottom trawl surveys on Georges Bank (Strata 01130-01250, 01290-01300), 1963-2001. Indices have been corrected to account for changes in catchability due to changes in research vessels and doors.

Year	Age 0	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9+	Total
1963	83.93	25.39	9.22	6.81	8.34	5.95	2.04	1.68	1.18	0.46	145.01
1964	2.37	112.87	63.74	5.83	1.79	3.81	1.56	0.69	0.25	0.33	193.24
1965	0.33	10.16	77.39	9.70	1.07	0.80	0.91	0.80	0.25	0.27	101.69
1966	6.14	0.95	2.89	18.39	3.35	0.52	0.49	0.33	0.12	0.07	33.26
1967	0.03	6.72	0.36	1.00	6.76	1.62	0.49	0.21	0.33	0.18	17.70
1968	0.09	0.06	0.95	0.13	0.33	3.86	1.27	0.27	0.16	0.39	7.51
1969	0.39	0.03	0.00	0.28	0.13	0.16	1.52	0.51	0.09	0.27	3.38
1970	0.04	4.13	0.21	0.01	0.28	0.27	0.51	1.37	0.48	0.40	7.70
1971	2.43	0.00	0.31	0.07	0.01	0.22	0.03	0.09	0.75	0.28	4.20
1972	6.75	2.52	0.00	0.52	0.09	0.00	0.09	0.06	0.03	1.30	11.35
1973	3.23	9.00	1.61	0.00	0.19	0.04	0.00	0.07	0.01	0.72	14.89
1974	0.75	1.77	0.98	0.31	0.00	0.01	0.00	0.00	0.00	0.22	4.05
1975	23.48	0.63	0.72	4.86	0.92	0.00	0.03	0.00	0.01	0.30	30.95
1976	4.32	64.17	0.52	0.54	0.82	0.30	0.00	0.04	0.10	0.25	71.07
1977	0.13	2.14	18.73	0.56	0.57	0.64	0.34	0.04	0.01	0.09	23.25
1978	13.22	0.84	1.04	9.27	0.18	0.26	0.45	0.01	0.00	0.01	25.30
1979	1.32	45.57	0.04	0.90	3.81	0.26	0.28	0.05	0.01	0.00	52.24
1980	11.68	2.71	12.72	0.45	0.18	1.70	0.48	0.46	0.09	0.06	30.54
1981	0.38	6.13	2.08	3.70	0.21	0.42	0.53	0.00	0.00	0.01	13.45
1982	1.36	0.00	1.33	0.34	1.40	0.13	0.07	0.21	0.01	0.10	4.96
1983	5.80	0.24	0.21	0.27	0.30	0.94	0.12	0.00	0.10	0.01	7.99
1984	0.03	3.32	0.88	0.24	0.28	0.06	0.45	0.00	0.00	0.12	5.38
1985	11.35	0.65	1.53	0.22	0.05	0.10	0.07	0.17	0.00	0.05	14.19
1986	0.00	5.11	0.09	1.21	0.06	0.13	0.13	0.02	0.03	0.03	6.81
1987	1.80	0.00	0.79	0.10	0.77	0.06	0.06	0.02	0.02	0.00	3.62
1988	0.07	3.02	0.18	1.30	0.12	0.40	0.12	0.11	0.00	0.03	5.35
1989	0.47	0.05	2.71	0.20	0.66	0.09	0.13	0.02	0.02	0.00	4.34
1990	0.77	0.67	0.02	1.19	0.05	0.17	0.04	0.00	0.00	0.00	2.92
1991	2.16	0.21	0.24	0.05	0.22	0.02	0.02	0.00	0.00	0.02	2.92
1992	2.85	2.08	0.23	0.24	0.00	0.47	0.02	0.08	0.03	0.06	6.06
1993	1.52	4.04	2.01	0.30	0.00	0.06	0.15	0.02	0.00	0.00	8.09
1994	0.91	0.77	0.81	0.67	0.12	0.05	0.02	0.17	0.06	0.00	3.58
1995	2.27	7.14	4.90	2.32	0.38	0.01	0.00	0.07	0.02	0.00	17.11
1996	1.31	0.54	0.93	1.04	0.49	0.14	0.01	0.01	0.00	0.01	4.47
1997	0.32	2.47	1.47	0.75	0.55	0.33	0.13	0.00	0.07	0.08	6.16
1998	4.32	2.79	2.47	0.72	0.41	0.18	0.16	0.02	0.00	0.01	11.07
1999	1.82	0.84	3.37	8.05	3.52	2.32	0.82	1.32	0.75	0.31	23.13
2000	4.14	2.82	5.48	3.10	1.10	0.66	0.13	0.27	0.09	0.19	17.99
2001	0.85	8.77	1.68	7.44	2.12	1.16	0.36	0.22	0.13	0.01	22.74

Table B6. Stratified mean catch per tow (numbers) for haddock in Canadian offshore research vessel bottom trawl surveys on Georges Bank, 1986-2002. ${ }^{1}$ The Georges Bank strata set includes strata 5Z1-5Z8.

	Age group										
Year	0	1	2	3	4	5	6	7	8	9+	Total
1986	0.00	4.06	0.22	6.05	1.07	0.19	0.29	0.34	0.37	0.42	13.01
1987	0.00	0.03	3.04	0.69	2.51	0.67	0.08	0.30	0.10	0.86	8.28
1988	0.00	1.47	0.05	8.53	0.17	2.85	0.18	0.17	0.11	0.50	14.03
1989	0.00	0.03	5.34	0.72	2.12	0.19	0.42	0.03	0.03	0.23	9.11
1990	0.00	0.93	0.11	9.87	0.13	3.36	0.23	1.09	0.13	0.34	16.19
1991	0.00	0.75	1.67	0.14	8.99	0.11	1.60	0.09	0.44	0.21	14.00
1992	0.00	3.30	2.95	1.13	0.17	3.82	0.03	1.06	0.04	0.58	13.08
1993	0.00	3.96	2.16	0.55	0.45	0.04	1.28	0.02	0.32	0.16	8.94
1994	0.00	3.32	11.52	4.08	0.42	0.24	0.02	0.70	0.01	0.27	20.59
1995	0.00	1.94	2.62	4.30	2.22	0.56	0.28	0.00	0.48	0.66	13.06
1996	0.00	5.37	2.54	4.25	4.43	2.57	0.23	0.21	0.03	0.50	20.14
1997	0.00	1.74	1.15	0.81	2.36	2.47	1.77	0.24	0.09	0.59	11.22
1998	0.00	2.41	8.18	3.08	2.57	3.76	3.67	1.98	0.24	0.48	26.37
1999	0.00	19.75	3.41	7.16	2.21	1.40	1.35	1.26	0.33	0.13	37.00
2000	0.00	18.33	68.60	9.32	8.91	2.11	1.55	1.94	1.14	0.59	112.50
2001	0.00	22.28	2.83	10.88	3.09	4.13	1.29	1.15	1.41	1.65	48.71
2002	0.00	1.98	31.70	6.65	15.36	4.32	5.32	1.59	1.32	7.73	75.97

[^1]Table B7. Beginning year stock size (000s) of Georges Bank haddock estimated from the VPA, 1963 to 2002.

Age	1963	1964	1965	1966	1967	1968	1969
1	192405	486215	32602	4081	13172	420	984
2	32188	154895	388939	18005	3238	9744	336
3	33117	22691	112399	204592	8549	2499	5268
4	46437	20401	14458	51763	76289	4384	1405
5	29224	27929	12382	6991	25037	43760	1851
6	9696	16509	14974	6164	3219	11144	22690
7	6014	5943	8274	6207	2702	1541	5958
8	2799	3652	2982	3361	2971	1314	658
9	4224	4695	3685	2274	2242	2419	1652
1+	356105	742932	590695	303437	137420	77225	40804
	1970	1971	1972	1973	1974	1975	1976
1	4773	473	8507	19485	10792	7623	102890
2	804	3866	387	6824	13636	8794	6067
3	265	515	1921	315	3709	7256	6265
4	2777	203	220	1166	255	2443	4254
5	745	1758	130	107	605	207	1660
6	924	441	1178	77	40	432	166
7	13190	562	139	856	36	31	316
8	3454	8710	203	43	631	28	21
9	2135	5475	3761	1271	2954	610	598
1+	29066	22004	16444	30143	32659	27422	122237
	1977	1978	1979	1980	1981	1982	1983
1	14364	5984	84420	10102	7221	2502	3099
2	84109	11760	4898	69116	8264	5911	2048
3	4540	51141	8939	3987	28537	5189	3786
4	4631	3548	28846	5757	2950	13413	2770
5	2686	3177	2628	17130	3831	1663	7604
6	1164	1733	2088	1677	8547	2289	1008
7	136	630	951	1338	836	4670	1359
8	238	107	390	494	602	385	2811
9	673	512	186	259	355	396	265
1+	112541	78592	133346	109861	61143	36419	24750

Table B7. Continued.

	1984	1985	1986	1987	1988	1989	1990
1	17284	1752	14732	2199	16921	1081	2653
2	2537	14151	1434	12056	1800	13850	885
3	1483	1993	9409	1125	8065	1427	10197
4	2364	945	1134	5161	805	4446	1091
5	1644	1277	598	727	2766	538	2847
6	4200	987	629	358	485	1422	311
7	579	2097	602	358	227	262	840
8	945	263	1241	357	213	136	173
9	1906	507	278	451	349	217	164
1+	32941	23973	30057	22791	31631	23379	19160
	1991	1992	1993	1994	1995	1996	1997
1	2419	9903	13861	14240	9802	10908	19940
2	2171	1975	8102	11342	11658	8017	8926
3	715	1372	1393	6371	9043	9464	6515
4	7041	503	834	824	4483	6864	7233
5	737	3820	292	412	521	3256	4764
6	1545	511	1746	145	278	372	2247
7	166	894	318	833	56	199	243
8	528	70	440	226	546	39	143
9	245	240	208	221	173	56	362
$1+$	15565	19287	27193	34614	36559	39175	50373
	1998	1999	2000	2001	2002		
1	14198	39479	17692	75115	4453		
2	16299	11623	32322	14485	61497		
3	7147	13164	9480	26110	11745		
4	5074	5476	9817	7202	19432		
5	5218	3700	3957	6609	5169		
6	3387	3647	2579	2737	4334		
7	1640	2297	2524	1664	1741		
8	181	1208	1578	1740	1020		
9	351	345	545	1358	2028		
1+	53495	80941	80495	137020	111419		

Table B8. Spawning stock biomass (mt) of Georges Bank haddock estimated from the VPA, 1963 to 2001.

Age	1963	1964	1965	1966	1967	1968	1969
1	00	00	00	00	00	00	00
2	00	00	00	00	00	1710	60
3	24532	15607	66805	97767	4700	1409	3221
4	56925	23391	14829	49168	68052	3958	1597
5	38916	37115	16069	8724	27362	50539	2364
6	17459	25531	21711	9324	4999	16457	35028
7	11770	11365	14076	10997	4935	2718	11957
8	6545	7884	6294	7116	6272	2727	1465
9	11456	12085	9574	6011	5958	5837	5067
$1+$	167603	132978	149358	189106	122279	85355	60760
	1970	1971	1972	1973	1974	1975	1976
1	00	00	00	00	00	00	00
2	164	777	85	1592	3156	2307	1502
3	184	409	1725	350	4208	7675	6237
4	3609	264	301	1904	463	4449	6829
5	1257	3416	234	185	1365	442	3684
6	1668	820	2873	181	112	1152	410
7	26943	1151	304	2506	124	109	969
8	8755	22254	546	125	2144	103	83
9	7114	18399	11711	4218	11683	2405	2652
$1+$	49694	47490	17779	11061	23256	18642	22367
	1977	1978	1979	1980	1981	1982	1983
1	00	00	00	00	00	00	00
2	17917	2558	1118	12908	1680	1073	295
3	4128	45484	7116	3295	20671	4034	3143
4	7321	5641	44086	7738	3804	17772	3961
5	5612	7039	5316	30147	6720	3057	13359
6	2917	4403	5529	3748	17850	5064	2200
7	458	1838	2804	3684	2226	12214	3717
8	826	381	1225	1552	2003	1280	8028
9	3039	2395	794	859	1377	1407	979
1+	42218	69739	67988	63931	56331	45902	35682

Table B8. Continued.

	1984	1985	1986	1987	1988	1989	1990
1	377	78	1113	143	1116	97	118
2	434	4751	489	4330	717	5095	337
3	1445	1782	8547	1091	6672	1462	10030
4	3208	1336	1586	7136	1105	6037	1588
5	2903	2271	1184	1333	4754	903	4757
6	8576	2133	1442	829	976	2869	631
7	1331	5258	1498	919	558	665	2009
8	2724	750	3591	1026	594	394	469
9	6141	1660	935	1665	1190	740	595
$1+$	27139	20018	20385	18472	17682	18263	20534
	1991	1992	1993	1994	1995	1996	1997
1	94	344	472	288	50	64	98
2	950	837	1815	2730	2472	1775	1938
3	694	1597	1236	5742	10124	10006	7842
4	9811	662	1239	1349	7548	10362	11219
5	1325	6260	475	892	1134	6440	8819
6	3189	1065	3478	275	695	850	5052
7	360	2097	755	2070	153	569	634
8	1332	178	1121	642	1508	119	448
9	916	846	699	901	635	190	1216
1+	18672	13886	11291	14889	24319	30376	37266
	1998	1999	2000	2001			
1	94	394	164	246			
2	3530	2817	9127	4220			
3	7939	14799	10566	29361			
4	8299	8639	15117	10647			
5	9552	6685	7325	12026			
6	7098	7408	5173	5831			
7	4185	5333	5814	3672			
8	569	3302	4065	4279			
9	1253	1166	1632	4146			
1+	42518	50541	58984	74429			

Table B9. Fishing mortality (F) at age and average F (ages 4-7, unweighted) for Georges Bank haddock estimated from VPA, 1963 to 2001.

Age	1963	1964	1965	1966	1967	1968	1969
1	0.02	0.02	0.39	0.03	0.10	0.02	0.00
2	0.15	0.12	0.44	0.54	0.06	0.41	0.04
3	0.28	0.25	0.58	0.79	0.47	0.38	0.44
4	0.31	0.30	0.53	0.53	0.36	0.66	0.43
5	0.37	0.42	0.50	0.58	0.61	0.46	0.50
6	0.29	0.49	0.68	0.62	0.54	0.43	0.34
7	0.30	0.49	0.70	0.54	0.52	0.65	0.35
8	0.34	0.37	0.52	0.54	0.42	0.48	0.47
9	0.34	0.37	0.52	0.54	0.42	0.48	0.47
4-7	0.32	0.43	0.60	0.57	0.51	0.55	0.40
	1970	1971	1972	1973	1974	1975	1976
1	0.01	0.00	0.02	0.16	0.00	0.03	0.00
2	0.24	0.50	0.01	0.41	0.43	0.14	0.09
3	0.07	0.65	0.30	0.01	0.22	0.33	0.10
4	0.26	0.25	0.52	0.46	0.01	0.19	0.26
5	0.32	0.20	0.32	0.79	0.14	0.02	0.16
6	0.30	0.96	0.12	0.56	0.06	0.11	0.00
7	0.21	0.82	0.97	0.10	0.06	0.16	0.08
8	0.27	0.21	0.45	0.49	0.10	0.17	0.23
9	0.27	0.21	0.45	0.49	0.10	0.17	0.23
4-7	0.27	0.56	0.48	0.48	0.07	0.12	0.12
	1977	1978	1979	1980	1981	1982	1983
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.30	0.07	0.01	0.68	0.27	0.25	0.12
3	0.05	0.37	0.24	0.10	0.55	0.43	0.27
4	0.18	0.10	0.32	0.21	0.37	0.37	0.32
5	0.24	0.22	0.25	0.50	0.32	0.30	0.39
6	0.41	0.40	0.24	0.50	0.40	0.32	0.35
7	0.03	0.28	0.46	0.60	0.58	0.31	0.16
8	0.20	0.16	0.32	0.42	0.34	0.36	0.38
9	0.20	0.16	0.32	0.42	0.34	0.36	0.38
4-7	0.22	0.25	0.32	0.45	0.42	0.32	0.31

Table B9. Continued.

	1984	1985	1986	1987	1988	1989	1990
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.04	0.21	0.04	0.20	0.03	0.11	0.01
3	0.25	0.36	0.40	0.14	0.40	0.07	0.17
4	0.42	0.26	0.25	0.42	0.20	0.25	0.19
5	0.31	0.51	0.31	0.21	0.47	0.35	0.41
6	0.49	0.29	0.36	0.26	0.42	0.33	0.43
7	0.59	0.32	0.32	0.32	0.31	0.22	0.26
8	0.37	0.40	0.27	0.40	0.40	0.26	0.35
9	0.37	0.40	0.27	0.40	0.40	0.26	0.35
4-7	0.45	0.35	0.31	0.30	0.35	0.28	0.32
	1991	1992	1993	1994	1995	1996	1997
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.26	0.15	0.04	0.03	0.01	0.01	0.02
3	0.15	0.30	0.33	0.15	0.08	0.07	0.05
4	0.41	0.34	0.50	0.26	0.12	0.17	0.13
5	0.17	0.58	0.50	0.19	0.14	0.17	0.14
6	0.35	0.27	0.54	0.75	0.13	0.23	0.11
7	0.67	0.51	0.14	0.22	0.18	0.13	0.09
8	0.39	0.56	0.51	0.24	0.12	0.17	0.13
9	0.39	0.56	0.51	0.24	0.12	0.17	0.13
4-7	0.40	0.43	0.42	0.36	0.14	0.17	0.12
	1998	1999	2000	2001			
1	0.00	0.00	0.00	0.00			
2	0.01	0.00	0.01	0.01			
3	0.07	0.09	0.07	0.10			
4	0.12	0.13	0.20	0.13			
5	0.16	0.16	0.17	0.22			
6	0.19	0.17	0.24	0.25			
7	0.11	0.18	0.17	0.29			
8	0.14	0.14	0.19	0.22			
9	0.14	0.14	0.19	0.22			
4-7	0.14	0.16	0.19	0.22			

Table B10. Input data and results for short-term (2002-2005) stochastic stock biomass and catch projections for Georges Bank haddock.

Input for Projections:

Number of Years: 3; Initial Year: 2002; Final Year: 2005
Number of Ages : 9; Age at Recruitment: 1; Last Age: 9
Natural Mortality is assumed Constant over time at: . 200
Proportion of F before spawning: . 25
Proportion of M before spawning: . 25
Last age is a PLUS group;
--1

Age	Fish Mort Pattern	Nat Mort Pattern	Proportion Mature	Average Catch	weights Stock
1	. 0010	1.0000	. 0400	0.579	0.395
2	. 0460	1.0000	. 4900	1.154	0.843
3	. 4880	1.0000	. 9500	1.485	1.282
4	. 8290	1.0000	1.0000	1.828	1.672
5	1.0000	1.0000	1.0000	2.174	2.010
6	1.0000	1.0000	1.0000	2.413	2.284
7	1.0000	1.0000	1.0000	2.684	2.524
8	1.0000	1.0000	1.0000	2.900	2.850
$9+$	1.0000	1.0000	1.0000	3.458	3.458

Projections for 2002-2005; $F(2002)=0.19$; Basis: 85% of 2001 point estimate. Recruitment (age 1) 2002-2004 year classes derived from two-stage resampling of 1931-2001 stockrecruitment data excluding the 1963 year class with a $75,000 \mathrm{mt}$ spawning biomass cutoff.

SSB was estimated to be 74,400 mt in 2001.

	2002		2003		
F	Catch	SSB	F	catch	SSB
$\begin{aligned} & 0.19 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 12462 \\ & 12462 \end{aligned}$	$\begin{aligned} & 99737 \\ & 99737 \end{aligned}$	$\mathrm{F}_{\text {rebuild }}=0.197$ $\mathrm{~F}_{\text {co }}$	$\begin{aligned} & 17840 \\ & 17252 \end{aligned}$	$\begin{aligned} & 122264 \\ & 122415 \end{aligned}$
	2004		2005		
F	Catch	SSB	F C	ch	SSB
$\begin{aligned} & 0.197 \\ & 0.190 \end{aligned}$	$\begin{aligned} & 19432 \\ & 18887 \end{aligned}$	$\begin{aligned} & 131712 \\ & 132413 \end{aligned}$	$\begin{array}{ll} 0.197 & 2 \\ 0.190 & 2 \end{array}$	288	$\begin{aligned} & 158330 \\ & 159533 \end{aligned}$

Figure B1. Total commercial landings (thousand mt) of haddock from Georges Bank and south, 1904-2001.

Figure B2. Georges Bank haddock research survey indices, 1963-2002.

Figure B3. Trends in spawning stock biomass (line) and recruitment (bars) for Georges Bank haddock from 1931-2001.

Figure B4. Trends in commercial landings (thousand mt, live weight) and fishing mortality (unweighted mean, ages 4-7) for Georges Bank haddock from 1931-2001.

Figure B5. Retrospective analysis of Georges Bank haddock recruitment (A), spawning stock biomass (B) and fishing mortality (C).

Figure B6. Georges Bank haddock sensitivity to hypothetical NEFSC survey index adjustments due to trawl warp offsets during 2000-2002.

Figure B7. Georges Bank haddock projection results for $F=F_{\text {REBUILD }}$.

C. Georges Bank Yellowtail Flounder by C.M. Legault

1.0 Background

Spawning stock biomass of Georges Bank yellowtail flounder in 2000 approached $\mathrm{SSB}_{\text {msy }}$ and fishing mortality was low (SSB was $43,000 \mathrm{mt}$ and fully recruited F was 0.14 ; Stone et al. 2001). This report updates catch and survey indices and estimates 2001 fishing mortality and 2002 stock size.

2.0 Assessment Data

2.1 US 2001 Landings

U.S. landings were prorated as described in Cadrin et al. (1998; Table C1; Figure C1). US landings from Georges Bank in 2001 increased only slightly from 2000 (2% increase). Sampling intensity of landings in 2001 was comparable to that in 2000 (Table C2). Both the large and small categories were sampled in both halves of the year. Half year-specific age-length keys were applied to landings at length by half year and market category to estimate landings and mean weights at age.

2.2 US 2001 Discards

US discarded catch was estimated from logbook information on discard: kept ratios by half-year for trawl gear and by whole year for dredge gear (due to fewer observations for dredge gear), (Cadrin et al. 2000; Table C1). US discards were 13\% of US landings by weight in 2001.
Discards at age and associated mean weights at age were estimated from sea sampled lengths and pooled commercial-survey age-length keys. However, length distributions of trawl discards were only sampled in the first half of 2001; those samples were used to characterize all 2001 trawl discards. No dredge length frequencies were collected in 2001. Average length distributions for dredge gear by half year for 1998 through 2000 were used to age the dredge discards. It should be noted that the US discard estimate of 505 mt is substantially higher than the estimate used in the recent Canadian assessment (60 mt ; Stone 2002) due to differences in the dredge discard estimate.

2.3 Canadian Landings

The Canadian landings contain a proration of flatfish landed as "unspecified" which were prorated as described in Stone et al. (2001). Canadian 2001 landings were provided by H. Stone (DFO, pers. comm.) and increased slightly relative to those in 2000 (2%; Table C1; Figure C1). Length frequencies collected by Canadian samplers were used with sex specific age-length keys provided from US landings to generate the Canadian landings by age and associated average weight at age (Stone et al. 2001; Table C2).

2.4 Total Catch at Age

Total catch at age was formed by adding the US landings, US discards and Canadian landings (Table C3a). Average weight at age was computed as the catch weighted average of the weights at age from these three sources (Table C3b).

2.5 Research Vessel Survey Indices

Survey abundance and biomass indices are reported in Table C4. Estimates from research vessel surveys are from valid tows on Georges Bank (NEFSC offshore strata 13-21; Canadian strata 5Z1-5Z4; NEFSC scallop strata 54, 55, 58-72, 74) standardized according to net, vessel, and door changes (Stone et al. 2001). All survey indices of total abundance and total biomass are either high, increasing, or both in recent years (Figure C2). This trend is also seen in numbers by age (Figure C3).

3.0 Assessment Results

3.1 Age-Based Analysis

An updated VPA calibration of Georges Bank yellowtail flounder is summarized in Table C4. This analysis updates the assessment reported by Stone et al. (2001) by including 2001 landings and discards, 2001 NEFSC fall and scallop survey indices, 2001 Canadian survey indices, and 2001-2002 NEFSC spring survey indices. Results indicate that the fully recruited fishing mortality rate remains low in 2001 at 0.13 (Figure C4). Spawning biomass has increased every year since 1995 and recruitment remains high (Figure C4). The age structure of the stock has improved and is approaching levels corresponding to those expected in equilibrium when the stock is at MSY (Figure C5). However, this analysis found a strong retrospective pattern of underestimating F and overestimating SSB in the terminal year, as seen in previous assessments (Figure C6). The estimate of F for 2000 increased from 0.14 in the 2001 assessment (Stone et al. 2001) to 0.24 . Thus, the value of F for 2001 may be underestimated. The 2001 SSB estimate of $39,000 t$ is less than the 2000 SSB estimate from the Stone et al. 2001 stock assessment $(43,000 \mathrm{t})$, again reflecting the retrospective pattern found in previous assessments. Bootstrap analysis indicates that abundance was estimated with moderate precision (CV $=14 \%-43 \%$). These results cannot be directly compared to the most recent Canadian stock assessment (Stone 2002) because the Canadian VPA results are all bias-corrected while these are not. However, trends are similar between these two assessments.

3.2 Sensitivity Analyses

Sensitivity analyses of the VPA assessment were conducted to examine hypothetical changes in the recent NEFSC spring and fall survey values due to warp misalignment (Figure C7). Results are summarized in Section 5.2 (Summary of Assessment Advice).

3.3 Stock Status

Proxies for MSY reference points were derived from yield and SSB per recruit analyses and the assumption of constant recruitment (NEFSC 2002). Long-term average recruitment is 53.8 million at age- 1 .
MSY $=12,900 \mathrm{mt}$
SSBmsy $=58,800 \mathrm{mt}$.
Fmsy $=0.25$ fully recruited (derived from $\mathrm{F}_{40 \%}$)
Therefore, according to VPA results, the stock is not overfished and overfishing is not occurring, e.g. $\mathrm{SSB}_{2001}=39,000 \mathrm{mt}>29,400 \mathrm{mt}=1 / 2 \mathrm{SSB}_{\text {Threshold }}$ of 58,800 and $\mathrm{F}_{2001}=0.13<0.25=$ Fmsy.

3.4 Projection

A projection assuming F in 2002 is 15% lower than in 2001, with recruitment similar to that observed when SSB was greater than $5,000 \mathrm{mt}$, suggests that $\mathrm{F}_{\text {rebuild }}$ remains at 0.22 , just below the Fmsy value of 0.25 (Figure C8). The total catch, F and SSB that occur in the short term under these projections are presented along with the input in Table C6.

3.5 Biomass-Based Analysis

For comparative purposes, surplus production analysis (ASPIC) was updated to provide alternative perspectives on stock status. Biomass and F estimates are generally similar to estimates from VPA, but biomass estimates in recent years are higher from ASPIC than from VPA (Figure C9). The surplus production model estimates of Bmsy and Fmsy also produce the conclusion as the VPA, viz., the Georges Bank yellowtail flounder stock is not overfished and overfishing is not occurring ($\left.\mathrm{B}_{2001} / \mathrm{Bmsy}=1.38 ; \mathrm{F}_{2001} / \mathrm{Fmsy}=0.37\right)$.

4.0 Sources of Uncertainty

- Dredge discards were insufficiently sampled both in magnitude as well as length composition in 2001.
- Retrospective patterns continue in the VPA for this assessment. Updated VPAs may indicate higher F and lower SSB in 2001 than the values reported here.
- Estimates of prorated landings and discard ratios are based on preliminary logbook data and are subject to change.

5.0 GARM Panel Comments

The use of logbook data to estimate discards was questioned. It was noted that there were very few observer samples from the trawl fishery, and none from the scallop dredge fishery.
Discards accounted for approximately 7% of the total catch by weight, and is not considered to be a major component of the catch. Discard ratios from recent years were less than those for 2001, but the GARM concluded that increased discard ratios may result from increasing stock sizes and constant trip limits.

Information on discard reason (e.g., sublegal size, regulatory trip limit, quality) is needed to evaluate the general size structure of discards. Observer information from recent years indicates that trawl discards are primarily undersized, but the reasons for dredge discards are a combination of undersized fish, regulations, and poor quality.

The GARM noted the importance of appropriately scaling survey indices in overlaying NEFSC and Canadian data. The short time series and greater catchability of the Canadian survey suggests a greater rate of increase in recent years when overlayed with NEFSC data.

Strong year classes did not appear consistently in all surveys and could not be followed clearly over time within survey series. Similar discrepancies exist in both Canadian and NEFSC survey data and may stem from use of NEFSC age data to derive abundance at age indices from the Canadian survey.

The GARM questioned if survey data adjusted for presumed warp effects improves the
retrospective pattern or makes it worse. Retrospective analyses of sensitivity runs showed that the retrospective pattern persisted in all runs, but was slightly less with survey adjustments.

The sensitivity of results to the NEFSC spring survey was discussed. Presumably the higher F and lower SSB result from decreased catches of the 2001 spring survey at all ages. The influence of the relatively short Canadian series was discussed. Further sensitivity analyses truncated the spring and fall series and showed high sensitivity of results when survey indices were used one at a time.

The GARM noted that the current ADAPT configuration is slightly different than that used in previous assessments, because the spring survey data had not been available in previous spring assessments. A sensitivity analysis without the current year NEFSC spring survey had very a similar retrospective pattern.

The issue of undeclared landings was raised. The GARM felt that U.S. dealer records were among the most reliable sources of information in the assessment, however proration of total yellowtail catch to stock area imposes some uncertainty to the estimate of catch. There was also some discussion of the possibility of unreported yellowtail landings in Canadian fisheries (e.g., from the scallop fishery).

The GARM requested information on current size structure compared to historical size structure. Survey length frequencies indicate that the size structure is now similar to that observed in the 1960s. Furthermore, the age structure is similar to that expected under $\mathrm{F}_{40 \%}$ over the lifetime of a cohort with long-term median abundance, with the exception of fewer fish older that 6 . Given the recent reduction in F and increase in recruitment, abundance of age-6+ fish is expected to increase.

6.0 References

Cadrin, S.X., J.D. Neilson, S. Gavaris, and P. Perley. 2000. Assessment of the Georges Bank yellowtail flounder stock for 2000. NEFSC Ref. Doc. 00-10. 71 p.

Cadrin, S.X., W.J. Overholtz, J.D. Neilson, S Gavaris, and S. Wigley. 1998. Stock assessment of Georges Bank yellowtail flounder for 1997. NEFSC Ref. Doc. 98-06.

NEFSC (Northeast Fisheries Science Center). 2002. Final report of the Working Group on ReEvaluation of Biological Reference Points for New England Groundfish. NEFSC Ref. Doc. 0204.

Stone, H. 2002. Stock assessment of Georges Bank (5Zjmnh) yellowtail flounder for 2002. Can. Science Advisory Secretariat Res. Doc. 2002. 79 p.

Stone, H., C. Legault, S. Cadrin, S. Gavaris, J. Neilson, and P. Perley. 2001. Stock assessment of Georges Bank (5Zjmnh) yellowtail flounder for 2001. Can. Science Advisory Secretariat Res. Doc. 2001/068. 87 p.

Table C1. Catch of Georges Bank yellowtail flounder (thousand mt).

Year	US Landings	Us Discards	Canada	Foreign	Cotal Can
1963	11.0	5.6	0.0	0.1	16.7
1964	14.9	4.9	0.0	0.0	19.8
1965	14.2	4.4	0.0	0.8	19.4
1966	11.3	2.1	0.0	0.3	13.7
1967	8.4	5.5	0.0	1.4	15.3
1968	12.8	3.6	0.0	1.8	18.2
1969	15.9	2.6	0.0	2.4	20.9
1970	15.5	5.5	0.0	0.3	21.3
1971	11.9	3.1	0.0	0.5	15.5
1972	14.2	1.2	0.0	2.2	17.6
1973	15.9	0.4	0.0	0.3	16.5
1974	14.6	1.0	0.0	1.0	16.6
1975	13.2	2.7	0.0	0.1	16.0
1976	11.3	3.0	0.0	0.0	14.4
1977	9.4	0.6	0.0	0.0	10.0
1978	4.5	1.7	0.0	0.0	6.2
1979	5.5	0.7	0.0	0.0	6.2
1980	6.5	0.4	0.0	0.0	6.9
1981	6.2	0.1	0.0	0.0	6.3
1982	10.6	1.4	0.0	0.0	12.0
1983	11.4	0.1	0.0	0.0	11.4
1984	5.8	0.0	0.0	0.0	5.8
1985	2.5	0.0	0.0	0.0	2.5
1986	3.0	0.0	0.0	0.0	3.1
1987	2.7	0.2	0.0	0.0	3.0
1988	1.9	0.3	0.0	0.0	2.1
1989	1.1	0.1	0.0	0.0	1.2
1990	2.8	0.8	0.0	0.0	3.6
1991	1.8	0.2	0.0	0.0	2.0
1992	2.9	1.9	0.0	0.0	4.7
1993	2.1	1.1	0.7	0.0	3.9
1994	1.6	0.1	2.1	0.0	3.9
1995	0.3	0.0	0.5	0.0	0.8
1996	0.8	0.0	0.5	0.0	1.3
1997	1.0	0.1	0.8	0.0	1.8
1998	1.8	0.1	1.2	0.0	3.1
1999	2.0	0.5	2.0	0.0	4.4
2000	3.7	0.4	2.9	0.0	6.9
2001	3.8	0.5	2.9	0.0	7.2
mean	7.2	1.5	0.3	0.3	9.3

Table C2. Sampling history of the Georges Bank yellowtail flounder fishery.

Year	Half				Canada				
					Length Samples		Trips	Lengths Landings	
		Trips	Small	Large	Ages L	dings			
1991	1		227	352	173	1011			
	2		627	438	295	724			
	All		854	790	468	1735			
1992	1		401	308	204	1162			
	2		716	517	331	1631			
	All		1117	825	535	2793			
1993	1		468	326	227	1199			
	2		632	774	387	857			
	All		1100	1100	614	2056			
1994	1	1	95	93	53	198			
	2	7	847	596	353	1391			
	All	8	942	689	406	1589			
1995	1	4	235	345	166	161			
	2	1	0	81	23	132			
	All	5	235	426	189	292			
1996	1	3	250	254	146	521			
	2	3	382	274	173	230			
	All	6	632	528	319	751			
1997	1	11	957	726	516	654	3	600	100
	2	1	0	103	63	312	10	2308	709
	All	12	957	829	579	966	13	2908	810
1998	1	7	453	490	231	578	1	2380	36
	2	2	199	284	62	1245	16	3741	1123
	All	9	652	774	293	1823	17	6121	1159
1999	1	7	451	266	195	1160	0	0	
	2	4	251	574	105	906	22	4944	
	All	11	702	840	300	2066	22	4944	1971
2000	1		94	782	200	2223	5	1120	92
	2		598	1288	405	1455	53	13048	2767
	All	11	692	2070	605	3678	58	14168	2859
2001	1	15	696	1055	433	2779			
	2	15	1073	576	381	989			
	All	30	1769	1631	814	3768			

Table C3a. Total catch (thousands) at age of Georges Bank yellowtail flounder.

	Age						
Year	1	2	3	4	5	$6+$	Total
1973	347	4890	13243	9276	3743	1618	33117
1974	2143	8971	7904	7398	3544	1477	31437
1975	4372	25284	7057	3392	2084	1148	43337
1976	615	31012	5146	1347	532	868	39520
1977	330	8580	9917	1721	394	474	21416
1978	9659	3105	4034	1660	459	174	19091
1979	233	9505	3445	1242	550	272	15247
1980	309	3572	8821	1419	321	99	14541
1981	55	729	5351	4556	796	126	11613
1982	2063	17491	7122	3246	1031	84	31037
1983	696	7689	16016	2316	625	127	27469
1984	428	1917	4266	4734	1592	321	13258
1985	650	3345	816	652	410	65	5938
1986	158	5771	978	347	161	76	7491
1987	140	2653	2751	761	132	112	6549
1988	483	2367	1191	624	165	38	4868
1989	185	1516	668	262	68	19	2718
1990	219	1931	6123	800	107	20	9200
1991	412	54	1222	2430	293	60	4471
1992	2389	8359	2527	1269	510	27	15081
1993	5194	1009	2777	2392	318	75	11765
1994	71	861	5742	2571	910	136	10291
1995	14	157	895	715	137	27	1944
1996	50	383	1509	716	167	15	2841
1997	16	595	1258	1502	341	90	3802
1998	26	971	2792	1824	624	103	6338
1999	21	3287	3209	1498	651	162	8829
2000	100	3731	5747	2824	798	324	13524
2001	217	2754	6866	2585	1007	478	13907
mean	1089	5603	4807	2279	775	297	14850

Table C3b. Total weight (kg) at age of George Bank yellowtail flounder from US and Canadian commercial samples.

			Age					
Year	1	2	3	4	5	$6+$	mean wt	
1973	0.100	0.352	0.462	0.527	0.603	0.776	0.492	
1974	0.108	0.345	0.498	0.609	0.680	0.842	0.491	
1975	0.111	0.316	0.489	0.554	0.618	0.682	0.366	
1976	0.106	0.312	0.542	0.636	0.741	0.835	0.367	
1977	0.109	0.342	0.525	0.634	0.782	0.950	0.468	
1978	0.100	0.315	0.510	0.684	0.793	0.915	0.297	
1979	0.103	0.331	0.460	0.649	0.728	0.893	0.407	
1980	0.100	0.325	0.493	0.656	0.813	1.078	0.470	
1981	0.099	0.347	0.490	0.603	0.707	0.799	0.542	
1982	0.112	0.301	0.486	0.650	0.748	1.055	0.384	
1983	0.139	0.296	0.440	0.604	0.736	0.959	0.415	
1984	0.162	0.240	0.378	0.500	0.642	0.785	0.436	
1985	0.178	0.363	0.497	0.647	0.733	0.812	0.423	
1986	0.176	0.342	0.540	0.664	0.823	0.912	0.396	
1987	0.112	0.316	0.522	0.666	0.680	0.842	0.455	
1988	0.100	0.325	0.555	0.688	0.855	0.985	0.429	
1989	0.100	0.345	0.542	0.725	0.883	1.122	0.432	
1990	0.100	0.293	0.397	0.577	0.697	0.870	0.388	
1991	0.100	0.268	0.368	0.481	0.726	0.852	0.434	
1992	0.100	0.295	0.369	0.522	0.647	1.183	0.309	
1993	0.100	0.288	0.377	0.507	0.562	0.882	0.282	
1994	0.150	0.256	0.350	0.472	0.628	0.863	0.402	
1995	0.155	0.249	0.365	0.462	0.582	0.712	0.410	
1996	0.137	0.298	0.405	0.568	0.725	0.975	0.449	
1997	0.155	0.310	0.410	0.523	0.668	0.968	0.474	
1998	0.185	0.333	0.453	0.542	0.670	0.840	0.487	
1999	0.210	0.374	0.506	0.637	0.748	0.877	0.503	
2000	0.185	0.379	0.480	0.612	0.756	0.962	0.506	
2001	0.108	0.287	0.435	0.610	0.812	1.016	0.480	
mean	0.128	0.316	0.461	0.593	0.713	0.901	0.425	

Table C4a. Survey indices of Georges Bank yellowtail abundance and biomass.

NEFSC Spring Survey			Stratified Mean Number per tow at Age Age						Total	kg/tow
Year	1	2	3	4	5	6	7	8+		
1968	0.149	3.364	3.579	0.316	0.084	0.160	0.127	0.000	7.779	2.813
1969	1.015	9.406	11.119	3.096	1.423	0.454	0.188	0.057	26.758	11.170
1970	0.093	4.485	6.030	2.422	0.570	0.121	0.190	0.000	13.911	5.312
1971	0.791	3.335	4.620	3.754	0.759	0.227	0.050	0.029	13.564	4.607
1972	0.138	7.136	7.198	3.514	1.094	0.046	0.122	0.000	19.247	6.450
1973	1.931	3.266	2.368	1.063	0.410	0.173	0.023	0.020	9.254	2.938
1974	0.316	2.224	1.842	1.256	0.346	0.187	0.085	0.009	6.265	2.719
1975	0.420	2.939	0.860	0.298	0.208	0.068	0.000	0.013	4.806	1.676
1976	1.034	4.368	1.247	0.311	0.196	0.026	0.048	0.037	7.268	2.273
1977	0.000	0.671	1.125	0.384	0.074	0.013	0.000	0.000	2.267	0.999
1978	0.936	0.798	0.507	0.219	0.026	0.000	0.008	0.000	2.494	0.742
1979	0.279	1.933	0.385	0.328	0.059	0.046	0.041	0.000	3.072	1.227
1980	0.057	4.644	5.761	0.473	0.057	0.037	0.000	0.000	11.030	4.456
1981	0.012	1.027	1.779	0.721	0.205	0.061	0.000	0.026	3.830	1.960
1982	0.045	3.742	1.122	1.016	0.455	0.065	0.000	0.026	6.472	2.500
1983	0.000	1.865	2.728	0.531	0.123	0.092	0.061	0.092	5.492	2.642
1984	0.000	0.093	0.809	0.885	0.834	0.244	0.000	0.000	2.865	1.646
1985	0.110	2.198	0.262	0.282	0.148	0.000	0.000	0.000	3.000	0.988
1986	0.027	1.806	0.291	0.056	0.137	0.055	0.000	0.000	2.372	0.847
1987	0.000	0.128	0.112	0.133	0.053	0.055	0.000	0.000	0.480	0.329
1988	0.078	0.275	0.366	0.242	0.199	0.027	0.000	0.000	1.187	0.566
1989	0.047	0.424	0.740	0.290	0.061	0.022	0.022	0.000	1.605	0.729
1990	0.000	0.065	1.108	0.393	0.139	0.012	0.045	0.000	1.762	0.699
1991	0.435	0.000	0.254	0.675	0.274	0.020	0.000	0.000	1.659	0.631
1992	0.000	2.010	1.945	0.598	0.189	0.000	0.000	0.000	4.742	1.566
1993	0.046	0.290	0.500	0.317	0.027	0.000	0.000	0.000	1.180	0.482
1994	0.000	0.621	0.638	0.357	0.145	0.043	0.000	0.000	1.804	0.660
1995	0.040	1.180	4.810	1.490	0.640	0.010	0.000	0.000	8.170	2.579
1996	0.030	0.990	2.630	2.700	0.610	0.060	0.000	0.000	7.020	2.853
1997	0.019	1.169	3.733	4.081	0.703	0.134	0.000	0.000	9.837	4.359
1998	0.000	2.081	1.053	1.157	0.759	0.323	0.027	0.000	5.400	2.324
1999	0.050	4.746	10.820	2.720	1.623	0.426	0.329	0.024	20.738	9.307
2000	0.183	4.819	7.666	2.914	0.813	0.422	0.102	0.000	16.919	6.696
2001	0.000	2.315	6.563	2.411	0.483	0.352	0.101	0.000	12.225	5.008
2002	0.188	2.412	12.333	4.078	1.742	0.378	0.408	0.086	21.624	9.566
mean	0.242	2.366	3.111	1.299	0.448	0.125	0.056	0.012	7.660	3.038

Table C4b. Survey indices of Georges Bank yellowtail abundance and biomass.
Stratified Mean Number per tow at Age

NEFSC Fall Survey			Age					8+	Total	kg/tow
Year	-	2	3	4	5	6	7			
1963	14.722	7.896	11.226	1.858	0.495	0.281	0.034	0.233	36.746	12.791
1964	1.721	9.723	7.370	5.998	2.690	0.383	0.095	0.028	28.007	13.625
1965	1.138	5.579	5.466	3.860	1.803	0.162	0.284	0.038	18.345	9.104
1966	8.772	4.776	2.070	0.837	0.092	0.051	0.000	0.000	17.775	3.989
1967	9.137	9.313	2.699	1.007	0.309	0.076	0.061	0.000	22.708	7.577
1968	11.782	11.946	5.758	0.766	0.944	0.059	0.000	0.000	31.254	10.535
1969	8.106	10.381	5.855	1.662	0.553	0.149	0.182	0.000	27.023	9.278
1970	4.610	5.133	3.144	1.952	0.451	0.063	0.017	0.000	16.417	4.978
1971	3.627	6.949	4.904	2.248	0.551	0.234	0.024	0.024	18.586	6.362
1972	2.424	6.525	4.824	2.095	0.672	0.279	0.000	0.000	17.604	6.328
1973	2.494	5.497	5.104	2.944	1.216	0.416	0.171	0.031	17.967	6.600
1974	4.623	2.854	1.524	1.060	0.460	0.249	0.131	0.000	11.931	3.734
1975	4.625	2.511	0.877	0.572	0.334	0.033	0.000	0.031	9.344	2.365
1976	0.336	1.929	0.475	0.117	0.122	0.033	0.000	0.067	3.079	1.533
1977	0.928	2.161	1.649	0.618	0.113	0.056	0.036	0.016	5.577	2.828
1978	4.729	1.272	0.773	0.406	0.139	0.011	0.000	0.024	7.391	2.383
1979	1.312	1.999	0.316	0.122	0.138	0.038	0.064	0.007	4.014	1.520
1980	0.761	5.086	6.050	0.678	0.217	0.162	0.006	0.033	13.071	6.722
1981	1.584	2.333	1.630	0.500	0.121	0.083	0.013	0.000	6.264	2.621
1982	2.424	2.185	1.590	0.423	0.089	0.000	0.000	0.000	6.711	2.271
1983	0.109	2.284	1.914	0.473	0.068	0.012	0.000	0.038	4.898	2.131
1984	0.661	0.400	0.306	2.428	0.090	0.029	0.000	0.018	3.944	0.593
1985	1.350	0.560	0.160	0.040	0.080	0.000	0.000	0.000	2.200	0.709
1986	0.280	1.110	0.350	0.070	0.000	0.000	0.000	0.000	1.810	0.820
1987	0.113	0.390	0.396	0.053	0.079	0.000	0.000	0.000	1.031	0.509
1988	0.019	0.213	0.102	0.031	0.000	0.000	0.000	0.000	0.376	0.171
1989	0.248	1.992	0.774	0.069	0.066	0.000	0.000	0.000	3.176	0.977
1990	0.000	0.326	1.517	0.280	0.014	0.000	0.000	0.000	2.284	0.725
1991	2.100	0.275	0.439	0.358	0.000	0.000	0.000	0.000	3.172	0.730
1992	0.151	0.396	0.712	0.162	0.144	0.027	0.000	0.000	1.592	0.576
1993	0.842	0.136	0.587	0.536	0.000	0.000	0.000	0.000	2.101	0.545
1994	1.200	0.220	0.980	0.710	0.260	0.030	0.030	0.000	3.440	0.897
1995	0.280	0.120	0.350	0.280	0.050	0.010	0.000	0.000	1.160	0.354
1996	0.140	0.350	1.870	0.450	0.070	0.000	0.000	0.000	2.880	1.303
1997	1.392	0.533	3.442	2.090	1.071	0.082	0.000	0.000	8.611	3.781
1998	1.900	4.817	4.202	1.190	0.298	0.055	0.019	0.000	12.531	4.347
1999	3.090	8.423	5.727	1.432	1.436	0.260	0.000	0.000	20.394	7.973
2000	0.629	1.697	4.814	2.421	0.948	0.800	0.027	0.000	11.355	5.838
2001	3.518	6.268	8.091	2.601	1.718	0.714	1.334	0.000	24.282	11.553
mean	2.766	3.501	2.821	1.164	0.459	0.124	0.065	0.015	11.053	4.146

Table C4c. Survey indices of Georges Bank yellowtail abundance and biomass.

Stratified Mean Number per tow at Age																							
Canadian Survey Year	1	2	3	4	5	$6+$	Total	kg/tow															
1987	0.12	0.68	2.00	1.09	0.06	0.00	3.95	1.26															
1988	0.00	0.66	1.89	0.80	0.59	0.01	3.96	1.24															
1989	0.11	0.78	0.80	0.32	0.10	0.02	2.13	0.47															
1990	0.00	1.27	4.62	1.12	0.43	0.01	7.45	1.58															
1991	0.02	0.59	1.72	2.91	0.99	0.00	6.24	1.76															
1992	0.22	10.04	4.52	1.21	0.16	0.00	16.14	2.48															
1993	0.33	2.16	5.04	3.47	0.62	0.00	11.63	2.64															
1994	0.00	6.03	3.33	3.08	0.75	0.33	13.51	2.75															
1995	0.21	1.31	4.07	2.22	1.14	0.11	9.07	2.03															
1996	0.45	5.54	8.44	7.49	1.37	0.16	23.45	5.30															
1997	0.10	9.48	15.16	19.09	3.11	0.54	47.49	13.29															
1998	0.92	3.10	3.81	5.15	2.44	0.59	16.01	4.29															
1999	0.22	13.05	24.78	9.07	6.85	3.10	57.07	17.67															
2000	0.06	9.18	31.22	18.56	5.77	4.42	69.22	19.95															
2001	0.29	5.97	51.67	16.65	4.41	3.61	82.62	22.16															
2002							63.49	20.62															
mean	0.20	4.66	10.87	6.15	1.92	0.86	27.09	7.47															

Scallop Survey Year	age 1
1982	0.313
1983	0.140
1984	0.233
1985	0.549
1986	0.103
1987	0.047
1988	0.116
1989	0.195
1990	0.100
1991	2.117
1992	0.167
1993	1.129
1994	1.503
1995	0.609
1996	0.508
1997	1.062
1998	1.872
1999	1.038
2000	0.912
2001	0.789
2002	1.005
mean	0.691

Table C5a. Estimates of stock size from virtual population analysis.

Table C5b. Estimates of fishing mortality from VPA.

FISHING	$\begin{aligned} & \text { MORTALITY } \\ & 1973 \end{aligned}$	1974	1975	1976	1977	1978	1979
1	0.01	0.05	0.07	0.03	0.02	0.24	0.01
2	0.26	0.57	1.25	1.07	0.74	0.32	0.39
3	0.70	0.91	1.33	0.96	1.38	0.98	0.71
4	0.93	1.20	1.50	1.05	1.07	0.94	0.98
5	0.95	1.25	1.59	1.09	1.10	0.97	1.01
6	0.95	1.25	1.59	1.09	1.10	0.97	1.01
	1980	1981	1982	1983	1984	1985	1986
1	0.02	0.00	0.11	0.14	0.06	0.05	0.03
2	0.23	0.05	0.49	0.77	0.72	0.81	0.82
3	0.76	0.66	0.83	1.22	1.53	0.79	0.59
4	0.73	1.27	1.17	0.73	2.02	1.14	0.98
5	0.74	1.33	1.22	0.74	2.27	1.18	1.01
6	0.74	1.33	1.22	0.74	2.27	1.18	1.01
	1987	1988	1989	1990	1991	1992	1993
1	0.02	0.03	0.02	0.02	0.02	0.18	0.67
2	0.80	0.63	0.12	0.38	0.01	0.74	0.11
3	1.37	1.13	0.36	0.92	0.43	0.46	0.59
4	1.42	1.66	0.82	0.98	1.32	1.17	1.10
5	1.50	1.79	0.84	1.02	1.39	1.22	1.15
6	1.50	1.79	0.84	1.02	1.39	1.22	1.15
	1994	1995	1996	1997	1998	1999	2000
1	0.01	0.00	0.00	0.00	0.00	0.00	0.00
2	0.21	0.02	0.04	0.05	0.04	0.08	0.10
3	1.60	0.36	0.30	0.19	0.32	0.18	0.19
4	2.34	0.91	0.55	0.54	0.45	0.28	0.24
5	2.77	0.94	0.56	0.55	0.46	0.29	0.24
6	2.77	0.94	0.56	0.55	0.46	0.29	0.24
	2001						
1	0.00						
2	0.08						
3	0.27						
4	0.13						
5	0.13						
6	0.13						

Table C5c. Estimates of spawning biomass from VPA.
SSB AT THE START OF THE SPAWNING SEASON -MALES AND FEMALES (MT) (using SSB mean weights)

	1973	1974	1975	1976	1977	1978	1979
1	00	00	00	00	00	00	00
2	2836	2575	3052	4310	1898	1440	3837
3	8895	4500	2678	3026	3891	2185	2320
4	5531	3982	1319	861	1084	1275	873
5	2509	2042	848	383	296	397	421
6	1372	1031	502	691	424	171	251
1+	21143	14130	8398	9271	7592	5469	7702
	1980	1981	1982	1983	1984	1985	1986
1	00	00	00	00	00	00	00
2	2310	2733	5527	1534	629	1480	2358
3	5930	4161	4356	6031	1103	543	947
4	1351	2295	1908	2035	1195	394	248
5	371	449	670	656	450	270	139
6	150	78	75	171	107	46	71
1+	10112	9716	12537	10427	3485	2732	3763
	1987	1988	1989	1990	1991	1992	1993
1	00	00	00	00	00	00	00
2	1027	1205	4334	1461	2143	1834	1422
3	1108	621	1058	2797	1083	2139	1610
4	375	269	244	497	935	599	1164
5	63	82	75	78	162	286	165
6	64	21	26	18	38	27	60
1+	2638	2198	5739	4850	4360	4885	4421
	1994	1995	1996	1997	1998	1999	2000
1	00	00	00	00	00	00	00
2	556	958	1457	2097	4279	8248	7639
3	1133	816	1841	2451	3533	7978	12623
4	516	383	781	1518	2292	3486	7484
5	195	90	229	434	958	1766	2596
6	38	21	27	164	196	512	1334
1+	2438	2268	4335	6663	11258	21989	31677
	2001						
1	00						
2	5260						
3	10035						
4	12946						
5	6713						
6	3976						
$1+$	38932						

Table C6. Projection input and short term output from the age based assessment. The fishing mortality rate in 2003 and 2004 is $\mathrm{F}_{\text {rebuild. }}$

$M=0.2$			
Age	Weight (kg)	Maturity	Selectivity
1	0.181	0	0.006
2	0.349	0.52	0.315
3	0.462	0.86	0.648
4	0.578	0.98	1
5	0.710	1	1
$6+$	0.948	1	1

Year	F	SSB	Catch
2002	0.11	47.73	4.60
2003	0.22	50.87	10.10
2004	0.22	50.71	10.11

Figure C1. Total catch of Georges Bank yellowtail flounder.

Figure C2. Survey indices of Georges Bank yellowtail flounder biomass.

Figure C3. Survey indices of abundance at age. Note that the NEFSC Spring and Fall surveys correspond to the left axes in each plot while the NEFSC scallop and the Canadian surveys correspond to the right axes in each plot.

Figure C4. Summary of Georges Bank yellowtail flounder VPA results.

Figure C5. Population abundance at age from VPA compared to equilibrium levels at MSY.
(19070

Figure C6. Retrospective patterns in Georges Bank yellowtail flounder VPA.

Figure C7. Point estimate (center symbol) and 80% confidence intervals (end symbols) for F and SSB in 2001 for the base run and three sensitivity analyses which increased the impacted survey catches.

Figure C8. Projected spawning stock biomass under $\mathrm{F}_{\text {REbuild }}=0.22$ in years 2003 through 2009 to achieve a 50% probability of $\mathrm{B}_{\text {msy }}$ in 2009 .

Figure C9. Mean biomass of Georges Bank yellowtail flounder and fishing mortality on biomass.

D. Southern New England Yellowtail Flounder by S.X. Cadrin

1.0 Background

The southern New England yellowtail stock was at low biomass and relatively low F in 1999 (SSB was $5,400 \mathrm{mt}$ and fully recruited F was 0.3 ; Cadrin 2001). This report updates catch and survey indices, and estimates 2001 fishing mortality and 2002 stock size. In August 2002, the Southern Demersal Working Group concluded that southern New England and Mid Atlantic yellowtail flounder should be assessed and managed as a single unit stock, and is concurrently preparing an assessment of the southern New England- Mid Atlantic yellowtail resource (Cadrin 2002). In September 2002, the Working Group reviewed input data, analyses and projections in this report.

2.02002 Assessment

2. 1 2000-2001 Landings

U.S. landings were prorated as described in NEFSC (1998; Table D1; Figure D1). Landings from southern New England have steadily increased since 1999 (a 9\% increase in 2000 and an 11% increase in 2001). Sampling in 2000 and 2001 improved from that in 1999 (Table D2). Although all classified market categories were sampled in each half-year period, the overall number of samples was low. Landings at length for 2001 and 2002 were estimated by half-year and market category. Landings at age for 1999 were revised by assuming the average age distribution for July to December in 1998, 2000 and 2001 for landings in the second half of 1999.

2.2 2000-2001 Discards

Discarded catch was estimated from logbook information on discard to kept ratios by half-year and gear (NEFSC 1998). Discards were 5\% of landings by weight in 2000 and 2001. Discards at age were estimated from observer lengths and survey age-length keys, however length distribution of scallop dredge discards were only sampled in the second half of 2000. Those samples were used to characterize all 2000-2001 dredge discards. Total catch at age and mean weights at age are reported in Table D3.

2.3 2000-2002 Survey Indices

Survey abundance and biomass indices are reported in Table D4. Estimates are from valid tows in southern New England (offshore strata 5, 6, 9, 10; scallop strata 33, 34, 35, 46), standardized according to net, vessel, and door changes (NEFSC 1998). All survey indices of total abundance and total biomass remained low in recent years (Figure D2).

3.0 Assessment Results

3.1 Age-Based Analysis

Results of an updated VPA calibration of southern New England yellowtail are summarized in Table D5. This update uses existing stock definitions, i.e., Southern New England yellowtail flounder is a single stock. This analysis updates the assessment reported by Cadrin (2000) by including 1999-2001 landings and discards, 1999-2000 scallop and fall indices, and 2000-2002 winter and spring indices. Note that a VPA was updated in 2000, but was rejected because of
inadequate sampling of catch at age in 1999 (see Cadrin 2000 for details). Results indicate that fishing mortality increased to 1.58 in 1999, and decreased to 0.54 and 0.46 in 2000 and 2001 (Figure D3). Spawning biomass increased from extremely low levels in the middle 1990s to $1,400 \mathrm{mt}$ in 1999 and 2,000 mt in 2000, but slightly decreased to $1,900 \mathrm{mt}$ in 2001. Retrospective analysis indicates a strong pattern of underestimating F, and overestimating SSB in recent years, but the estimates of 2000 F and SSB were much more consistent than those from 1994-1999 (Figure D4). Bootstrap analysis indicates that abundance was estimated with moderate precision (CV=38-47\%). Sensitivity to recent NEFSC survey observations was evaluated by arbitrarily increasing recent NEFSC survey observations by 10%, 25%, and 100% (Figure D7). Results are summarized in Section 5.2 (Summary of Assessment Advice).

Proxies for MSY reference points were derived from yield and SSB per recruit analyses and the assumption of constant recruitment (NEFSC 2002). Assuming that $\mathrm{F}_{\mathrm{MSY}}$ is approximately $\mathrm{F}_{40 \%}$ (0.27 on fully-recruited ages) and long-term average recruitment (40.7 million at age- 1), MSY $=9,000 \mathrm{mt}$ and $\mathrm{SSB}_{\mathrm{MSY}}=45,200 \mathrm{mt}$. Therefore, despite uncertainty in the assessment, the stock is clearly overfished ($2001 \mathrm{SSB}=1,900 \mathrm{mt}, 4 \% \mathrm{SSB}_{\mathrm{MSY}}$) and overfishing is occurring (2001 $\mathrm{F}=0.46,=1.7 \cdot \mathrm{~F}_{\mathrm{MSY}}$).

Stochastic projections that assume a 15% reduction in F from 2001 to 2002 and recruitment similar to that experienced in the last decade suggest that the stock cannot rebuild to $\mathrm{B}_{\text {MSY }}$ by 2009 even if F in 2003-2010 is zero. If the same hindcast recruitment values used to derive the reference points (NEFSC 2002) are assumed for projections, therefore stock is expected to have approximately a 50% chance of rebuilding to $\mathrm{SSB}_{\text {MSY }}$ by 2009 with an F of 0.10 (Figure D5, Table D6). However, long-term recruitment levels are not likely in the short-term, because SSB is extremely low, and retrospective patterns indicate that projections may be overly optimistic.

3.2 Biomass-Based Analysis

Due to continued low intensity of sampling and resulting problems estimating catch at age, a surplus production analysis (ASPIC) was updated to provide alternative perspectives on stock status. Biomass and F estimates are generally similar to the VPA, but biomass estimates in recent years are substantially greater than those from VPA (Figure D6). Despite the more optimistic perspective from ASPIC, stock biomass in 2001 remains only 15% of the ASPIC estimate of $\mathrm{B}_{\text {MSY }}$. Therefore, ASPIC results also suggest that the stock is overfished. Stochastic projections at status quo F in 2002 and $\mathrm{F}=0$ for 2003-2009 indicate a 25% probability of rebuilding to the ASPIC estimate of $\mathrm{B}_{\mathrm{MSY}}$ by 2009.

4.0 Sources of Uncertainty

- Estimates of recent catch at age may not be reliable due to poor sampling intensity. Therefore VPA and age-based projections may be misleading. Retrospective patterns may indicate inadequate sampling and mis-allocation of catch at age.
- Retrospective patterns indicate that VPA estimates of biomass and F may be overly optimistic. Updated VPAs may indicate that 2001 biomass levels were lower, and 2001 F greater than reported here.
- Although historical perspective from production models are valuable, current biomass levels may not be reliable, because recruitment is implicitly assumed to be a function of stock biomass.
- Inappropriate stock delineation may result in underestimated removals (e.g., from adjacent areas in the Mid Atlantic Bight).
- Estimates of prorated landings and discard ratios are based on preliminary logbook data and are subject to change.

5.0 GARM Discussion

The GARM noted that the Nantucket Lightship Closure does not appear to be helping recovery of this species. Abundance and size structure within the closed area does not appear to be significantly different from outside the area.

The question of what recruitment is appropriate for projections was raised. Using only the recent ten years of recruitment results in zero probability of rebuilding to $\mathrm{SSB}_{\mathrm{MSY}}$ because these recruitment values are so low. Using the entire time series of recruitment for projections does allow for rebuilding with F greater than zero. The GARM suggested that an interim rebuilding target may be derived from short-term recruitment (average $=2.4$ million) and 40% maximum SSB per recruit. The expected biomass at $\mathrm{F}_{40 \%}$ and short term recruitment is $2,700 \mathrm{mt} \operatorname{SSB}$, and current SSB is approximately 70% of the proposed interim target.

It was suggested that a jackknife approach be used to quantify the uncertainty in the generation of the catch at age.

6.0 References

Cadrin, S.X. 2000. Southern New England yellowtail flounder. In Assessment of 11 Northeast Groundfish Stocks through 1999. NEFSC Ref. Doc. 00-05: 65-82.

Cadrin, S.X. 2001. Southern New England yellowtail flounder. In Assessment of 19 Northeast Groundfish Stocks through 2000. NEFSC Ref. Doc. 01-20: 54-66.

Cadrin, S.X. 2002. Stock Assessment of yellowtail flounder in the southern New England - Mid Atlantic area. SAW36 WPA6.

NEFSC (Northeast Fisheries Science Center). 1998. Southern New England yellowtail flounder. NEFSC Ref. Doc. 98-15: 328-350.

NEFSC (Northeast Fisheries Science Center). 2002. Final report of the Working Group on ReEvaluation of Biological Reference Points for New England Groundfish. 19 March, 2002.

Table D1. Landings and catch of southern New England yellowtail flounder (thousand mt).

	US	US			
	Industrial Landings	Foreign discards	total landings		
1960	7.8	3.2	0.5		11.5
1961	11.6	4.7	0.7		17.0
1962	13.1	5.3	0.2		18.6
1963	22.0	5.9	0.3	0.2	27.9
1964	19.0	10.0	0.5		29.0
1965	18.4	9.4	1.0	1.4	27.8
1966	14.9	8.7	2.7	0.7	23.6
1967	10.8	15.0	4.5	2.8	25.8
1968	14.3	13.7	3.9	3.5	28.0
1969	11.4	24.2	4.2	17.6	35.6
1970	13.1	9.3	2.1	2.5	22.4
1971	8.2	4.0	0.4	0.3	12.2
1972	8.2	5.0	0.3	3.0	13.2
1973	6.9	1.5	0.3	0.2	8.4
1974	6.4	8.7		0.1	15.1
1975	3.2	1.9			5.1
1976	1.6	1.6			3.2
1977	2.8	1.9			4.7
1978	2.3	5.0			7.3
1979	5.3	4.4			9.7
1980	6.0	1.7			7.7
1981	4.7	1.2			5.9
1982	10.3	5.0			15.3
1983	17.0	3.5			20.5
1984	7.9	1.1			9.0
1985	2.7	1.2			3.9
1986	3.3	1.1			4.4
1987	1.6	0.9			2.5
1988	0.9	1.8			2.7
1989	2.5	5.5			8.0
1990	8.0	9.7			17.7
1991	3.9	2.3			6.2
1992	1.4	1.1			2.5
1993	0.5	0.1			0.6
1994	0.2	0.1			0.3
1995	0.2	0.1		0.2	
1996	0.3	0.1			0.4
1997	0.2	0.0			0.3
1998	0.4	0.1		0.5	
1999	0.7	0.1			0.8
2000	0.7	0.0			0.8
2001	0.8	0.0			0.9

Table D2. Samples of southern New England yellowtail flounder (italics indicate observer lengths).
Number of Fish Sampled

	unclassified length		large lengths	small lengths	ages of observer	

Table D3a. Catch at age (thousands) of southern New England yellowtail flounder.

	age 1	age 2	age 3	age 4	age 5	age 6	age 7+
1973	188	5056	8299	4673	1716	1517	312
1974	858	28334	4715	5098	2500	950	1217
1975	8840	3779	1497	983	1257	549	471
1976	214	6599	912	245	337	391	355
1977	5442	4771	3973	392	205	253	283
1978	8698	13311	1495	1025	165	34	72
1979	204	19225	8371	1033	428	96	24
1980	988	9998	6342	3619	472	117	31
1981	38	6745	6737	2449	884	128	14
1982	169	35130	13693	1744	404	78	7
1983	2526	18430	38615	3364	376	129	42
1984	510	5731	14843	6661	740	244	21
1985	2230	7015	1516	1312	774	135	31
1986	462	9680	2921	561	324	119	22
1987	1590	3404	2033	803	139	47	9
1988	5899	2050	508	407	101	17	6
1989	24	19215	3103	411	47	3	0
1990	192	2048	42185	2025	79	5	0
1991	445	1607	5050	9489	93	1	17
1992	477	1453	1982	2347	279	11	3
1993	13	423	376	426	124	40	0
1994	9	150	222	165	132	49	1
1995	7	248	163	210	30	4	3
1996	21	305	496	151	29	13	6
1997	1	56	351	150	15	2	3
1998	0	388	478	179	34	5	1
1999	3	72	1446	180	56	13	5
2000	31	456	834	336	12	2	2
2001	1	235	1161	300	84	18	9

Table D3b. Mean weight at age (kg) of southern New England yellowtail flounder catch.

	age 1	age 2	age 3	age 4	age 5	age 6	age 7+
1973	0.210	0.298	0.381	0.420	0.430	0.506	0.611
1974	0.203	0.308	0.359	0.429	0.477	0.476	0.518
1975	0.218	0.290	0.385	0.439	0.436	0.469	0.515
1976	0.228	0.303	0.427	0.528	0.533	0.568	0.603
1977	0.215	0.284	0.385	0.521	0.529	0.484	0.612
1978	0.234	0.296	0.402	0.543	0.710	0.791	0.677
1979	0.189	0.301	0.366	0.476	0.590	0.684	0.679
1980	0.206	0.281	0.384	0.499	0.690	0.891	1.182
1981	0.140	0.262	0.343	0.484	0.619	0.664	0.476
1982	0.226	0.263	0.354	0.502	0.661	0.821	0.956
1983	0.175	0.262	0.341	0.499	0.671	0.829	0.838
1984	0.182	0.239	0.298	0.388	0.497	0.652	0.724
1985	0.183	0.264	0.370	0.428	0.541	0.62	0.867
1986	0.186	0.285	0.335	0.470	0.598	0.617	0.804
1987	0.247	0.268	0.361	0.412	0.542	0.595	0.905
1988	0.270	0.293	0.398	0.501	0.664	0.936	0.937
1989	0.311	0.337	0.389	0.546	0.736	0.959	1.046
1990	0.301	0.327	0.378	0.461	0.800	0.884	0.781
1991	0.206	0.262	0.336	0.414	0.676	0.874	0.594
1992	0.167	0.316	0.367	0.430	0.597	0.779	1.409
1993	0.122	0.358	0.430	0.471	0.645	1.040	0.901
1994	0.108	0.320	0.349	0.416	0.556	0.717	0.949
1995	0.123	0.317	0.410	0.460	0.668	0.883	0.863
1996	0.147	0.374	0.409	0.466	0.585	0.665	0.804
1997	0.143	0.295	0.425	0.495	0.680	0.871	0.926
1998	0.130	0.284	0.399	0.528	0.694	0.790	0.707
1999	0.210	0.320	0.428	0.574	0.806	1.177	1.128
2000	0.020	0.367	0.493	0.587	0.774	0.860	0.904
2001	0.153	0.335	0.412	0.610	0.729	0.919	0.948

Table D4a. Survey indices of southern New England yellowtail abundance and biomass.
Mean Number per Tow at Age

NEFSC Spring Survey				Age			7	$8+$	Total	kg/tow
Year	1	2	3	4	5	6				
1968	1.662	31.719	31.913	19.002	0.886	0.168	0.067	0.000	85.416	18.624
1969	5.102	19.866	27.261	14.675	2.540	0.285	0.000	0.000	69.730	13.340
1970	1.486	10.669	19.964	14.136	4.066	1.096	0.235	0.096	51.749	11.721
1971	1.066	11.323	8.519	23.664	6.065	0.967	0.011	0.011	51.627	10.693
1972	0.492	21.844	14.735	4.596	8.813	1.360	0.257	0.000	52.098	10.728
1973	1.301	7.270	12.713	6.276	4.261	6.595	0.820	0.456	39.693	14.678
1974	0.742	2.972	2.326	2.530	1.647	0.593	0.964	0.193	11.967	5.040
1975	0.561	1.556	0.500	0.769	0.810	0.471	0.033	0.146	4.845	1.984
1976	0.026	3.259	0.528	0.250	0.302	0.250	0.157	0.051	4.823	2.452
1977	0.205	1.251	1.556	0.166	0.173	0.080	0.024	0.103	3.557	1.993
1978	2.963	9.783	2.027	0.715	0.187	0.036	0.047	0.138	15.897	5.146
1979	1.542	3.357	1.741	0.354	0.110	0.000	0.000	0.008	7.112	2.147
1980	0.370	4.303	3.278	2.711	0.291	0.116	0.006	0.039	11.115	5.949
1981	0.203	8.622	3.089	1.279	0.464	0.047	0.000	0.000	13.704	6.846
1982	0.333	14.049	7.459	1.860	0.605	0.186	0.020	0.000	24.512	6.001
1983	0.090	3.900	12.916	1.059	0.312	0.000	0.000	0.000	18.278	4.641
1984	0.000	0.500	1.648	2.612	0.665	0.223	0.000	0.000	5.649	1.625
1985	0.561	0.744	0.417	0.201	0.454	0.093	0.000	0.000	2.470	0.666
1986	0.037	4.083	1.492	0.308	0.073	0.036	0.000	0.000	6.029	1.605
1987	0.000	0.198	0.919	0.144	0.000	0.000	0.000	0.000	1.261	0.402
1988	0.327	0.692	0.177	0.245	0.127	0.000	0.000	0.000	1.568	0.399
1989	0.151	10.308	0.604	0.066	0.000	0.000	0.000	0.000	11.129	2.433
1990	0.091	0.368	18.994	3.794	0.031	0.000	0.000	0.000	23.278	7.828
1991	0.438	0.340	1.573	4.484	0.510	0.111	0.000	0.000	7.455	2.786
1992	0.081	0.269	0.275	1.196	0.112	0.000	0.000	0.000	1.933	0.653
1993	0.037	0.533	0.221	0.517	0.097	0.000	0.000	0.000	1.405	0.506
1994	0.031	0.494	0.040	0.019	0.045	0.015	0.000	0.000	0.643	0.219
1995	0.054	0.944	0.284	0.072	0.030	0.011	0.018	0.000	1.413	0.360
1996	0.000	0.528	2.442	0.314	0.063	0.000	0.000	0.000	3.347	1.054
1997	0.119	1.816	1.735	0.274	0.081	0.000	0.000	0.000	4.025	1.183
1998	0.154	3.696	0.433	0.231	0.077	0.000	0.000	0.000	4.590	0.973
1999	0.037	1.426	3.265	0.243	0.036	0.000	0.000	0.000	5.006	1.763
2000	0.000	2.016	1.680	0.672	0.168	0.000	0.000	0.000	4.537	1.444
2001	0.000	0.109	2.535	0.471	0.077	0.000	0.000	0.000	3.192	1.267
2002	0.292	1.750	0.680	0.583	0.097	0.000	0.000	0.000	3.402	0.939
mean	0.587	5.330	5.427	3.157	0.979	0.364	0.076	0.035	15.956	4.28

Table D4b. Survey indices of southern New England yellowtail abundance and biomass.

Mean Number per Tow at Age										
NEFSC Fall Survey			Age					8+	Total	kg/tow
Year	1	2	3	4	5	6	7			
1963	19.798	20.168	14.960	5.830	0.660	0.151	0.000	0.100	61.667	16.842
1964	22.529	31.952	5.861	8.701	3.983	1.108	0.000	0.000	74.133	19.03
1965	13.231	21.390	7.771	2.140	2.167	0.155	0.000	0.090	46.944	12.675
1966	43.305	13.066	2.375	1.247	0.231	0.000	0.000	0.000	60.224	9.431
1967	22.497	31.159	13.716	1.936	0.472	0.079	0.160	0.000	70.019	14.057
1968	11.285	13.352	22.860	1.443	0.115	0.000	0.000	0.000	49.055	10.062
1969	14.481	11.884	33.861	6.351	0.113	0.050	0.050	0.000	66.791	14.401
1970	5.157	6.736	19.936	12.961	3.067	0.520	0.089	0.000	48.466	10.965
1971	7.748	13.298	7.618	18.468	3.287	0.264	0.196	0.000	50.879	11.632
1972	5.135	20.125	24.054	22.993	14.991	2.050	0.054	0.000	89.402	20.114
1973	1.726	1.590	2.224	1.640	1.241	1.057	0.212	0.000	9.689	2.264
1974	1.216	2.047	0.676	2.776	1.166	0.489	0.238	0.093	8.701	2.141
1975	1.981	0.516	0.266	0.329	0.334	0.000	0.104	0.000	3.531	0.715
1976	3.632	7.331	0.877	0.088	0.139	0.361	0.423	0.189	13.041	2.962
1977	1.759	2.275	0.828	0.053	0.046	0.113	0.078	0.000	5.151	1.501
1978	3.247	7.599	0.450	0.392	0.043	0.009	0.079	0.032	11.851	3.057
1979	1.794	4.533	2.537	0.388	0.043	0.041	0.000	0.000	9.335	2.565
1980	1.463	4.506	1.202	0.426	0.000	0.000	0.000	0.000	7.597	1.957
1981	4.704	8.944	1.404	0.334	0.080	0.061	0.000	0.000	15.527	3.789
1982	2.610	29.372	8.673	1.025	0.409	0.000	0.000	0.000	42.088	8.126
1983	4.582	17.956	10.078	0.876	0.073	0.000	0.050	0.000	33.616	6.515
1984	0.719	2.217	2.400	0.659	0.000	0.000	0.000	0.000	5.994	1.365
1985	1.018	0.447	0.161	0.122	0.000	0.000	0.000	0.000	1.748	0.438
1986	0.826	1.685	0.365	0.088	0.000	0.000	0.000	0.000	2.963	0.883
1987	1.515	0.674	0.558	0.047	0.037	0.000	0.037	0.000	2.868	0.607
1988	1.261	0.388	0.173	0.195	0.048	0.000	0.000	0.000	2.065	0.496
1989	0.000	8.004	1.400	0.065	0.000	0.000	0.000	0.000	9.469	2.359
1990	0.000	0.097	2.395	0.270	0.000	0.000	0.000	0.000	2.763	0.974
1991	0.865	0.219	1.709	0.453	0.000	0.000	0.000	0.000	3.247	1.013
1992	0.261	0.062	0.180	0.337	0.012	0.000	0.000	0.000	0.852	0.229
1993	0.070	0.015	0.028	0.020	0.000	0.000	0.000	0.000	0.133	0.053
1994	0.754	0.553	0.198	0.192	0.085	0.011	0.000	0.000	1.793	0.374
1995	0.180	1.306	0.171	0.095	0.000	0.000	0.000	0.000	1.752	0.432
1996	0.653	0.290	0.258	0.025	0.000	0.000	0.000	0.000	1.226	0.266
1997	0.889	0.716	1.687	0.373	0.037	0.000	0.000	0.000	3.702	1.041
1998	1.384	2.141	0.188	0.076	0.000	0.036	0.000	0.000	3.824	0.899
1999	0.189	0.119	0.116	0.000	0.000	0.000	0.000	0.000	0.424	0.101
2000	0.223	1.675	0.670	0.335	0.000	0.000	0.112	0.000	3.015	0.988
2001	0.607	0.946	0.207	0.110	0.000	0.000	0.000	0.000	1.870	0.630
mean	5.264	7.471	5.002	2.407	0.843	0.168	0.048	0.013	21.216	4.819

Table D4c. Survey indices of southern New England yellowtail abundance and biomass.

Mean Number per Tow at Age										
Year	1	2	3	4	5	6	7	8+	Total	kg/tow
1992	0.000	2.884	1.881	6.418	1.295	0.000	0.000	0.000	12.478	4.402
1993	1.349	3.853	0.711	1.841	0.306	0.000	0.000	0.000	8.060	1.968
1994	0.586	17.778	1.363	2.917	1.258	0.199	0.000	0.000	24.101	6.809
1995	0.368	7.615	4.474	1.317	0.493	0.123	0.036	0.000	14.426	4.059
1996	0.092	2.304	11.703	1.552	0.207	0.109	0.033	0.000	16.000	5.159
1997	0.301	3.976	9.141	2.625	0.508	0.000	0.000	0.000	16.551	5.831
1998	0.267	3.160	1.210	0.365	0.000	0.000	0.041	0.000	5.043	1.281
1999	0.550	10.699	14.210	0.528	0.176	0.000	0.000	0.000	26.163	8.874
2000	0.246	4.540	4.341	1.296	0.000	0.000	0.000	0.000	10.422	3.330
2001	0.026	1.963	14.025	2.848	0.370	0.160	0.027	0.000	19.418	7.944
2002	0.057	4.477	4.024	3.627	0.227	0.057	0.000	0.000	12.467	4.077
mean	0.349	5.750	6.098	2.303	0.440	0.059	0.013	0.000	15.012	4.885

Scallop Survey Mean Year	 Year per Tow at Age age-1	
1982	0.406	8.129
1983	0.736	2.435
1984	0.193	0.612
1985	0.783	1.214
1986	0.020	0.581
1987	0.243	0.564
1988	6.133	6.613
1989	0.578	6.468
1990	0.077	0.647
1991	0.680	0.933
1992	0.456	0.653
1993	0.468	0.479
1994	1.020	1.664
1995	0.319	1.828
1996	0.213	1.570
1997	1.383	1.737
1998	1.121	2.383
1999	0.752	1.160
2000	0.360	1.855
2001	0.282	0.451
2002	0.088	0.605
average	0.760	1.939

Table D5a. Stock numbers from VPA for southern New England yellowtail flounder. STOCK NUMBERS (Jan 1) in thousands -

	1973	1974	1975	1976	1977	1978	1979
1	42144	9234	28866	12910	47571	52422	30090
2	15230	34335	6784	15635	10376	34024	35049
3	19877	7894	2473	2135	6829	4179	15812
4	10100	8765	2197	670	922	1997	2068
5	3810	4041	2563	909	327	400	707
6	3446	1567	1046	961	439	82	179
7	700	1968	883	863	483	172	44
1+	95307	67803	44812	34082	66949	93276	83950
	1980	1981	1982	1983	1984	1985	1986
1	41943	126925	53147	14583	16730	19837	6969
2	24451	33446	103883	43360	9654	13236	14223
3	11300	10973	21280	53266	18824	2719	4489
4	5371	3513	2888	5033	8670	1982	854
5	759	1123	661	786	1077	1071	435
6	192	194	120	175	303	212	177
7	50	21	11	55	25	48	32
$1+$	84066	176195	181989	117259	55284	39104	27179
	1987	1988	1989	1990	1991	1992	1993
1	13987	121992	16399	6852	3535	1969	850
2	5287	10013	94541	13405	5436	2491	1180
3	2886	1249	6343	60017	9122	2997	725
4	1032	524	563	2385	10967	2899	660
5	192	119	60	89	121	393	250
6	63	31	06	07	01	15	69
7	12	11	00	00	22	04	00

1+	23459	133937	117911	82754	29203	10767	3735
	1994	1995	1996	1997	1998	1999	2000
1	1606	1509	1425	4145	3108	4887	2319
2	684	1306	1229	1148	3393	2545	3998
3	584	425	845	730	889	2427	2018
4	253	277	200	243	280	295	678
5	155	58	37	27	63	68	79
6	92	07	20	04	09	21	05
7	02	05	09	06	02	08	05
1+	3376	3588	3766	6303	7744	10250	9102
	2001	2002					
1	2542	00					
2	1871	2080					
3	2861	1319					
4	898	1292					
5	251	464					
6	54	130					
7	27	42					
$1+$	8503	5326					

Table D5b. Fishing mortality estimates from VPA for southern New England yellowtail flounder.

FISHING	$\begin{gathered} \text { MORTALITY } \\ 1973 \end{gathered}$	1974	1975	1976	1977	1978	1979
1	0.00	0.11	0.41	0.02	0.14	0.20	0.01
2	0.46	2.43	0.96	0.63	0.71	0.57	0.93
3	0.62	1.08	1.11	0.64	1.03	0.50	0.88
4	0.72	1.03	0.68	0.52	0.63	0.84	0.80
5	0.69	1.15	0.78	0.53	1.18	0.61	1.11
6	0.67	1.11	0.87	0.60	1.01	0.61	0.90
7	0.67	1.11	0.87	0.60	1.01	0.61	0.90
4,6	0.69	1.10	0.78	0.55	0.94	0.69	0.94

	1980	1981	1982	1983	1984	1985	1986
1	0.03	0.00	0.00	0.21	0.03	0.13	0.08
2	0.60	0.25	0.47	0.63	1.07	0.88	1.39
3	0.97	1.13	1.24	1.62	2.05	0.96	1.27
4	1.36	1.47	1.10	1.34	1.89	1.32	1.29
5	1.16	2.04	1.13	0.75	1.43	1.60	1.73
6	1.12	1.30	1.27	1.68	2.19	1.22	1.36
7	1.12	1.30	1.27	1.68	2.19	1.22	1.36
4,6	1.22	1.61	1.17	1.26	1.84	1.38	1.46
	1987	1988	1989	1990	1991	1992	1993
1	0.13	0.05	0.00	0.03	0.15	0.31	0.02
2	1.24	0.26	0.25	0.18	0.40	1.03	0.50
3	1.51	0.60	0.78	1.50	0.95	1.31	0.85
4	1.96	1.96	1.64	2.78	3.13	2.25	1.25
5	1.62	2.82	1.97	3.99	1.91	1.53	0.80
6	1.73	0.93	0.85	1.63	1.73	1.79	1.01
7	1.73	0.93	0.85	1.63	1.73	1.79	1.01
4,6	1.77	1.90	1.49	2.80	2.26	1.86	1.02
	1994	1995	1996	1997	1998	1999	2000
1	0.01	0.01	0.02	0.00	0.00	0.00	0.01
2	0.28	0.24	0.32	0.06	0.14	0.03	0.13
3	0.55	0.55	1.05	0.76	0.90	1.07	0.61
4	1.27	1.82	1.79	1.14	1.22	1.12	0.79
5	2.84	0.85	2.06	0.94	0.90	2.48	0.18
6	0.89	0.91	1.22	0.86	1.00	1.14	0.65
7	0.89	0.91	1.22	0.86	1.00	1.14	0.65
4,6	1.67	1.19	1.69	0.98	1.04	1.58	0.54

	2001
1	0.00
2	0.15
3	0.60
4	0.46
5	0.46
6	0.46
7	0.46
4,6	0.46

Table D5c. Spawning stock biomass estimates from VPA for southern New England yellowtail flounder.

Table D6. Short-term projections of southern New England yellowtail flounder.

Input Assumptions	age 1	age 2	age 3	age 4	age 5	age 6	age 7+
stock weight (kg)	0.129	0.327	0.416	0.517	0.685	0.852	0.887
landed weight (kg)	0.129	0.341	0.419	0.521	0.674	0.858	0.891
discard weight (kg)	0.037	0.309	0.375	0.511	0.667	0.840	0.891
maturity	0.130	0.740	0.980	1.000	1.000	1.000	1.000
partial recruitment	0.010	0.130	0.580	1.000	1.000	1.000	1.000
proportion discarded	1.000	0.330	0.180	0.180	0.180	0.180	0.180
Results							
Year	F	Landings (mt)	Discards (mt)	SSB (mt)			
2002	0.39	405	92	1931			
2003	0.10^{*}	131	30	2647			
2004	0.10^{*}	214	54	5482			

[^2]Figure D1. Total catch of southern New England yellowtail flounder.

Figure D2. Survey indices of southern New England yellowtail flounder biomass.

Figure D3a. Estimates of fishing mortality, recruitment and spawning stock biomass for southern New England yellowtail flounder from VPA.

Figure D3b. Abundance at age of southern New England yellowtail flounder.

Figure D4. Retrospective analysis of the southern New England yellowtail flounder VPA.

Figure D5. Stochastic projection of spawning biomass and total catch under two scenarios of recruitment and a constant F of $\mathrm{F}_{\text {rebuild }}=0.10$

Figure D6. Mean biomass of southern New England yellowtail flounder and fishing mortality on biomass.

Figure D7. Sensitivity of results to increasing NEFSC indices since 2000 by $10 \%, 25 \%$ and 100% (with 80% confidence intervals). Results accepted by the working group ("WG Run") are shown for comparison.

E. Cape Cod Yellowtail Flounder by S.X. Cadrin and J. King

1.0 Background

The Cape Cod yellowtail flounder stock was at low biomass and was overexploited in 1999 (SSB was $1,900 \mathrm{mt}$ and fully recruited F was 0.31 ; Cadrin and King 2001). This report updates catch and survey indices and estimates 2001 fishing mortality and 2002 stock size. In August 2002, the Southern Demersal Working Group concluded that Cape Cod and northern Gulf of Maine yellowtail flounder should be assessed and managed as a single unit stock, and is concurrently preparing an assessment of the Cape Cod - Gulf of Maine yellowtail resource (Cadrin and King 2002). In September 2002, the Working Group reviewed input data, analyses and projections in this report.

2.02002 Assessment

2. 1 2000-2001 Landings

U.S. landings were prorated as described in Cadrin et al. (1999; Table E1; Figure E1). Landings from the Cape Cod stock increased from 1,100 mt in 1999 to 2,300 mt in 2000 and to $2,400 \mathrm{mt}$ in 2001. Sampling intensity of landings in 2000 and 2001 improved from recent years. Although all classified market categories were sampled in each half-year period, the overall number of samples was low (Table E2).

$\underline{2.2} 2000-2001$ Discards

Estimates of discarded catch for 1998-1999 were revised from those derived from logbook information (Cadrin and King 2001) using observer data by fishery as described by Cadrin et al. (1999). Estimates of 2000-2001 discards were also based on observer data. Discard rates varied between 7% and 19% of total catch for 1998-2001. Discards at age were estimated from seasampled lengths and survey age-length keys. Total catch at age and mean weights at age are reported in Table E3.

2.3 2000-2002 Survey Indices

Survey abundance and biomass indices are reported in Table E4. Estimates are from valid tows on the Cape Cod grounds (offshore strata 25, 26; inshore strata 56-66; Massachusetts strata 1736) standardized according to net, vessel, and door changes (NEFSC 1998). Three of the four survey series indicate a substantial increase in biomass during 1999 and 2000, but only the Massachusetts spring survey remained high in 2001 and that index sharply decreased in 2002 (Figure E2).

3.0 Assessment Results

Results of an updated VPA calibration of Cape Cod yellowtail flounder (using the existing stock definition) are summarized in Table E5. This analysis updates the assessment reported in Cadrin and King (2001) by including 2000-2001 landings and discards, 2000 fall indices, all 2001 indices, and 2002 spring indices. The Working Group recommended a revised calibration configuration that includes all survey indices for older yellowtail to reduce the bias in estimates of age-5 abundance. Although parameter estimates in Cadrin et al. (1999) were not substantially
biased, the positive bias in age-5 abundance increased in the updated assessments. The 2002 updated assessment initially had a 17% bias, when indices of older ages were excluded, but the bias decreased to 4% when the indices of older ages were included. Therefore, the revised calibration is used as the basis for this assessment. Results indicate that F increased to nearly 2.0 in 2000 and 2001, and SSB increased to $1,900 \mathrm{mt}$ in 2001 (Figure E3). Retrospective analysis indicates a tendency toward greatly underestimate F in the most recent years (Figure E4). Bootstrap analysis indicates that abundance was estimated with moderate to low precision (CV=33-43\%). Sensitivity to recent NEFSC survey observations was evaluated using sensitivity analyses (Figure E6). Results are summarized in Section 5.2 (Summary of Assessment Advice).

Proxies for MSY reference points were derived from yield and SSB per recruit analyses and the assumption of constant recruitment (NEFSC 2002). Assuming that $\mathrm{F}_{\mathrm{MSY}}$ is approximately $\mathrm{F}_{40 \%}$ (0.21 on fully-recruited ages) and average recruitment (7.89 million at age- 1), MSY=1,700 mt and $\mathrm{SSB}_{\mathrm{MSY}}=8,400 \mathrm{mt}$. Therefore, despite uncertainty in the assessment, the stock is clearly overfished ($2001 \mathrm{SSB}=1,900 \mathrm{mt}=23 \% \mathrm{SSB}_{\mathrm{MSY}}$) and overfishing is occurring ($2001 \mathrm{~F}=2.0,=\mathrm{F}>9$ - $\mathrm{F}_{\mathrm{MSY}}$).

Stochastic projections at 85% of status quo F in 2002 and $\mathrm{F}_{\text {rebuild }}=0.12$ for 2003-2009 indicate there is a 50% probability of rebuilding to $\mathrm{SSB}_{\mathrm{MSY}}$ by 2009 (Table E6, Figure E5). However, retrospective patterns indicate that projections may be overly optimistic.

5.0 Sources of Uncertainty

- Retrospective patterns indicate that VPA estimates of biomass and F may be overly optimistic. Updated VPAs may indicate that 2002 biomass levels were substantially lower, and 1999 F substantially greater than reported here. For example, previous assessments concluded that SSB rapidly increased in the late 1990s, but this updated assessment indicates much less rebuilding.
- Estimates of prorated landings and discard ratios are based on preliminary logbook data and are subject to change.
- The limited number of observer samples in small mesh and scallop dredge fisheries imposes considerable uncertainty in discard estimates.

6.0 GARM Discussion

The GARM noted that the high F seems inconsistent with level or increasing SSB and increasing survey indices. Discussion centered on how this could be possible, without the GARM reaching a consensus conclusion. The panel recommends that a cooperative tagging study be conducted to estimate F and evaluate the possibility of movement patterns out of the stock area that could be causing the estimates of F to be mis-representative.

It was suggested that the high F means that the tuning is actually only working on the oldest age group. The estimated catchabilities increase without reaching an asymptote with increasing age.

Ageing does not seem to be a problem with this stock, especially for the young ages in the catch. However, inadequate sampling of the catch could be causing a problem.

The short time series may not be sufficient to adequately estimate stock sizes. The time series is short due to extremely low sampling of catch prior to 1985 and because inshore strata were not sampled in the NEFSC surveys prior to 1979.

The possibility of contributions from the Georges Bank and/or Southern New England stocks of yellowtail flounder to the Cape Cod stock was discussed in terms of both adult movement and recruitment impacts. Given the relative sizes of the stocks, especially the Georges Bank and Cape Cod stocks, any transfer among stocks could overwhelm the signal from Cape Cod.

7.0 References

Cadrin, S.X. and J. King 2001. Cape Cod yellowtail flounder. In Assessment of 19 Northeast Groundfish Stocks through 2000. NEFSC Ref. Doc. 01-20: 67-79.

Cadrin, S.X. and J. King 2002. Stock Assessment of yellowtail flounder in the Cape Cod - Gulf of Maine area. SAW36 WPA7.

Cadrin, S.X., J. King, and L.E. Suslowicz. 1999. Status of the Cape Cod yellowtail flounder stock for 1998. NEFSC Ref. Doc. 99-04.

NEFSC (Northeast Fisheries Science Center). 2002. Final report of the Working Group on ReEvaluation of Biological Reference Points for New England Groundfish. 19 March, 2002.

Table E1. Landings of Cape Cod yellowtail flounder (mt).

	Landings (mt)	Discards (mt)	Percent Discard	Total Catch (mt)
1960	1,500	500	33	2,000
1961	1,800	600	33	2,400
1962	1,900	600	32	2,500
1963	3,600	1,000	28	4,600
1964	1,851	600	32	2,451
1965	1,498	500	33	1,998
1966	1,808	300	17	2,108
1967	1,542	800	52	2,342
1968	1,569	600	38	2,169
1969	1,346	300	22	1,646
1970	1,185	400	34	1,585
1971	1,662	700	42	2,362
1972	1,364	300	22	1,664
1973	1,662	0	0	1,662
1974	2,054	200	10	2,254
1975	2,027	0	0	2,027
1976	3,587	100	3	3,687
1977	3,469	0	0	3,469
1978	3,683	400	11	4,083
1979	4,163	500	12	4,663
1980	5,106	600	12	5,706
1981	3,149	600	19	3,749
1982	3,150	400	13	3,550
1983	1,884	300	16	2,184
1984	1,121	20	2	1,141
1985	967	77	8	1,044
1986	1,041	305	29	1,346
1987	1,159	198	17	1,357
1988	1,085	283	26	1,368
1989	909	390	43	1,299
1990	2,984	1,141	38	4,125
1991	1,472	405	28	1,877
1992	828	637	77	1,465
1993	628	90	14	718
1994	978	192	20	1,170
1995	1,207	233	19	1,440
1996	1,064	182	17	1,246
1997	1,040	257	25	1,297
1998	1,169	259	22	1,428
1999	1,089	107	10	1,196
2000	2,279	163	7	2,443
2001	2,362	447	19	2,810

Table E2. Samples of Cape Cod yellowtail flounder.
Number of Fish Sampled

year	half year	trips	unclass. lengths	small lengths	large lengths	ages
1985	1	5	109	304	196	292
	2	12	0	825	543	357
1986	1	4	0	608	206	217
	2	6	0	321	172	240
1987	1	6	0	300	352	353
	2	5	0	284	269	207
1988	1	6	0	477	267	286
	2	5	0	291	364	252
1989	1	6	10	261	314	305
	2	4	97	262	173	200
1990	1	8	536	532	374	339
	2	6	636	429	276	137
1991	1	8	811	501	332	610
	2	7	109	531	242	277
1992	1	4	707	126	254	339
	2	7	136	262	457	268
1993	1	3	170	145	182	177
	2	3	273	244	74	114
1994	1	4	100	261	170	273
	2	3	0	106	144	149
1995	1	4	39	276	201	196
	2	6	998	392	275	157
1996	1	1	2560	0	87	196
	2	12	118	495	640	485
1997	1	7	343	388	483	556
	2	17	317	996	869	634
1998	1	7	4781	0	508	195
	2	6	165	0	600	165
1999	1	4	2501	278	60	49
	2	4	1024	268	116	57
2000	1	46	521	723	2775	903
	2	15	0	566	1057	395
2001	1	8	3502	251	570	192
	2	16	1950	393	774	436

Table E3. Catch at age (above) and mean weights at age (below) of Cape Cod yellowtail flounder.

Total catch at age (thousands)								age			
	age 1	age 2	age 3	age 4	age 5	age 6+					
1985	344	922	734	522	268	99					
1986	79	3655	654	250	32	7					
1987	14	1486	1954	268	100	46					
1988	361	2130	1219	625	172	36					
1989	114	2131	1385	233	31	8					
1990	81	2738	8692	435	32	26					
1991	460	1206	1464	1555	256	61					
1992	1688	3881	1538	543	153	12					
1993	138	349	857	602	91	46					
1994	60	471	1301	699	240	113					
1995	453	702	2382	858	154	83					
1996	7	547	1425	892	298	18					
1997	1	880	1437	819	182	14					
1998	56	650	2101	518	151	44					
1999	11	481	1321	668	109	48					
2000	3	1024	2844	1228	153	38					
2001	19	1644	3633	1083	155	39					

weight at age (kg)						
	age 1	age 2	age 3	age age 4	age 5	age 6+
1985	0.13	0.28	0.36	0.49	0.60	0.79
1986	0.10	0.25	0.43	0.53	0.73	0.99
1987	0.06	0.24	0.40	0.55	0.65	0.91
1988	0.12	0.21	0.34	0.53	0.70	0.85
1989	0.13	0.27	0.39	0.65	0.92	1.31
1990	0.08	0.26	0.37	0.55	0.82	0.96
1991	0.12	0.23	0.34	0.53	0.73	1.02
1992	0.05	0.13	0.32	0.52	0.61	1.15
1993	0.09	0.16	0.36	0.43	0.74	1.00
1994	0.08	0.22	0.36	0.49	0.62	0.83
1995	0.07	0.22	0.33	0.42	0.61	0.80
1996	0.04	0.19	0.39	0.49	0.53	1.02
1997	0.03	0.31	0.38	0.46	0.57	0.81
1998	0.03	0.27	0.40	0.53	0.62	1.04
1999	0.03	0.33	0.42	0.56	0.57	0.91
2000	0.03	0.37	0.44	0.56	0.61	0.87
2001	0.03	0.32	0.41	0.58	0.74	1.05

Table E4a. Survey indices of Cape Cod yellowtail abundance and biomass. Mean Number per Tow at Age

MADMF Spring Surveyydear			Age					8+	sum	kg/tow
			3	4	5	6	7			
1978	2.71	20.69	11.82	1.60	0.63	0.54	0.10	0.13	38.22	10.16
1979	2.63	22.58	13.85	3.68	0.86	0.00	0.17	0.00	43.77	11.38
1980	2.68	17.62	10.10	2.30	0.15	0.00	0.00	0.00	32.85	10.03
1981	5.61	58.83	9.00	2.26	1.59	0.27	0.00	0.00	77.56	16.35
1982	0.69	17.06	17.04	4.45	0.94	0.06	0.04	0.00	40.28	12.85
1983	3.13	8.50	11.51	4.28	0.04	0.17	0.03	0.00	27.66	9.00
1984	0.43	18.13	7.56	2.29	0.85	0.00	0.00	0.00	29.26	7.37
1985	1.97	8.27	7.15	1.52	0.59	0.39	0.05	0.05	19.99	5.21
1986	1.73	15.39	1.74	0.24	0.21	0.04	0.00	0.00	19.36	4.52
1987	2.53	4.95	5.31	0.97	0.27	0.11	0.08	0.00	14.22	3.67
1988	3.10	14.46	2.52	0.60	0.05	0.02	0.00	0.00	20.74	3.83
1989	0.67	22.26	3.18	1.08	0.06	0.00	0.00	0.00	27.25	4.73
1990	0.63	11.77	15.57	0.63	0.14	0.01	0.02	0.01	28.77	6.60
1991	0.06	5.34	3.31	2.15	0.48	0.12	0.05	0.00	11.50	3.32
1992	1.30	11.03	9.71	2.38	1.45	0.03	0.03	0.00	25.94	6.54
1993	0.63	7.99	6.31	1.94	0.23	0.06	0.20	0.03	17.38	4.60
1994	2.67	24.02	7.53	1.49	0.33	0.12	0.00	0.00	36.15	6.23
1995	7.51	14.64	24.96	2.88	1.20	0.02	0.02	0.00	51.22	10.38
1996	1.17	18.03	14.70	6.78	1.74	0.00	0.04	0.00	42.46	9.25
1997	0.52	16.94	12.22	4.04	0.54	0.00	0.00	0.00	34.26	7.55
1998	0.55	4.96	13.50	1.25	0.19	0.02	0.00	0.00	20.46	5.17
1999	0.10	6.34	10.90	1.28	0.08	0.00	0.00	0.00	18.70	5.08
2000	0.83	21.92	33.29	11.28	1.30	0.52	0.00	0.00	69.14	20.37
2001	0.22	10.21	38.20	10.39	1.68	0.00	0.00	0.00	60.71	19.34
2002	0.36	1.29	13.84	5.34	0.26	0.17	0.00	0.00	21.27	7.43
mean	1.91	16.16	10.99	2.67	0.60	0.11	0.04	0.01	32.48	8.44

Table E4b. Survey indices of Cape Cod yellowtail abundance and biomass.
Mean Number per Tow at Age

MADMF Fall Survey	Age										
year	0	1	2	3	4	5	6	7	$8+$	sum	kg/tow
1978	0.04	7.13	7.74	1.45	0.11	0.00	0.01	0.00	0.00	16.48	2.80
1979	0.03	24.11	22.82	1.78	0.06	0.00	0.00	0.00	0.00	48.80	7.33
1980	0.03	26.54	12.38	2.70	0.35	0.00	0.00	0.00	0.00	42.00	5.90
1981	0.00	2.93	6.54	1.54	0.23	0.17	0.00	0.00	0.00	11.41	2.76
1982	0.00	9.58	3.36	5.54	0.30	0.08	0.00	0.00	0.00	18.86	4.20
1983	0.00	9.68	6.68	1.60	0.13	0.00	0.00	0.00	0.00	18.09	3.39
1984	0.04	1.91	3.00	0.86	0.39	0.10	0.02	0.00	0.04	6.37	1.18
1985	0.04	5.70	1.63	1.03	0.00	0.00	0.00	0.00	0.02	8.42	1.17
1986	0.01	2.60	4.95	0.20	0.03	0.01	0.00	0.00	0.00	7.80	1.36
1987	0.44	5.85	2.30	0.49	0.07	0.02	0.00	0.00	0.00	9.17	1.09
1988	0.00	8.96	11.24	2.27	0.15	0.00	0.00	0.00	0.00	22.62	3.71
1989	0.00	2.64	5.22	0.96	0.10	0.00	0.00	0.00	0.00	8.92	1.52
1990	0.00	5.20	11.93	4.84	0.01	0.00	0.00	0.00	0.00	21.98	4.16
1991	0.00	3.76	5.14	5.03	0.86	0.00	0.00	0.00	0.00	14.78	3.23
1992	0.20	7.18	3.62	2.08	0.47	0.20	0.00	0.00	0.00	13.75	2.00
1993	0.00	8.39	7.29	5.80	1.43	0.00	0.00	0.00	0.00	22.91	3.99
1994	0.00	2.36	11.79	1.79	0.15	0.00	0.00	0.00	0.00	16.09	3.27
1995	0.00	8.38	15.16	5.85	0.00	0.00	0.00	0.00	0.00	29.40	5.75
1996	0.01	1.87	3.94	2.18	0.17	0.00	0.00	0.00	0.00	8.17	1.56
1997	0.00	1.01	7.38	1.14	0.16	0.10	0.00	0.00	0.00	9.79	2.10
1998	0.00	7.05	6.74	2.25	0.00	0.00	0.00	0.00	0.00	16.05	2.68
1999	0.15	4.73	11.94	4.10	0.65	0.08	0.00	0.00	0.00	21.66	4.71
2000	0.00	1.36	8.25	3.53	0.22	0.10	0.00	0.03	0.00	13.48	3.46
2001	0.00	0.57	8.06	4.23	0.14	0.00	0.00	0.00	0.00	13.00	3.55
mean	0.04	6.65	7.88	2.63	0.26	0.04	0.00	0.00	0.00	17.50	3.20

Table E4c. Survey indices of Cape Cod yellowtail abundance and biomass.
Mean Number per Tow at Age

NEFSC	ing S				Age					
year	1	2	3	4	5	6	7	8+	sum	kg/tow
1979	0.36	0.47	0.88	0.56	0.03	0.02	0.00	0.00	2.32	0.76
1980	0.00	4.76	2.72	0.95	0.19	0.00	0.00	0.00	8.62	3.11
1981	0.07	4.31	2.92	0.64	0.73	0.35	0.45	0.00	9.46	2.93
1982	0.05	1.86	4.82	2.47	0.67	0.38	0.42	0.11	10.78	4.57
1983	2.01	5.39	4.33	1.78	0.19	0.13	0.00	0.00	13.82	4.09
1984	0.06	1.72	1.02	0.66	0.43	0.04	0.05	0.12	4.10	1.37
1985	0.13	1.85	1.80	0.43	0.25	0.10	0.00	0.00	4.56	1.39
1986	0.03	2.99	0.26	0.07	0.17	0.00	0.00	0.00	3.51	0.68
1987	0.11	2.41	3.61	0.59	0.91	0.92	1.07	0.52	10.13	4.75
1988	1.48	6.31	1.30	0.85	0.33	0.12	0.06	0.00	10.43	1.68
1989	0.32	3.83	2.35	0.21	0.10	0.00	0.00	0.00	6.82	1.11
1990	0.00	3.66	8.87	0.23	0.00	0.16	0.00	0.00	12.93	2.78
1991	0.66	5.64	3.89	1.23	0.29	0.00	0.08	0.00	11.79	2.51
1992	0.25	1.50	2.34	0.65	0.03	0.00	0.00	0.00	4.77	1.06
1993	0.10	1.01	1.17	0.58	0.00	0.00	0.00	0.00	2.87	0.59
1994	0.54	3.81	1.57	0.61	0.22	0.13	0.00	0.00	6.88	1.15
1995	0.22	1.41	4.94	3.19	0.31	0.07	0.00	0.00	10.14	2.35
1996	0.02	0.57	0.79	0.42	0.00	0.00	0.00	0.00	1.81	0.40
1997	0.03	1.33	2.12	1.71	0.38	0.00	0.00	0.00	5.56	1.56
1998	0.00	1.14	3.35	1.22	0.28	0.00	0.00	0.00	5.99	1.47
1999	0.03	1.07	3.44	2.45	0.48	0.18	0.00	0.00	7.65	2.34
2000	0.48	5.56	21.74	7.49	1.21	1.45	0.00	0.00	37.93	12.39
2001	0.00	1.92	6.50	1.11	0.34	0.00	0.00	0.00	9.87	3.15
2002	0.02	2.66	8.15	3.60	0.28	0.04	0.00	0.04	14.80	4.58
mean	0.29	2.8	3.	1	0.33	0.17	0.09	. 03		2.6

Table E4d. Survey indices of Cape Cod yellowtail abundance and biomass.
Mean Number per Tow at Age

NEFSC Fall Survey year	1	2	3	4	5	5	6	7	$8+$	sum
1979	5.73	5.84	1.75	0.44	0.08	0.02	0.00	0.00	13.86	3.88
1980	14.13	12.04	5.46	2.08	0.46	0.00	0.05	0.00	34.21	8.95
1981	4.20	6.38	1.15	0.30	0.19	0.00	0.00	0.00	12.22	2.60
1982	0.77	3.67	3.53	0.43	0.48	0.04	0.00	0.00	8.92	2.84
1983	0.59	0.79	0.50	0.04	0.00	0.00	0.00	0.00	1.92	0.46
1984	0.43	1.50	0.69	0.87	0.62	0.20	0.10	0.10	4.51	1.77
1985	6.60	2.54	1.94	0.29	0.00	0.00	0.00	0.00	11.37	2.52
1986	1.73	4.71	0.40	0.00	0.00	0.00	0.00	0.00	6.83	1.25
1987	0.73	1.75	0.61	0.07	0.06	0.00	0.00	0.00	3.23	0.72
1988	4.13	6.04	0.60	0.11	0.00	0.00	0.00	0.00	10.88	1.49
1989	2.32	7.47	2.75	0.49	0.00	0.00	0.00	0.09	13.12	2.95
1990	4.67	7.93	3.72	0.06	0.01	0.00	0.00	0.00	16.38	3.05
1991	2.39	2.23	1.93	0.40	0.00	0.00	0.00	0.00	6.95	1.49
1992	3.32	3.65	2.54	1.05	0.25	0.19	0.00	0.00	10.99	2.49
1993	5.86	5.75	0.68	0.10	0.00	0.00	0.00	0.00	12.39	1.38
1994	3.23	9.64	3.47	0.95	0.29	0.00	0.00	0.00	17.57	3.46
1995	0.79	1.09	1.05	0.23	0.05	0.00	0.00	0.00	3.21	0.93
1996	1.41	3.64	5.96	1.57	0.18	0.00	0.00	0.00	12.75	3.31
1997	1.39	3.23	3.67	1.66	0.90	0.15	0.00	0.00	11.00	2.96
1998	1.58	4.51	1.90	1.38	0.39	0.00	0.00	0.00	9.76	2.27
1999	5.27	10.55	6.88	2.12	0.94	0.04	0.00	0.00	25.80	7.64
2000	1.30	8.81	5.87	0.34	0.00	0.00	0.00	0.00	16.33	4.53
2001	0.29	4.93	2.92	0.12	0.03	0.03	0.00	0.00	8.31	2.47
mean	3.17	5.16	2.61	0.66	0.21	0.03	0.01	0.01	11.85	2.84

Table E5a. Stock numbers of Cape Cod yellowtail flounder from VPA.

Table E5b. Fishing mortality estimates for Cape Cod yellowtail flounder from VPA.

	1985	1986	1987	1988	1989	1990	1991
1	0.04	0.02	0.00	0.02	0.02	0.01	0.06
2	0.47	0.73	0.57	0.56	0.15	0.67	0.31
3	0.83	0.74	1.22	1.46	0.89	1.60	0.98
4	2.11	0.76	0.80	2.64	1.47	0.81	2.00
5	2.40	0.78	0.82	3.43	1.56	0.83	2.24
6	2.40	0.78	0.82	3.43	1.56	0.83	2.24
4,5	2.25	0.77	0.81	3.03	1.52	0.82	2.12
	1992	1993	1994	1995	1996	1997	1998
1	0.30	0.02	0.01	0.11	0.00	0.00	0.01
2	0.93	0.09	0.10	0.19	0.18	0.20	0.16
3	0.81	0.54	0.59	0.98	0.74	1.00	1.08
4	1.38	0.91	1.24	1.04	1.43	1.49	1.39
5	1.45	0.94	1.29	1.08	1.51	1.58	1.47
6	1.45	0.94	1.29	1.08	1.51	1.58	1.47
4,5	1.42	0.93	1.27	1.06	1.47	1.53	1.43
	1999	2000	2001				
1	0.00	0.00	0.01				
2	0.09	0.13	0.35				
3	0.56	1.05	0.93				
4	1.42	1.89	1.97				
5	1.50	2.08	1.97				
6	1.50	2.08	1.97				
4,5	1.46	1.98	1.97				

Table E5c. Spawning stock biomass estimates for Cape Cod yellowtail flounder from VPA.

Table E6. Short term projections of Cape Cod yellowtail flounder.

Input Assumptions	age 1	age 2	age 3	age 4	age 5	age 6+
stock weight (kg)	0.04	0.28	0.39	0.51	0.61	0.92
landed weight (kg)	0.15	0.35	0.41	0.52	0.61	0.92
discard weight (kg)	0.15	0.22	0.30	0.41	0.53	0.75
maturity	0.00	0.08	0.81	1.00	1.00	1.00
partial recruitment	0.01	0.11	0.55	1.00	1.00	1.00
proportion discarded	1.00	0.52	0.20	0.07	0.05	0.04

Results

Year	F	Landings (mt)	Discards (mt)	SSB (mt)
2002	1.67	1651	224	1368
2003	0.12	117	17	1179
2004	0.12	217	31	2463

Figure E1. Total catch of Cape Cod yellowtail flounder.

Figure E2. Survey indices of Cape Cod yellowtail flounder biomass.

Figure E3. Cape Cod yellowtail flounder VPA results.

Figure E4. Retrospective analysis of the Cape Cod yellowtail flounder VPA.

Figure E5. Stochastic projection of Cape Cod yellowtail flounder for $\mathrm{F}_{\text {REbuILD }}=0.12$.

Figure E6. Sensitivity of results to excluding NEFSC survey indices and increasing NEFSC indices since 2000 by $10 \%, 25 \%$ and 100% (with 80% confidence intervals). Results accepted by the working group ("WG Run") are shown for comparison.

F. Gulf of Maine Cod by R.K. Mayo and L. Col

1.0 Background

The Gulf of Maine Atlantic cod stock was last assessed in 2001 (Mayo et al. 2002; NEFSC 2001). All of the methodology applied in the present assessment is the same as in the 2001 assessment as described in Mayo et al. (2002). In the 2001 assessment, fully recruited fishing mortality (ages $4+$) in 2000 was estimated to be 0.73 , and the 1999 F was estimated to be 0.77 . Spawning stock biomass was estimated to have declined to $11,100 \mathrm{mt}$ in 1999, a decline from a recent high of 14,600 mt in 1995 and a series high of $24,200 \mathrm{mt}$ in 1990. The strength of the most recent recruiting year classes was estimated to be very low. The 1993, 1994 and 1995 year classes continue to be estimated as the lowest in the VPA series dating back to 1982 (1981 year class). The recruit/SSB survival ratios for these most recent year classes were also estimated to be very low compared to previous year classes. NEFSC spring and autumn research vessel bottom trawl survey indices for Gulf of Maine cod had declined to record low levels in the mid1990s; indices from both surveys fluctuated at relatively low levels but have been increasing in 2001 and 2002. The 1994-1996 year classes derived from the NEFSC and Commonwealth of Massachusetts surveys were also among the lowest in the respective series, but the Mass. DMF survey and the 2001 and 2002 NEFSC surveys indicate that the 1998 year class may be larger than the recent average.

2.0 The Fishery

Commercial landings of Gulf of Maine cod declined to 1,636 metric tons (mt) in 1999, a 61 \% decline from 1998 (Table F1; Figure F1). Commercial landings have since increased to 3,730 mt in 2000 and $4,416 \mathrm{mt}$ in 2001. Discard estimates have been derived on a gear-quarter basis from 1989 through 2001 based on NEFSC Observer Program data; these results indicate a substantial increase in the overall discard /kept ratio in 1999 compared to previous years. Ratios calculated for 2000 and 2001 are lower than the 1999 ratio, but substantially greater than the pre-1999 ratios. Discards estimated from the Observer Program data equaled 2,600, 1,200 and 1,600 mt in 1999, 2000 and 2001, respectively. Discards have also been estimated based on Vessel Trip Reports, filtered to exclude vessels which do not report discards. Discards based on these data have been estimated to be $2,800,2,200$ and $1,600 \mathrm{mt}$ in 1999, 2000, and 2001, respectively.

During the review of the 2001 assessment at SAW33, it was agreed that the discard estimates from both Sea Sample and VTR data could be accepted with reservation. It was then concluded that only approximations of the actual estimates in 500 mt increments were considered. For the purposes of the present assessment, the procedure agreed at SAW33 was employed for the 2001 data. Full details are given in Mayo et al. (2002). Discards as derived in this manner are given below:

Year	Landings	Discard SS	Estimates VTR	SARC 33 As Used	Commercial Catch
1999	1,636	2,630	2,822	2,500	4,136
2000	3,730	1,170	2,246	1,000	4,730
2001	4,416	1,619	1,600	1,500*	5,916

* SARC approach carried forward for 2001

The estimated recreational catch of Gulf of Maine cod (retained component only) remained the same in 1999 as in 1998 at approximately 822-824 mt, but increased to $1,100 \mathrm{mt}$ in 2000 and $2,600 \mathrm{mt}$ in 2001. For input to VPA, the landings at age were raised by the ratio of total catch (including discards) to landings under the assumption that high discarding in 1999-2001 was due to trip limits, resulting in discarding of all sizes in the same proportion as landings.

The number of commercial port samples for this stock declined from 78 in 1997 to 46 in 1998 to 15 in 1999. Port sampling has since improved, increasing to 61 samples in 2000 and 113 samples in 2001 (Table F2). Sampling was not well distributed among quarters and market categories in 1999 and 2000, as only 1 biological sample was taken in the $3^{\text {rd }}$ and $4^{\text {th }}$ quarter of 1999, requiring substantial pooling over quarter. In 1999 and 2000 samples from each market category were pooled on an annual basis, but improved sampling in 2001 allowed a return to the traditional quarterly pooling of samples within each market category. In 2001, sampling was approximately proportional to the distribution of the landings by market category (Table F3). As has generally been the case, the landings at age in 1999-2001 were dominated by age 3 and 4 cod (Table F4).

3.0 Research Vessel Surveys

NEFSC research vessel bottom trawl survey abundance and biomass indices for Gulf of Maine cod remained relatively low through autumn 1999 and spring 2000 (Table F5; Figure F2). The autumn 1999 indices increased slightly over 1998, while the spring 2000 indices decreased slightly from the 1999 values. However, biomass indices increased substantially in 2001 and spring 2002 over the 1999-2000 values.

Autumn biomass indices were also partitioned into inshore (strata 26 and 27; area 1,734 square miles) and offshore (strata 28-30, 36-40; 16,158 square miles) Gulf of Maine regions. When expressed in this manner, stratified mean weight per tow indices may be seen to represent comparative biomass density rather than indices of absolute biomass.

However, when appropriate weighting by area is applied to the respective inshore and offshore indices to allow comparison of absolute biomass between regions, the weighted indices provide a perspective on trends in absolute biomass. These results suggest that biomass has declined more precipitously in the offshore regions of the Gulf of Maine, while biomass in the inner region has declined at a lesser rate. Both inshore and offshore biomass indices have been increasing in
recent years, consistent with an expansion of the population to the offshore area. Recruitment indices for the 1994-1997 year classes derived from the NEFSC and Mass. DMF bottom trawl surveys are among the lowest in the respective series, although indices for the 1998 and 1999 year classes appear to be above the recent average. The 2000 year class appears to be the extremely weak.

4.0 Assessment

Input Data and Analyses

The present assessment represents a one-year update to the previous assessment (Mayo et al. 2002; NEFSC 2001). The same VPA formulation used in the previous assessment was employed in the present update, except that current year (2002) spring survey data were available. Catch at age data were updated for 2001 with the inclusion of commercial discards ($1,500 \mathrm{mt}$ in 2001) and recreational catch at age. NEFSC and Mass. DMF survey abundance indices (stratified mean number per tow at age) were updated through spring 2002. As in recent VPAs, commercial CPUE indices were included only through 1993.

Precision of the 2001 spawning stock biomass and fully recruited fishing mortality was derived from 1,000 bootstrap replicates of the VPA based on resampling of survey residuals. A retrospective analysis of terminal year estimates of stock sizes, fully recruited fishing mortality and SSB were also carried out. Projections through 2009 were also completed.

Assessment Results

Fully recruited fishing mortality (ages $4+$) in 2001 is estimated at 0.47 (Table F6; Figure F3), and spawning stock biomass is estimated to have increased to 22,000 mt in 2001 (Table F6; Figure F4). The 1998 year class is estimated to be equivalent to the 1992 year class (approximately 9-10 million fish), while all intervening year classes are below the long term geometric mean (5.9 million fish). The 1999 year class is slightly below average, the 2000 year class (<1 million fish) is by far the poorest of those estimated by the VPA, and the 1993-1995 year classes are about $1 / 2$ the long term average.

VPA Diagnostics

Based on the variability indicated by the survey residuals, the bootstrap analysis suggests that there is a 90% probability that 2001 fully recruited fishing mortality is greater than 0.38 , and 2001 SSB is less than $25,600 \mathrm{mt}$. With the current VPA formulation, a retrospective pattern is evident in the estimates of terminal F whereby fully recruited F appears to have been overestimated in 1999 and 2000 and underestimated from 1994-1997 (Figure F5). The opposite pattern is evident for SSB, although to a lesser extent. Terminal year estimates of the strength of the 1994-1996 year classes in 1995-1997 were considerably lower than the retrospective estimates, but recent year classes appear to have been well estimated in the terminal year

VPA Sensitivity Runs

The sensitivity of the VPA calibration process to various assumptions of changes in survey catchability during 2000 to 2002 was examined. Specifically, the 2000-2002 NEFSC spring and autumn age-specific indices were arbitrarily raised by $10 \%, 25 \%$, and 100%, and the VPA calibration process was repeated. Bootstrapping each of the VPAs provided a series of overlap plots based on the 80% confidence intervals ($80 \% \mathrm{CI}$). These results suggest considerable overlap between the 10% and 25% adjustment VPAs and the base VPA, with the 100% adjustment VPA exhibiting considerable distance from all others (Figure F6). Further details are presented in section 4.2 of this report.

5.0 Projections

Catch and stock size projections were performed with F_{2002} assumed equal to 85% of $\mathrm{F}_{2001}(0.40)$, and $\mathrm{F}_{2003-2009}$ determined by iterating a revised estimate of $\mathrm{F}_{\text {rebuild }}$ until there was a 50% probability that SSB was equal to $\mathrm{SSB}_{\text {MSY }}$ in 2009. The estimate of $\mathrm{F}_{\text {rebuild }}$ based on the present VPA results is 0.114. Input data and projection results are given in Table F7 and Figure F7.

Medium term projections suggest that SSB will increase to SSBmsy ($82,830 \mathrm{mt}$) by 2009 with at least a 50% probability if F is held at Frebuild (0.114) between 2003 and 2009 (Figure F7).
Short term projections of catch for 2003 indicate that total catch (including commercial landings and discard, and recreational landings) should not exceed $2,479 \mathrm{mt}$ if the revised estimate of $\mathrm{F}_{\text {rebuild }}(0.114)$ is to be achieved in 2003.

6.0 Biological Reference Points

The following biological reference points were obtained from an age-structured production model (NEFSC 2002) performed on yield and SSB/recruit analyses and the VPA estimates of SSB and age 1 recruitment obtained from the 2001 assessment (Mayo et al. 2002):

MSY	$16,600 \mathrm{mt}$
$\mathrm{SSB}_{\text {MSY }}$	$82,830 \mathrm{mt}$
$\mathrm{F}_{\text {MSY }}$	0.225 (fully recruited)

At that time, the fishing mortality required to rebuild SSB to $\mathrm{SSB}_{\text {MSY }}$ by 2009 was determined to be 0.165 , based on starting conditions in 2001. The fishing mortality to rebuild to the same $\mathrm{SSB}_{\text {MSY }}$ was re-estimated from the results of the present assessment as 0.114 , based on starting conditions in 2002. The differences are primarily due to the use of 85% of $\mathrm{F}_{2001}(0.40)$ in 2002 in the present analysis versus an assumption of $\mathrm{F}_{\text {max }}(0.258)$ in 2002 in the previous analysis, and the inclusion of the weak 2000 year class as part of the starting stock sizes in 2002 versus the geometric mean in the previous analysis. In addition the geometric mean recruitment applied in 2002 (5.9 million fish at age 1) is somewhat lower than the previous estimate (6.6 million) applied in 2001.

7.0 Conclusions

In 2001, SSB was less than $1 / 2 \mathrm{SSB}_{\text {MSY }}$ and fully recruited fishing mortality was about 2 times $\mathrm{F}_{\text {MSY }}$. Therefore the stock is overfished and overfishing is occurring.

8.0 Summary

Fishing mortality appears to have declined considerably in 2001 compared to earlier years, and spawning biomass is continuing to increase. The SSB estimate for $2001(22,000 \mathrm{mt})$ is close to the high values of 1982 and 1989-1991. However, the apparent improvement in the condition of the stock is dependent to a large extent on the incoming 1998 year class. The strength of subsequent year classes, however, is either just below average (1999 year class) or extremely low (2000 year class).

Although recent surveys have indicated a marked increase in biomass, especially spring 2001 and 2002 and autumn 2001, there appears to have been a catchability effect associated with the spring 2002 survey in which abundance indices at age for most cohorts increased over the previous year.

Overall, there is accumulating evidence that the biomass of Gulf of Maine cod has been increasing in 2001 and 2002. Further increases in biomass may occur if fishing mortality is reduced to maximize the contribution of the 1998 year class to the spawning stock. Based on the current maturity ogive, this year class will be fully mature at age 4 in 2002. However, given the expected relatively poor strength of the 1999 and 2000 year classes, rebuilding of the stock may plateau unless additional average or above average year classes recruit in the next several years.

9.0 GARM Panel Comments

The Panel commented that the stock distribution had collapsed into a small area within Massachusetts Bay; however, there is now some evidence that the stock is starting to expand towards the outer Gulf of Maine. The Panel observed that the 2000 year class was estimated to be the weakest in the time series but, at this time, it is premature to draw final conclusions regarding the strength of this year class given the retrospective pattern in recruitment estimates (i.e. in future assessments, the 2000 year class may not be as low as currently estimated). The Panel noted that the 2000 fishing morality rate is lower than the estimate in the last assessment and this result is consistent with the retrospective pattern for fishing mortality which revealed a tendency to overestimate F in 2000.

Similarly, the Panel noted that the tuned 2001 F in the present assessment is considerably lower than the 2001 projected F (NEFSC 2002). This is due to several factors. The Projected 2001 F was based on stock conditions obtained from the 2001 VPA which was calibrated with research vessel survey data collected through autumn 2000. The present assessment utilizes 3 additional NEFSC surveys (2001 and 2002 spring and 2001 autumn), all of which indicated year over year increases in stock abundance, as well as corresponding Massachusetts surveys used to calibrate
stock size estimates of recruiting ages.

Sources of Uncertainty

- Discard estimates included in the assessment in 1999-2001 based on the approach recommended by the $33^{\text {rd }}$ SAW are likely to have underestimated the actual discards because they were rounded down to the nearest lower 500 ton bin.
- The estimate of the size of the incoming 2000 year class in 2001 is uncertain, but its influence on the projections is substantial. In the past, estimates of low recruitment were revised upward as data from the fishery were included, but the final estimates still indicated that they were lowest in the VPA series. Subsequent estimates of the strength of the 2000 year class may also increase.

10.0 Research Recommendations

- Explore a VPA formulation where autumn tuning indices are adjusted back to Jan 1, instead of shifted forward one year and one age.
- Explore the use of the state of Maine survey as a tuning indices.
- Given the overall truncation in the age composition, investigate possible trends in size/age composition of the inshore versus offshore areas.
- Request the Methods Working Group to investigate means of deriving an appropriate sampling intensity for commercial landings.

11.0 References

Mayo, R.K., E.M. Thunberg, S.E. Wigley and S.X. Cadrin. 2002. The 2001 Assessment of the Gulf of Maine Atlantic Cod Stock. NMFS/NEFSC, Woods Hole Laboratory Ref. Doc. 02-02.

NEFSC. 2001. $33^{\text {rd }}$ Northeast Regional Stock Assessment Workshop (33 ${ }^{\text {rd }}$ SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS/NEFSC, Reference Document 01-18.

NEFSC 2002. Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. NMFS/NEFSC, Reference Document 02-04, 254p.

Table F1. Commercial landings (metric tons, live) of Atlantic cod from the Gulf of Maine (NAFO Division 5 Y), 1960 - $2001 .^{1}$

Year	Gulf of Maine				
	USA	Canada	USSR	Other	Total
1960	3448	129	-	-	3577
1961	3216	18	-	-	3234
1962	2989	83	-	-	3072
1963	2595	3	133	-	2731
1964	3226	25	-	-	3251
1965	3780	148	-	-	3928
1966	4008	384	-	-	4392
1967	5676	297	-	-	5973
1968	6360	61	-	-	6421
1969	8157	59	-	268	8484
1970	7812	26	-	423	8261
1971	7380	119	-	163	7662
1972	6776	53	11	77	6917
1973	6069	68	-	9	6146
1974	7639	120	-	5	7764
1975	8903	86	-	26	9015
1976	10172	16	-	-	10188
1977	12426	-	-	-	12426
1978	12426	-	-	-	12426
1979	11680	-	-	-	11680
1980	13528	-	-	-	13528
1981	12534	-	-	-	12534
1982	13582	-	-	-	13582
1983	13981	-	-	-	13981
1984	10806	-	-	-	10806
1985	10693	-	-	-	10693
1986	9664	-	-	-	9664
1987	7527	-	-	-	7527
1988	7958	-	-	-	7958
1989	10397	-	-	-	10397
1990	15154	-	-	-	15154
1991	17781	-	-	-	17781
1992	10891	-	-	-	10891
1993	8287	-	-	-	8287
1994*	7877	-	-	-	7877
1995*	6798	-	-	-	6798
1996*	7194	-	-	-	7194
1997*	5421	-	-	-	5421
1998*	4156	-	-	-	4156
1999*	1636	-	-	-	1636
2000*	3730	-	-	-	3730
2001*	4416	-	-	-	4416

* Provisional
${ }^{1}$ USA 1960-1993 landings from NMFS, NEFSC Detailed weighout Files and Canvass data.
${ }^{2}$ USA 1994-2001 landings estimated by prorating NMFS, NEFSC Detailed weighout data by Vessel Trip Reports.

Table F2. USA sampling of commercial Atlantic cod landings from the Gulf of maine cod stock (NAFO Division 5 Y), 1982 - 2001.

Source: 1982-1985 from Serchuk and wigley (1986); 1986-2001 from NEFSC files.

Table F3. Percentage (by weight) of USA commercial Atlantic cod landings from the Gulf of Maine (NAFO Division 5Y), by market category, 1964-2001.

Year	Gulf of Maine			
	Large	Market	Scrod	Total [a]
1964	29	59	12	100
1965	39	54	7	100
1966	42	48	10	100
1967	41	41	17	100
1968	47	43	9	100
1969	35	55	9	100
1970	43	52	6	100
1971	52	42	6	100
1972	58	35	7	100
1973	52	36	11	100
1974	39	33	28	100
1975	32	42	26	100
1976	29	45	20	100
1977	33	42	22	100
1978	38	44	17	100
1979	37	49	14	100
1980	36	45	19	100
1981	29	45	22	100
1982	29	45	24	100
1983	25	45	28	100
1984	26	51	19	100
1985	25	51	20	100
1986	22	51	23	100
1987	29	52	16	100
1988	26	45	23	100
1989	17	55	23	100
1990	34	43	19	100
1991	26	51	20	100
1992	31	49	18	100
1993	32	44	21	100
1994	24	54	18	100
1995	21	53	23	100
1996	13	61	23	100
1997	17	60	20	100
1998	23	57	18	100
1999	29	53	16	100
2000	30	59	9	100
2001	40	51	8	100

[a] Includes landings of 'mixed' cod.

Table F4a. Total (commercial and recreational)landings at age (thousands of fish; metric tons) of Atlantic cod from the Gulf of Maine stock (NAFO Division 5Y), 1982 - 2001. (Input data for Virtual Population Analysis)

Age								
Year	1	2	3	4	5	6	7+	Total

Total Landings at Age in Numbers (000 's)

1982	88	1995	2350	1386	717	75	242	6853
1983	14	1337	2896	1184	685	448	169	6733
1984	24	813	1572	1636	469	205	142	4861
1985	49	989	2111	1122	665	133	137	5206
1986	26	208	2750	929	275	197	190	4575
1987	41	907	1418	1525	330	79	97	4397
1988	6	520	2140	1149	434	51	34	4334
1989	5	530	2284	1698	485	91	61	5154
1990	7	294	4195	2373	488	167	105	7629
1991	5	447	1349	4948	946	151	85	7931
1992	-	350	600	526	2184	218	86	3962
1993	1	152	1998	787	140	481	39	3597
1994	1	57	1380	1228	315	74	88	3143
1995	-	279	1152	1324	204	14	34	3007
1996	-	86	688	1943	368	46	10	3141
1997	-	61	494	466	894	72	8	1995
1998	-	110	485	616	180	211	11	1614
1999^{1}	1	8	563	566	267	78	104	1586
2000^{2}	-	97	485	934	211	96	25	1849
2000^{3}	-	56	1000	666	370	104	87	2281

Total Landings at Age in Weight (Tons)

1982	50	2151	3735	3719	3392	494	2738	16279
1983	6	1421	4664	2891	2568	2691	1680	15921
1984	12	820	2551	4412	1710	1192	1462	12169
1985	18	1007	3442	3121	2929	725	1327	12549
1986	11	213	4946	2679	1252	1186	2225	12512
1987	13	917	2185	4752	1564	547	998	10976
1988	1	513	3764	2736	2204	321	363	9902
1989	3	628	3922	4979	1861	386	726	12575
1990	1	299	6941	5414	2046	1266	1424	17391
1991	1	507	2045	12204	3807	1093	944	20601
1992	-	536	1149	1432	6684	1080	911	11793
1993	1	172	3650	1903	594	2927	428	9675
1994	-	78	2568	3790	1047	449	868	8799
1995	-	452	2132	3531	1033	100	455	7703
1996	-	142	1440	4537	1321	340	109	7889
1997	-	105	1088	1382	2807	328	71	5781
1998	-	147	1023	1809	744	871	109	4701
1999^{1}	-	10	1036	1573	1093	449	801	4963
2000^{2}	-	156	1103	3090	905	559	181	5996
2000^{3}	-	104	2387	2143	1784	661	705	7780
$==$								

1. Includes $2,500 \mathrm{mt}$ of estimated discards.
2. Includes $1,000 \mathrm{mt}$ of estimated discards.
3. Includes $1,500 \mathrm{mt}$ of estimated disaards.

Table F4b. Mean weight (kg) and mean length (cm) at age of total landings (commercial and recreational) of Atlantic cod from the Gulf of Maine stock (NAFO Division 5Y), 1982 - 2001. (Input data for Virtual Population Analysis)

Age								
Year	1	2	3	4	5	6	7+	Average

Total Landings Mean Weight (kg) at Age

1982	0.568	1.078	1.589	2.683	4.731	6.587	11.314	2.375
1983	0.429	1.063	1.610	2.442	3.749	6.007	9.941	2.365
1984	0.500	1.009	1.623	2.697	3.646	5.815	10.296	2.503
1985	0.367	1.018	1.621	2.782	4.405	5.451	9.686	2.410
1986	0.423	1.024	1.799	2.884	4.553	6.020	11.711	2.735
1987	0.317	1.011	1.541	3.116	4.739	6.924	10.289	2.496
1988	0.167	0.987	1.759	2.381	5.078	6.294	10.676	2.285
1989	0.600	1.185	1.717	2.932	3.837	4.242	11.902	2.440
1990	0.143	1.017	1.655	2.282	4.193	7.581	13.562	2.280
1991	0.171	1.134	1.516	2.466	4.024	7.238	11.106	2.598
1992	0.468	1.531	1.915	2.722	3.060	5.000	10.593	2.977
1993	1.000	1.132	1.627	2.418	4.243	6.085	10.974	2.690
1994	0.418	1.368	1.861	3.086	3.324	6.068	9.864	2.800
1995	0.418	1.620	1.851	2.667	5.064	7.143	13.382	2.562
1996	0.418	1.651	2.093	2.335	3.590	7.391	10.900	2.512
1997	0.418	1.721	2.202	2.966	3.140	4.556	8.875	2.898
1998	0.466	1.336	2.109	2.937	4.133	4.128	9.909	2.913
1999	0.331	1.250	1.841	2.776	4.100	5.736	7.702	3.129
2000	0.418	1.600	2.274	3.310	4.291	5.811	7.307	3.243
2001	0.418	1.868	2.388	3.215	4.817	6.370	8.103	3.411
Total Landings Mean Length (cm) at Age								
1982	37.1	46.6	52.7	62.6	76.5	85.6	101.4	57.4
1983	33.5	46.6	53.1	61.0	70.5	82.5	95.6	58.0
1984	28.5	45.5	53.3	63.1	69.5	81.2	98.1	59.3
1985	32.0	45.4	53.3	64.1	74.5	79.9	96.6	58.5
1986	33.7	45.1	55.3	64.6	75.0	82.4	105.9	61.1
1987	26.4	45.1	52.1	66.4	76.2	86.4	98.4	58.8
1988	26.2	45.0	54.7	60.6	78.1	83.2	100.5	58.1
1989	38.4	48.5	54.6	65.1	71.2	77.5	103.1	60.0
1990	23.7	46.2	54.1	60.0	73.2	89.7	108.9	58.3
1991	24.9	47.5	51.9	61.3	71.8	88.1	100.7	61.1
1992	31.3	52.9	56.4	62.9	65.5	76.9	100.1	64.1
1993	38.0	47.4	55.9	60.8	73.5	83.2	101.7	61.4
1994	26.3	50.3	56.1	66.0	67.2	82.4	97.5	62.8
1995	31.2	53.8	56.0	62.4	78.0	87.2	107.1	60.9
1996	31.2	54.0	58.3	60.3	68.9	88.9	103.5	61.2
1997	31.2	54.6	59.4	65.0	66.3	74.8	104.6	64.4
1998	35.0	50.7	58.4	64.8	72.4	72.1	95.1	63.9
1999	33.0	47.4	56.0	63.9	72.1	80.7	89.9	64.9
2000	31.2	53.4	59.4	65.6	73.7	82.3	88.1	66.4
2001	31.2	56.3	60.9	66.8	76.9	84.5	91.3	66.9

Table F5. Standardized stratified mean catch per tow in numbers and weight (kg) for Atlantic cod from NEFSC offshore spring and autumn research vessel bottom trawl surveys in the Gulf of Maine (Strata 26-30 and 36-40), 1963-2002 [a,b,c].

	Spring		Autumn	
Year	No/Tow	Wt/Tow	No/Tow	wt/Tow
1963	-	-	5.92	17.9
1964	-	-	4.00	22.8
1965	-	-	4.49	12.0
1966	-	-	3.78	12.9
1967	-	-	2.56	9.2
1968	5.44	17.9	4.39	19.4
1969	3.25	13.2	2.76	15.4
1970	2.21	11.1	4.90	16.4
1971	1.43	7.0	4.37	16.5
1972	2.06	8.0	9.31	13.0
1973	7.54	18.8	4.46	8.7
1974	2.91	7.4	4.33	9.0
1975	2.51	6.0	6.15	8.6
1976	2.78	7.6	2.15	6.7
1977	3.88	8.5	3.08	10.2
1978	2.06	7.7	5.75	12.9
1979	4.27	9.5	3.49	17.5
1980	2.15	6.2	7.04	14.2
1981	4.86	10.8	2.42	8.1
1982	3.75	8.6	7.77	16.1
1983	3.91	10.5	4.22	8.8
1984	3.40	5.8	2.42	8.8
1985	2.52	7.7	2.92	8.5
1986	1.96	3.6	1.95	5.1
1987	1.68	3.0	2.98	3.4
1988	3.13	3.3	5.90	6.6
1989	2.26	2.5	4.65	4.6
1990	2.36	3.1	2.99	4.9
1991	2.39	2.9	1.25	2.8
1992	2.41	8.7	1.43	2.4
1993	2.50	5.9	1.23	1.0
1994	1.27	2.4	2.14	2.7
1995	1.91	2.4	2.01	3.7
1996	2.46	5.4	1.32	2.4
1997	2.19	5.6	0.87	1.9
1998	1.71	4.2	0.84	1.5
1999	2.30	5.1	1.81	3.5
2000	3.08	3.2	2.60	4.7
2001	2.15	6.2	1.98	7.3
2002	3.72	10.9		

[a] During 1963-1984, BMV oval doors were used in the spring and autumn surveys; since 1985, Portugeuse polyvalent doors have been used in both surveys. Adjustments have been made to the 1963-1984 catch per tow data to standardize these data to polyvalent door equivalents. Conversion coefficients of 1.56 (numbers) and 1.62 (weight) were used in this standardization (NEFSC 1991).
[b] Spring surveys during 1973-1981 were accomplished with a '41 Yankee' trawl; in all other years, spring surveys were accomplished with a '36 Yankee' trawl. No adjustments have been made to the catch per tow data for these differences.
[c] In the Gulf of Maine, spring surveys during 1980-1982, 1989-1991 and 1994, and autumn surveys during 1977-1978, 1980, 1989-1991 and 1993 were accomplished with the R/V DELAWARE II; in all other years, the surveys were accomplished using the R/V ALBATROSS IV. Adjustments have been made to the R/V DELAWARE II catch per tow data to standardize these to R / V ALBTATROSS IV equivalents. Conversion coefficients 0.79 (number) and 0.67 (weight) were used in this standardization (NEFSC 1991).

Table F6. Final VPA Results for Gulf of Maine Cod, 1982-2002.

STOCK N	NUMBERS (Jan 1982	$\begin{array}{r} \text { 1) in } \\ 1983 \end{array}$	$\begin{array}{r} \text { thousands } \\ 1984 \end{array}$	1985	1986	1987	1988
1	7769	7539	10464	7004	10161	12538	25198
2	10891	6281	6160	8545	5690	8296	10228
3	5359	7112	3933	4307	6101	4471	5971
4	3026	2262	3202	1797	1616	2507	2377
5	1796	1223	780	1142	456	483	673
6	170	822	382	214	333	125	97
7	541	305	260	216	315	150	63
1+	29552	25543	25180	23227	24674	28569	44607
	1989	1990	1991	1992	1993	1994	1995
1	4302	4021	6994	6419	9373	3383	3457
2	20625	3518	3286	5721	5255	7673	2769
3	7903	16407	2614	2286	4368	4165	6231
4	2953	4404	9637	920	1328	1768	2161
5	907	881	1459	3413	277	376	336
6	158	303	280	338	818	100	22
7	104	188	155	132	65	116	53
1+	36952	29721	24423	19228	21485	17581	15030
	1996	1997	1998	1999	2000	2001	2002
1	3377	5055	5183	10078	4564	566	00
2	2830	2765	4138	4243	8250	3737	463
3	2014	2239	2208	3289	3467	6667	3009
4	4059	1027	1386	1369	2183	2399	4554
5	572	1565	419	578	609	942	1362
6	91	135	473	180	231	308	437
7	19	15	24	237	60	255	289
1+	12962	12800	13832	19974	19364	14874	10113
FISHING	$\begin{gathered} \text { vG MORTALITY } \\ 1982 \end{gathered}$	- 1983	1984	1985	1986	1987	1988
1	0.01	0.00	0.00	0.01	0.00	0.00	0.00
2	0.23	0.27	0.16	0.14	0.04	0.13	0.06
3	0.66	0.60	0.58	0.78	0.69	0.43	0.50
4	0.71	0.86	0.83	1.17	1.01	1.12	0.76
5	0.58	0.96	1.09	1.03	1.10	1.41	1.25
6	0.67	0.92	0.90	1.16	1.06	1.20	0.87
7	0.67	0.92	0.90	1.16	1.06	1.20	0.87
$4-5, \mathrm{u}$	0.64	0.91	0.96	1.10	1.05	1.26	1.01
	1989	1990	1991	1992	1993	1994	1995
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.03	0.10	0.16	0.07	0.03	0.01	0.12
3	0.38	0.33	0.84	0.34	0.70	0.46	0.23
4	1.01	0.91	0.84	1.00	1.06	1.46	1.13
5	0.89	0.95	1.26	1.23	0.82	2.62	1.11
6	1.01	0.94	0.91	1.22	1.05	1.70	1.17
7	1.01	0.94	0.91	1.22	1.05	1.70	1.17
4-5, u	0.95	0.93	1.05	1.11	0.94	2.04	1.12

Table F6 (Continued).

	1996	1997	1998	1999	2000	2001
1	0.00	0.00	0.00	0.00	0.00	0.00
2	0.03	0.02	0.03	0.00	0.01	0.02
3	0.47	0.28	0.28	0.21	0.17	0.18
4	0.75	0.70	0.68	0.61	0.64	0.37
5	1.24	1.00	0.64	0.71	0.48	0.57
6	0.82	0.89	0.68	0.65	0.61	0.47
7	0.82	0.89	0.68	0.65	0.61	0.47
$4-5, \mathrm{u}$	1.00	0.85	0.66	0.66	0.56	0.47

Jan 1 bIOMASS (using Jan 1 mean weights)

	1982	1983	1984	1985	1986	1987	1988
1	3224	2111	3662	1541	2784	2257	1588
2	9606	4880	4053	6093	3488	5426	5717
3	6871	9367	5164	5509	8255	5615	7966
4	6869	4455	6674	3819	3495	5937	4552
5	7542	3880	2328	3935	1624	1785	2676
6	948	4381	1782	956	1715	701	528
7	6122	3030	2678	2097	3690	1543	678
$1+$	41181	32104	26341	23950	25051	23263	23705
	1989	1990	1991	1992	1993	1994	1995
1	1983	205	399	1630	8014	717	726
2	9178	2747	1324	2929	3616	8978	2279
3	10290	22969	3247	3369	7303	6044	9913
4	6705	8716	19466	1868	2859	4197	4816
5	2741	3089	4420	9375	941	1065	1330
6	734	1636	1541	1517	3530	508	109
7	1238	2544	1720	1396	714	1141	714
1+	32869	41906	32116	22085	26976	22649	19887
	1996	1997	1998	1999	2000	2001	
1	696	1183	1254	1522	1114	138	
2	2352	2345	3091	3068	6006	2679	
3	3708	4270	4207	5157	5845	11261	
4	8439	2558	3526	3314	5390	5939	
5	1769	4238	1467	2005	2102	3467	
6	556	546	1701	877	1129	1565	
7	212	131	241	1827	435	2066	
1+	17731	15272	15487	17768	22021	27114	

Table F6 (Continued).
SSB AT THE START OF THE SPAWNING SEASON -MALES AND FEMALES (MT) (using SSB mean weights)

	1982	1983	1984	1985	1986	1987	1988
1	218	143	248	60	108	87	61
2	2326	1174	993	2765	1608	2465	2629
3	3630	5002	2764	4445	6762	4801	6729
4	5197	3283	4945	3039	2857	4768	3877
5	6421	3100	1821	3204	1308	1365	2102
6	820	3633	1483	763	1390	554	442
7	5296	2513	2229	1672	2991	1221	567
1+	23908	18848	14484	15947	17024	15262	16406
	1989	1990	1991	1992	1993	1994	1995
1	77	22	42	173	853	28	28
2	4241	732	349	784	974	3295	821
3	8868	11771	1528	1724	3517	4822	8214
4	5481	5872	13262	1239	1876	3151	3820
5	2284	2372	3221	6871	739	666	1069
6	599	1327	1255	1173	2809	370	87
7	1012	2104	1430	1101	580	831	568
1+	22561	24200	21088	13065	11347	13163	14608
	1996	1997	1998	1999	2000	2001	
1	27	46	49	59	43	05	
2	859	858	1131	1127	2203	982	
3	2950	3509	3458	4286	4892	9405	
4	7127	2181	3016	2866	4639	5350	
5	1391	3471	1274	1721	1875	3049	
6	469	455	1469	761	986	1400	
7	179	109	208	1585	380	1848	
1+	13001	10630	10604	12405	15019	22040	

Table F7a. Starting conditions and input data for short-term (2002-2004) stochastic stock biomass and catch projections for Gulf of Maine cod.

Table F7b. Results of short-term stochastic stock biomass and catch projections for Gulf of Maine cod.

Projections for 2002-2004;
F2002=0.40 Basis: 85\% of Status quo 2001 point estimate.
Recruitment (age 1) 2002 and 2003 year classes derived from Beverton-Holts spawning stock-recruitment relationship based on 1981-1999 year classes.

SSB was estimated to be $22,000 \mathrm{mt}$ in 2001.

	2002		2003			2004	
F	Catch	SSB	F	Catch	SSB	Catch	SSB
0.40	7786	23616	$F_{\text {rebuild }}=0.114$	2479	22831	2916	31544

Gulf of Maine Cod
Total Commercial Landings

Figure F1. Total commercial landings of Gulf of Maine cod (NAFO Div. 5Y), 1893-2001.

Gulf of Maine Cod

NEFSC Spring and Autumn Biomass Indices

Figure F2. Biomass indices (stratified mean weight per tow) for Gulf of Maine cod from NEFSC autumn bottom trawl surveys.

Figure F3. Trends in landings and fishing mortality for Gulf of Maine cod.

Trends in Recruitment and Biomass

Figure F4. Trends in recruitment (age 1) and biomass for Gulf of Maine cod.

Gulf of Maine Cod
VPA Retrospective Analysis

Gulf of Maine Cod
VPA Retrospective Analysis

Figure F5. Retrospective analysis of estimates of terminal year F , recruitment and SSB from the VPA for Gulf of Maine Cod.

Figure F6. Sensitivity of VPA estimates of F and SSB in 2001 to presumed differences in survey catchability during 2000-2002 based on 1000 bootstrap replications (median and 80% CI) of the base VPA.

Figure F7. Projected SSB, recruitment and catch for Gulf of Maine cod. Frebuild $=0.115$.

G. Witch Flounder by S. E. Wigley

1.0 Background

Witch flounder, Glyptocephalus cynoglossus, are assessed as a unit stock from the Gulf of Maine southward. An analytical assessment was last conducted for this species in 1999 (Wigley et al.1999) and reviewed at SAW 29 (NEFSC 1999). The SAW 29 assessment indicated average fishing mortality (ages 7-9, unweighted) increased from 0.21 in 1982 to 0.59 in 1985, declined to 0.24 in 1990, increased to 0.86 in 1996, then declined to 0.37 in 1998. Mean $3+$ biomass declined steadily from $27,930 \mathrm{mt}$ in 1982 to $7,742 \mathrm{mt}$ in 1994, then sharply increased to $18,934 \mathrm{mt}$ by 1998. Spawning stock biomass declined from 18,000 tons in 1982 to about 4,000 tons in 1993 and then increased sharply to $8,600 \mathrm{mt}$ in 1998 . Since 1982 , recruitment at age 3 has ranged from approximately 3 million fish (1984 year class) to 38 million fish (1996 year class) with a mean of 14 million fish.

This report updates catch in 1999-2001, survey indices through spring 2002, estimates 2001 fishing mortality and 2002 spawning stock biomass, and provides projections of median landings and spawning stock biomass for two fishing mortality scenarios. Sensitivity analyses of assessment results were conducted to evaluate the impact of mis-marked survey trawl wires and the selection of survey tuning indices.

2.0 2002 Assessment

The Fishery

The U.S. nominal catch is taken from both the Georges Bank and Gulf of Maine regions. Canadian landings from both areas have been minor (not more than 68 mt annually). Landings for 1991-2000 averaged 2,200 mt annually but increased to over $3,000 \mathrm{mt}$ in 2001 (Table G1 and Figure G1).

Sampling intensity of landings during 1999 and 2001 was comparable to that of the previous decade, i.e., an average of 43 samples annually. Sampling intensity in 2000 increased to 110 samples; however 100 of these were from the small market category (Table G2). As in previous years, it was necessary to pool some quarters for some market categories. To estimate landings at age and mean weights at age, quarter, semi-annual or annual age-length keys were applied to corresponding commercial landings length frequency data by market category. Landed weights-at-age in 1999-2001 continue to decline as observed in recent years (Table G2).

Discard estimation

Discards-at-age were updated using the same estimation methods used in the 1999 assessment. The estimation of large-mesh otter trawl discards is based upon a method which filters survey length frequency data through a commercial gear retention ogive and then through a culling ogive. A semiannual ratio estimator of survey-filtered 'kept' index to semi-annual numbers landed was used to expand the estimated 'discard' survey index to numbers of fish discarded at length. Semi-annual numbers of fished discarded were apportioned to age using the corresponding seasonal NEFSC survey age/length key. Witch flounder discarded in the large mesh otter trawl fishery range in age from 0 to 6 , with the majority at ages 4 to 5 . Estimated numbers of fish discarded at sea in 2000-2001 comprised as much as 65% of witch flounder landed, similar to that estimated for 1996 (Figure G2).

Discards in the small mesh trawl fishery for northern shrimp during 1999-2001 were estimated from
the relationship between age 3 fish in the autumn NEFSC survey and discard rate during 1993-1997. This method was used to estimate 1998 discards in the 1999 assessment due to lack of sea sampling in the shrimp fishery. For each year, the total discard weight was estimated by expanding the discard rates ($\mathrm{mt} /$ day fished) for 1998-2001 by the number of days fished estimated from the Vessel Trip Reports. Discarded numbers at age were derived by apportioning discard weight by the average age composition of discards in 1993-1997 and then dividing by the average 1993-1997 discard mean weights at age. Witch flounder discarded in the shrimp fishery range in age from 0 to 6 , with the majority at ages 1-3. During 1999-2001, the number of fish discarded in the shrimp fishery averaged 8% of witch flounder landed (Figure G2).

The total catch at age is presented in Tables G3 and G4, and Figure G2 .

Research Vessel Survey Indices

NEFSC bottom trawl survey indices have increased since the late 1990's (Table G5, Figures G3a-b). Witch flounder abundance has reached near-record and record high levels in the spring and autumn surveys, respectively. The biomass indices have increased to levels observed in the mid-1980's. Survey age compositions are presented in Table G6. The survey mean weights and mean lengths at age show a similar decline as reported in the commercial landings. Survey maturity-at-age has decrease in 2000-2002.

3.0 Assessment Results

The VPA formulation is the same as the 1999 assessment and uses catch (landings plus discards) through 2001 and NEFSC spring and autumn survey indices through 2002 and 2001, respectively, to estimate stock sizes for ages 4 to 10 . The VPA had a mean square residual of 0.76 , the coefficients of variation (CVs) for estimated ages ranged between 32% and 45%, and the CVs for survey catchability coeffiecients (q) were consistent, ranging from 19% to 22%.

VPA results indicate average fishing mortality (ages 7-9, unweighted) increased from 0.21 in 1982 to 0.59 in 1985, declined to 0.24 in 1990, increased to 0.96 in 1996, then declined to 0.37 in 1999, and increased to 0.45 in 2001 (Table G7, Figure G4). Spawning stock biomass declined steadily from $18,000 \mathrm{mt}$ in 1982 to $4,000 \mathrm{mt}$ in 1995, and has increased to $11,300 \mathrm{mt}$ in 2001 (Table G7, Figure G5). Since 1982, recruitment at age 3 has ranged from approximately 3 million fish (1984 year class) to 84 million fish (1997 year class) with a mean of 22 million fish (median of 14 million; Table G7, Figure G5). The addition of the 1995 to 1999 year classes to the stock-recruit data continued the negative trend observed in this relationship in the previous assessment.

The retrospective analysis indicates that average F was overestimated in the early to mid-1990's and underestimated in the late 1990s, but the 2000 F estimate was initially overestimated (Figure G6a). Spawning stock biomass was consistently overestimated since 1994 (Figure G6b). The retrospective analysis indicated a pattern of relatively consistent estimates of the number of age 3 recruits, with the notable exception of the 1992, 1993 and 1996 year classes, which were overestimated (Figure G6c).

Bootstrap results suggest that the estimates of F and spawning stock biomass are relatively precise with CVs of 19% and 13%, respectively. The 80% confidence interval for $\mathrm{F}_{2001}=0.45$ was 0.38 and 0.59 , and for $\mathrm{SSB}_{2001}=11,300 \mathrm{mt}$ the 80% confidence interval was $9,784 \mathrm{mt}$ and $13,584 \mathrm{mt}$ (Figure G7).

Biological Reference Points

Based on yield and spawning stock biomass per recruit analyses and the arithmetic mean of the VPA age 3 recruitment (NEFSC 2002):

SSBmsy $=19,900 \mathrm{mt}$
Fmsy $=\mathrm{F} 40 \%=0.164$
MSY $=2,990 \mathrm{mt}$.
In 2001, spawning stock biomass was slightly above $1 / 2 \operatorname{SSBmsy}(9,950 \mathrm{mt})$, the overfished threshold, and fishing mortality $(\mathrm{F}=0.45)$ was three times higher than Fmsy , the overfishing threshold; therefore, witch flounder was not overfished but overfishing was occurring in 2001 (Figure G7). Results are summarized in Section 5.2 (Summary of Assessment Advice).

Sensitivity Analyses

NEFSC survey tuning indices from spring 2000-2002 and autumn 2000-2001 are arbitrarily adjusted by $1.1,1.25$, and 2.0 to evaluate the sensitivity of the VPA results to the potential gear effect of the differences in survey trawl wires during these years (Figure G7). Results are summarized in Section 5.2 (Summary of Assessment Advice).

4.0 Projections

Since the stock is currently above the $\mathrm{SSB}_{\mathrm{MSY}}$ target, age-structured projections used $\mathrm{Fmsy}=\mathrm{F} 40 \%$ fishing mortality rate to evaluate the trajectories of spawning biomass and catch. The projection analyses used stock and landings mean weights at age and selectivity pattern from 1998-2001, the maturity at age from 2000-2002, and recruitment re-sampled from the cumulative distribution function based on the VPA age 3 recruitment from 1982-1998 year classes. Initial stock sizes in 2002 were derived from 1000 bootstrap iterations of the VPA. Fishing mortality in 2002 was set to fishing mortality in 2001 with a 15% reduction (e.g. $\mathrm{F}_{2002}=\mathrm{F}_{2001} * 0.85$). The fishing mortality in 2003-2009 was set to Fmsy $=\mathrm{F} 40 \%=0.164$.

The median catch (median landings + median discards) in 2003 is projected to be $4,370 \mathrm{mt}$ and 6,260 mt in 2004. The median SSB in 2003 is projected to be $25,410 \mathrm{mt}$ and $34,700 \mathrm{mt}$ in 2004 (Table G8) The projected median catch and SSB in 2009 under Fmsy are 5,764 mt and 36,807 mt, respectively (Figure G8).

5.0 Panel Comments

The GARM noted the block of positive residuals in the younger ages beginning in 1991, and suggested that the survey tuning series for the younger ages could be split into two series. The GARM noted that the SSB will reach SSBmsy within a year, yet current SSB is barely above $1 / 2$ SSBmsy. A yield per recruit analysis with current mean weights, maturity ogive and partial recruitment was compared with the yield per recruit analysis used to estimate biological reference points. The results of this comparison indicated that the increase in mean recruitment was a contributing factor. The mean recruitment used to calculate the biological reference points was 12.42 million fish using the 1982 to 1994 year classes. However, with the assessment update, four additional year classes are estimated. The mean recruitment increases to 22.1 million fish (median 14.5 million) when the 1982-1998 year classes are used. The GARM pointed out that the recent
above-average year classes may be poorly determined, and based on the retrospective pattern for recruitment, these year classes may be overestimated. The Panel concluded that the biological reference points are appropriate; however, the projections of SSB may be overly optimistic because future assessment updates may reveal that these year class are not as strong as they appear at this time.

6.0 Sources of Uncertainty

- Low frequency of samples across market category and quarter results in imprecise mean weights at age and estimates of numbers at age.
- Confounding of survey-based estimates of discards and use of same survey as tuning indices for VPA calibration may be a problem.
- Lack of data to support direct estimates of discards at age requires use of various surrogate survey-based methods.
- Retrospective patterns suggest that estimates of 2002 SSB may be overestimated (e.g. updated assessments may have lower estimated 2002 SSB).

7.0 Research recommendations for witch flounder

- Explore alternative VPA analyses with the survey tuning indices split into two series for the younger age groups.

8.0 References

Lange, A.M.T. and F.E. Lux. 1978. Review of the other flounder stocks (winter flounder, American plaice, witch flounder, and windowpane flounder) off the northeast United States. NMFS, NEFC, Woods Hole Lab. Ref. Doc. No. 78-44, 53 pp.

Northern Demersal Working Group, Northeast Regional Stock Assessment Workshop. 2000. Assessment of 1 Northeast groundfish stocks through 1999: Report to the New England Fishery Management Council's Multispecies Monitoring Committee. Northeast Fish. Sci. Cent. Ref. Doc. 00-05; 175 p.

Northeast Fisheries Science Center. 2002. Final Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. February 2002.

Northeast Fisheries Science Center. 1999. Report of the $29^{\text {th }}$ Northeast Regional Stock Assessment Workshop (29th SAW), Stock Assessment Review Committee (SARC) consensus summary of assessments. Northeast Fish. Sci. Cent. Ref. Doc. 99-14, 347 p.

Wigley, S.E., J. K.T. Brodziak, and S.X. Cadrin. 1999. Assessment of the witch flounder stock in Subareas 5 and 6 for 1999. Northeast Fish. Sci. Cent. Ref. Doc. 99-16, 153 p.

Table G1. Witch flounder landings, discards and catch (mt, live) from Subareas 5 and 6 1960-2001.

Year	Landings				Discard	Total USA Catch (used in VPA)
	Canada	USA ${ }^{2}$	Other ${ }^{1}$	Total		
1960	-	1255	-	1255		
1961	2	1022	-	1024		
1962	1	976	-	977		
1963	27	1226	121	1374		
1964	37	1381	-	1418		
1965	22	2140	502	2664		
1966	68	2935	311	3314		
1967	63	3370	249	3682		
1968	56	2807	191	3054		
1969	-	2542	1310	3852		
1970	19	3112	130	3261		
1971	35	3220	2860	6115		
1972	13	2934	2568	5515		
1973	10	2523	629	3162		
1974	9	1839	292	2140		
1975	13	2127	217	2357		
1976	5	1871	6	1882		
1977	11	2469	13	2493		
1978	18	3501	6	3525		
1979	17	2878	-	2895		
1980	18	3128	1	3147		
1981	7	3422	-	3449		
1982	9	4906	-	4915	48	4953
1983	45	6000	-	6045	162	6162
1984	15	6660	-	6675	100	6760
1985	46	6130	-	6431	61	6191
1986	67	4610	-	5216	25	4635
1987	23	3450	-	3819	47	3497
1988	45	3262	-	3665	60	3322
1989	13	2074	-	2384	133	2207
1990	12	1478	-	1492	184	1662
1991	7	1798	-	1805	95	1893
1992	7	2246	-	2253	171	2417
1993	10	2605	-	2615	376	2981
1994	34	2670	-	2704	422	3092
1995	11	2212	-	2223	265	2477
1996	10	2088	-	2098	454	2542
1997	7	1775	-	1782	393	2168
1998	10	1849	-	1859	335	2184
1999	19	2121	-	2140	354	2475
2000	53	2439	-	2492	547	2986
2001	32	3024	-	3047	705	3729

[^3]Table G2.
Summary of USA commercial witch flounder landings (mt), number of length samples (n), number of fish measured (len) and number of age samples (age) by market category and quarter for all gear types, 1981 - 2001 . The sampling ratio represents the amount of landings per length sample.

Year		Quarter 1			Quarter 2			Small	Quarter 3		Quarter 4			Sampling Ratio	
					All										
		Small	Med.	Large		Small	Med.		Large	Med.	Large	Small	Med.	Large	
1981	mt	260	7	517	269	32	694	242	13	607	230	0	453	3324	
	n	1	1	.	1	.	1	.	1	5	
	len	-	.	-	-	101	103	-	89	-	105	-	100	498	
	age	.	.	-	-	.	26	-	25	-	25	-	25	101	
1982		348	1	726	342	73	886	287	170	739	278	201	669	4720	
	n	5	2	6	1	2	2	2	2	6	3	4	2	37	128
	len	527	194	626	126	209	216	189	210	514	307	393	189	3700	
	age	128	55	150	30	55	50	50	50	150	81	105	50	954	
1983		475	250	910	471	286	1037	298	154	758	257	169	613	5678	
	n	5	2	3	5	1	5	8	3	8	6	3	.	49	116
	len	680	232	265	685	96	520	1008	123	981	677	344	-	5611	
	age	135	30	55	131	16	125	152	0	159	180	75	.	1058	
1984		462	322	1036	513	393	1000	403	248	653	429	286	586	6331	
	n	5	9	4	7	1	7	8	1	2	4	2	1	51	124
	len	804	1112	400	970	117	775	1045	106	191	615	243	91	6469	
	age	154	250	76	186	25	180	210	28	53	105	44	25	1336	
1985		465	377	613	697	453	850	526	291	553	433	310	408	5976	
	n	12	1	2	5	4	7	7	7	6	8	2	4	65	92
	len	1530	105	229	657	426	698	795	800	684	824	264	349	7361	
	age	319	29	50	106	77	153	97	138	113	161	25	29	1297	
1986		384	309	356	654	421	595	375	238	354	312	212	238	4448	
	n	6	3	5	5	4	5	4	3	4	5	3	2	49	90
	len	662	307	515	558	410	413	302	364	406	416	337	233	4923	
	age	123	60	89	106	97	129	63	75	100	87	75	52	1056	
1987		349	211	228	432	317	387	296	203	247	298	203	202	3373	
	n	1	1	2	4	2	3	5	5	4	2	3	2	34	69
	len	85	145	200	323	228	316	354	583	400	204	261	178	3277	
	age	25	25	50	77	47	76	78	113	95	48	64	51	749	

Small Med. Large

All
Small Med. Large

Quarter 1 Quarter 2 Small Med. Large Small Med. Large

Year

mt	424	304	271
n	5	4	5
len	335	407	465
age	70	89	106
mt	230	174	148
n	1	2	2
len	94	201	222
age	25	50	49

1990 mt	113	125	107
n	1	2	3
len	134	199	199
age	15	40	45
mt	71	56	58
n	5	2	3
len	262	224	401
age	53	50	80
mt	180	86	82
n	4	2	2
len	259	241	185
age	42	46	52

1993 mt $350 \quad 112 \quad 1$

n	7	1	.	7	1	1
len	830	100	.	741	107	100
age	55	25	\cdot	56	27	26
mt	403	143	98	505	183	154
n	\cdot	\cdot	.	3	5	6
len	\cdot	\cdot	.	560	532	749
age	.	.	.	59	104	134

436	393	389	184	176	208
5	5	3	5	4	3
344	544	429	396	359	295
71	110	77	70	100	75
255	264	251	98	145	156
2	2	1	2	2	1
230	236	27	150	206	100
50	46	25	40	51	25

140	140	131	3196
3	4	3	49
229	402	356	4561
61	95	69	993
85	107	103	2016
1	2	.	18
125	202	.	1793
25	47	.	433

65

100	119	129	84	79	85	1403
6	2	2	7	2	\cdot	35
349	247	145	381	201	\cdot	2586
69	41	50	103	48	\cdot	587
192	142	184	168	108	121	1637
4	2	3	5	4	3	41
212	165	249	300	410	274	3398
49	49	52	66	97	58	717
				212	97	116
205	115	138	2	\cdot	1	2034
7	1	1	129	\cdot	46	2436
477	121	117	27	\cdot	23	454
86	25	25				
			331	96	106	2435
263	122	150	5	\cdot	\cdot	\cdot

Quarter 1 Quarter 2 Small Med. Large Small Med. Large

Quarter 3
Small Med. Large

Quarter 4 Small Med. Large

All

1995		336	91	77	586	117	100	399	61	70	304	48	40	2212	
	n	3	3	3	6	3	5	.	.	.	2	.	1	26	85
	len	208	348	347	459	367	517	-	-	-	217	-	94	2557	
	age	53	84	89	81	75	135	-	-	-	27	-	25	569	
1996	mt	313	57	36	545	86	60	458	56	44	363	42	28	2088	
	n	5	2	3	5	2	1	5	4	4	5	3	3	42	50
	len	504	218	292	331	240	127	494	464	468	343	277	348	4106	
	age	59	45	78	53	50	26	59	86	101	60	70	69	756	
1997	mt	313	40	25	478	86	41	398	55	27	265	31	16	1775	
	n	6	3	3	9	4	3	9	3	1	9	1	1	52	34
	len	557	350	351	812	418	309	783	308	107	505	128	50	4678	
	age	77	68	70	108	73	77	98	81	20	73	18	23	786	
1998	mt	372	39	19	587	79	31	380	40	20	239	26	14	1849	80
	n	5	2	1	4	1	1	5	3	1	.	-	-	23	
	len	339	206	128	238	88	135	484	186	100	-	-	-	1904	
	age	45	50	19	30	.	29	47	22	.	-	-	-	242	
1999	$m t$	386	48	19	616	79	31	436	67	30	353	38	18	2121	51
	n	3	-	-	4	.	.	17	2	3	11	1	-	41	
	len	282	-	-	308	-	.	1110	201	306	775	109	-	3091	
	age	15	-	-	62	-	-	143	-	32	91	16	-	359	
2000	$m t$	477	53	17	583	93	27	555	89	28	451	50	16	2439	21
	n	31	2	.	47	.	.	17	1	.	5	5	2	110	
	len	2253	91	-	2445	-	-	994	105	-	308	558	217	6971	
	age	390	10	-	460	-	-	224	20	-	67	92	51	1314	
2001	$m t$	584	71	17	828	99	30	699	98	28	507	50	13	3024	70
	n	8	4	2	3	3	2	8	2	3	5	3	.	43	
	len	744	422	134	237	352	159	594	209	213	313	232	-	3609	
	age	125	63	42	47	48	64	126	34	46	61	48	-	704	

Table G3. Numbers ('000) at age of witch flounder in the total catch, 1982-2001.

Age													
Year	0	1	2	3	4	5	6	7	8	9	10	11+	TOTAL
	Total Catch in Numbers (1000's) at Age												
1982	0.03	0.06	1.72	190.49	1064.47	1207.67	1475.40	665.20	656.00	399.50	239.40	1578.40	7478.4
1983	0.00	0.02	4.28	337.11	1346.17	1520.76	1575.12	1590.20	977.80	737.70	510.40	1675.50	10275.1
1984	0.00	0.33	0.88	146.61	1466.31	2002.70	1739.59	1486.50	1497.50	696.70	375.10	1718.80	11131.0
1985	0.00	0.34	3.47	123.58	1176.12	2118.21	1936.24	1524.90	1247.90	606.00	400.40	1359.20	10496.4
1986	0.00	0.53	3.86	22.95	377.07	1516.79	2775.35	1566.90	834.90	412.70	222.80	758.20	8492.1
1987	2.08	18.92	79.93	22.25	181.26	467.06	1280.06	1574.70	870.90	480.60	252.40	489.40	5719.6
1988	0.42	14.66	130.29	600.27	139.91	264.30	658.27	1382.70	1154.10	401.50	266.70	597.50	5610.6
1989	0.85	10.69	50.32	447.05	436.26	65.27	315.20	761.60	884.70	350.70	123.80	349.00	3795.4
1990	1.46	6.29	95.30	343.93	635.77	1108.23	257.90	276.30	475.30	336.90	82.10	179.10	3798.6
1991	3.06	17.90	23.26	441.77	407.92	872.56	581.70	238.60	247.50	295.60	317.30	260.80	3708.0
1992	2.84	44.35	159.43	399.46	1259.95	866.37	943.97	723.10	203.40	179.40	121.10	380.20	5283.6
1993	113.76	85.80	129.59	417.23	1807.93	1420.56	919.56	598.10	586.50	219.10	279.00	391.10	6968.2
1994	8.06	1368.48	496.44	41.97	1002.18	2762.60	1290.40	828.40	197.06	540.16	113.70	324.90	8974.4
1995	2.68	49.96	635.31	641.30	617.50	1197.11	1722.49	849.85	267.81	97.35	269.86	157.06	6508.3
1996	5.21	32.68	51.06	119.38	952.15	1978.27	1322.45	1431.51	263.42	215.63	57.09	113.69	6542.5
1997	8.68	74.92	104.10	104.87	1022.81	1467.20	1386.54	1016.31	592.64	83.33	49.90	70.24	5981.5
1998	49.78	391.45	268.05	219.73	619.38	1284.18	1483.99	1583.87	370.71	141.42	15.54	70.34	6498.4
1999	32.11	252.53	173.52	243.71	1079.28	1482.74	1395.00	1178.30	763.15	251.27	31.57	54.36	6937.6
2000	21.61	169.95	118.24	148.73	1395.59	1722.99	1187.30	1611.14	1027.62	623.71	94.82	212.81	8334.5
2001	12.33	96.96	65.98	160.66	1352.04	2348.48	1344.47	1671.77	1461.88	635.35	426.14	307.17	9883.2

Table G4. Mean weight (kg) at age of witch flounder in the total catch, 1982-2001.

Table G5. Stratified mean number per tow at age of witch flounder in NEFSC offshore spring and autumn bottom trawl surveys in Gulf of Maine-Georges Bank region (strata 22-30,36-40), 1963-2002.

Year	SPRING		AUTUMN	
	Number per tow	Weight per tow	Number per tow	Weight per tow
1963	-	-	5.52	3.46
1964	-	-	2.89	2.00
1965	-	-	3.94	2.27
1966	-	-	7.80	4.56
1967	-	-	3.01	2.02
1968	4.83	3.35	4.82	3.49
1969	3.74	2.53	5.81	4.40
1970	6.39	4.49	4.89	3.71
1971	2.70	2.04	4.32	2.95
1972	5.35	4.01	3.24	2.42
1973	8.20	6.21	3.18	2.05
1974	6.23	3.62	2.38	1.58
1975	3.72	2.75	1.66	1.03
1976	5.50	3.70	1.34	0.94
1977	4.20	1.96	5.06	3.38
1978	3.87	2.56	4.04	2.94
1979	2.91	1.71	1.94	1.62
1980	8.46	3.89	2.62	2.04
1981	8.14	4.05	3.66	2.19
1982	3.64	1.87	0.99	0.83
1983	6.41	2.74	4.72	2.12
1984	3.00	1.66	4.37	2.34
1985	5.18	2.75	2.76	1.59
1986	2.07	1.35	1.59	1.09
1987	1.01	0.65	0.48	0.37
1988	1.43	0.85	1.38	0.57
1989	1.95	0.74	0.89	0.38
1990	0.63	0.24	2.00	0.40
1991	1.68	0.57	2.08	0.54
1992	1.26	0.48	0.94	0.24
1993	1.47	0.36	5.15	0.54
1994	3.13	0.53	2.21	0.42
1995	1.88	0.47	4.74	0.62
1996	1.36	0.28	5.38	1.02
1997	2.22	0.43	5.11	0.77
1998	4.27	0.77	3.70	0.47
1999	3.15	0.48	5.91	0.88
2000	3.45	0.52	6.63	1.11
2001	4.41	0.75	7.94	1.71
2002	8.10	1.62		

Note: During 1963-1984, BMV oval doors were used in the spring and autumn surveys; since 1985, Portuguese polyvalent doors have been used in both surveys. No significant differences in catchability were found for witch flounder, therefore no adjustments have been made (Byrne and Forrester, 1991). No significant differences were found between research vessels, and no adjustment have been made (Byrne and Forrester, 1991).

Spring surveys during 1973-1981 were accomplished with a 41 Yankee trawl; in all other years, a 36 Yankee trawl was used. No adjustments have been made.

Table G6. Stratified mean number per tow at age of witch flounder in NEFSC bottom trawl spring and autumn surveys (Strata 22-30, 36-40), 1980-2002.

	AGE															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	$14+$	Total
Spring																
1980	0.00	0.06	0.23	0.95	1.52	0.72	1.20	1.02	0.38	0.40	0.31	0.30	0.12	0.16	1.10	8.46
1981	0.00	0.00	0.05	0.82	0.93	2.00	1.02	0.76	0.67	0.42	0.13	0.20	0.24	0.22	0.90	8.40
1982	0.00	0.04	0.01	0.56	0.57	0.34	0.21	0.64	0.41	0.08	0.26	0.15	0.03	0.03	0.30	3.64
1983	0.00	0.00	0.03	0.58	1.25	1.33	0.55	0.64	0.67	0.48	0.20	0.09	0.08	0.11	0.41	6.41
1984	0.00	0.00	0.01	0.10	0.33	0.73	0.42	0.26	0.28	0.24	0.11	0.12	0.09	0.02	0.29	3.00
1985	0.00	0.00	0.00	0.02	0.43	1.11	1.19	0.86	0.45	0.13	0.06	0.14	0.09	0.04	0.67	5.18
1986	0.00	0.00	0.00	0.00	0.04	0.24	0.53	0.43	0.17	0.18	0.07	0.04	0.08	0.05	0.25	2.07
1987	0.00	0.00	0.00	0.00	0.06	0.12	0.12	0.26	0.17	0.03	0.06	0.03	0.00	0.00	0.15	1.01
1988	0.00	0.02	0.02	0.06	0.00	0.07	0.31	0.38	0.25	0.16	0.08	0.04	0.02	0.00	0.02	1.43
1989	0.00	0.02	0.01	0.04	0.98	0.12	0.07	0.10	0.31	0.07	0.03	0.05	0.05	0.02	0.06	1.95
1990	0.00	0.01	0.00	0.04	0.09	0.32	0.02	0.02	0.02	0.06	0.01	0.00	0.01	0.00	0.03	0.63
1991	0.00	0.04	0.00	0.78	0.11	0.11	0.19	0.02	0.09	0.10	0.14	0.02	0.02	0.00	0.07	1.68
1992	0.00	0.05	0.01	0.19	0.37	0.08	0.12	0.15	0.05	0.14	0.02	0.01	0.05	0.00	0.02	1.26
1993	0.00	0.15	0.11	0.14	0.46	0.33	0.06	0.08	0.00	0.02	0.02	0.00	0.06	0.00	0.04	1.47
1994	0.00	0.10	0.71	0.53	0.64	0.83	0.16	0.03	0.02	0.06	0.01	0.00	0.00	0.02	0.02	3.13
1995	0.00	0.04	0.12	0.58	0.32	0.18	0.31	0.11	0.12	0.04	0.00	0.04	0.03	0.00	0.00	1.88
1996	0.00	0.02	0.04	0.24	0.41	0.33	0.22	0.07	0.00	0.00	0.00	0.03	0.00	0.00	0.00	1.36
1997	0.00	0.07	0.07	0.15	0.71	0.58	0.46	0.08	0.10	0.00	0.00	0.00	0.00	0.00	0.00	2.22
1998	0.00	0.11	1.06	0.73	0.41	0.79	0.70	0.21	0.15	0.08	0.00	0.00	0.00	0.03	0.00	4.27
1999	0.00	0.11	0.40	0.98	0.77	0.49	0.17	0.18	0.03	0.01	0.02	0.00	0.00	0.00	0.00	3.15
2000	0.00	0.01	0.27	1.17	0.70	0.67	0.24	0.25	0.11	0.00	0.04	0.00	0.00	0.00	0.00	3.45
2001	0.00	0.11	0.09	0.72	1.47	1.02	0.41	0.30	0.15	0.11	0.04	0.00	0.00	0.00	0.00	4.41
2002	0.00	0.02	0.06	0.87	2.69	2.23	0.81	0.70	0.35	0.20	0.10	0.02	0.00	0.03	0.04	8.10

	AGE															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	$14+$	Total
Autumn																
1980	0.04	0.00	0.02	0.00	0.20	0.26	0.28	0.36	0.17	0.15	0.27	0.04	0.16	0.12	0.57	2.62
1981	0.03	0.07	0.03	0.24	0.44	0.61	0.46	0.27	0.26	0.18	0.21	0.17	0.04	0.13	0.48	3.66
1982	0.02	0.00	0.00	0.06	0.01	0.02	0.08	0.25	0.13	0.01	0.03	0.03	0.00	0.06	0.29	0.99
1983	0.00	0.01	0.01	0.49	1.60	0.78	0.51	0.47	0.11	0.10	0.12	0.09	0.02	0.00	0.42	4.72
1984	0.00	0.00	0.00	0.08	0.97	1.01	0.58	0.54	0.32	0.14	0.12	0.06	0.04	0.14	0.38	4.37
1985	0.00	0.00	0.01	0.07	0.06	0.60	0.62	0.58	0.24	0.13	0.09	0.01	0.03	0.10	0.22	2.76
1986	0.01	0.00	0.00	0.01	0.04	0.27	0.36	0.31	0.15	0.11	0.02	0.02	0.01	0.05	0.23	1.59
1987	0.00	0.00	0.02	0.01	0.00	0.02	0.05	0.18	0.07	0.00	0.01	0.00	0.02	0.00	0.08	0.48
1988	0.00	0.00	0.00	0.71	0.07	0.00	0.03	0.22	0.06	0.05	0.03	0.06	0.02	0.03	0.08	1.38
1989	0.17	0.02	0.02	0.08	0.30	0.01	0.02	0.04	0.05	0.09	0.01	0.00	0.03	0.00	0.04	0.89
1990	0.48	0.12	0.11	0.39	0.52	0.17	0.05	0.02	0.02	0.05	0.00	0.00	0.01	0.04	0.03	2.00
1991	0.22	0.02	0.17	0.67	0.35	0.27	0.15	0.09	0.06	0.02	0.04	0.03	0.00	0.00	0.00	2.08
1992	0.09	0.03	0.11	0.27	0.22	0.06	0.05	0.00	0.00	0.02	0.01	0.02	0.00	0.01	0.04	0.94
1993	2.54	0.67	0.11	0.55	0.76	0.23	0.06	0.03	0.08	0.00	0.02	0.04	0.00	0.01	0.01	5.15
1994	0.42	0.17	0.28	0.50	0.20	0.39	0.04	0.11	0.00	0.04	0.01	0.00	0.01	0.00	0.04	2.21
1995	0.51	0.21	0.80	1.57	0.86	0.49	0.22	0.00	0.00	0.01	0.05	0.00	0.00	0.00	0.01	4.74
1996	0.23	0.09	0.27	0.74	2.02	1.40	0.45	0.06	0.06	0.03	0.00	0.04	0.00	0.00	0.00	5.38
1997	0.89	0.34	1.00	0.53	0.86	0.77	0.40	0.32	0.00	0.00	0.00	0.00	0.02	0.00	0.00	5.10
1998	0.64	0.08	0.54	1.33	0.48	0.31	0.17	0.10	0.04	0.02	0.00	0.00	0.00	0.00	0.00	3.70
1999	0.32	0.53	1.17	1.51	1.06	0.58	0.36	0.28	0.06	0.03	0.01	0.00	0.00	0.00	0.00	5.91
2000	0.94	0.10	0.71	1.43	1.75	0.68	0.59	0.22	0.14	0.05	0.00	0.00	0.03	0.00	0.00	6.63
2001	0.00	0.04	0.21	0.92	3.13	1.93	0.81	0.62	0.16	0.06	0.05	0.00	0.00	0.00	0.00	7.94

Table G7. Estimates of beginning year stock size (000 of fish), instantaneous fishing mortality (F)
and spawning stock biomass (mt)for witch flounder estimated from virtual population analysis, 1982-2001.

Stock Age	$\begin{array}{r} \text { Jan } \\ 1982 \end{array}$	$\begin{array}{r} (\mathrm{r} 000 \text {) } \\ 1983 \end{array}$	1984	1985	1986	1987	1988	1989	1990	1991
3	15430	17856	15839	7315	4853	2936	9470	6322	6805	8941
4	12802	13104	15056	13497	6182	4155	2506	7594	5026	5538
5	9764	10032	10030	11598	10526	4971	3408	2028	6131	3736
6	7902	7284	7223	6775	8018	7652	3845	2688	1685	4249
7	4565	5433	4808	4603	4035	4326	5399	2699	2022	1211
8	2990	3312	3201	2759	2547	2019	2263	3364	1616	1484
9	2340	1965	1943	1365	1217	1418	930	877	2075	950
10	1372	1644	1007	1026	613	665	775	428	429	1473
$11+$	9013	5364	4580	3458	2071	1279	1724	1199	933	1206
$3+$	66178	65994	63687	52396	40062	29421	30320	27199	26722	28788

	1992	1993	1994	1995	1996	1997	$\mathbf{1 9 9 8}$	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	
	14538	10112	16169	15902	15982	18357	36749	51092	83904	67123	22643
4	7286	12142	8316	13878	13092	13645	15703	31427	43749	72079	57625
5	4388	5102	8774	6228	11372	10385	10795	12941	26048	36361	60784
6	2407	2973	3074	4988	4250	7953	7578	8100	9763	20821	29117
7	3118	1196	1706	1448	2696	2431	5559	5145	5678	7301	16673
8	821	2012	474	700	458	992	1150	3315	3335	3392	4733
9	1047	518	1188	225	354	150	304	646	2145	1917	1563
10	544	735	242	521	104	104	52	130	322	1268	1061
$11+$	1699	1023	686	300	204	145	233	224	720	908	1194
$3+$	35848	35813	40629	44190	48512	54162	78123	113020	175664	211170	195393

| Age | 1982 | 1983 | 1984 | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0.01	0.02	0.01	0.01	0
3	0.01	0.02	0.01	0.02	0.01	0.01	0.07	0.08	0.06	0.05
4	0.09	0.12	0.11	0.10	0.07	0.05	0.06	0.06	0.15	0.08
5	0.14	0.18	0.24	0.22	0.17	0.11	0.09	0.04	0.22	0.29
6	0.22	0.27	0.30	0.37	0.47	0.20	0.20	0.14	0.18	0.16
7	0.17	0.38	0.41	0.44	0.54	0.50	0.32	0.36	0.16	0.24
8	0.27	0.38	0.70	0.67	0.44	0.63	0.80	0.33	0.38	0.20
9	0.20	0.52	0.49	0.65	0.45	0.45	0.63	0.56	0.19	0.41
10	0.21	0.41	0.51	0.55	0.50	0.53	0.46	0.37	0.23	0.26
11+	0.21	0.41	0.51	0.55	0.50	0.53	0.46	0.37	0.23	0.26
7-9,u	0.21	0.43	0.53	0.59	0.48	0.53	0.58	0.42	0.24	0.28
	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	0	0	0.06	0	0	0	0	0	0.01	0
2	0.01	0.01	0.03	0.04	0	0	0	0	0	0
3	0.03	0.05	0.00	0.04	0.01	0.01	0.01	0.01	0	0
4	0.21	0.17	0.14	0.05	0.08	0.08	0.04	0.04	0.03	0.02
5	0.24	0.36	0.41	0.23	0.21	0.17	0.14	0.13	0.07	0.07
6	0.55	0.41	0.60	0.47	0.41	0.21	0.24	0.21	0.14	0.07
7	0.29	0.77	0.74	1.00	0.85	0.60	0.37	0.28	0.37	0.28
8	0.31	0.38	0.59	0.53	0.97	1.03	0.43	0.29	0.40	0.62
9	0.20	0.61	0.67	0.63	1.07	0.91	0.70	0.54	0.38	0.44
10	0.27	0.53	0.70	0.82	0.90	0.72	0.39	0.30	0.38	0.45
11+	0.27	0.53	0.70	0.82	0.90	0.72	0.39	0.30	0.38	0.45
7-9,u	0.27	0.59	0.67	0.72	0.96	0.85	0.50	0.37	0.38	0.45

Table G7 continued.
Spawning Stock biomass ('000 mt)

Age	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	5	2	1	4	3	3	0
4	0	88	107	367	145	78	46	96	108	6
5	55	486	483	1871	1726	768	520	326	784	88
6	423	1297	1174	2237	2451	2495	1253	896	574	531
7	1105	1858	1648	2035	1718	1856	2410	1236	958	457
8	1589	1708	1578	1468	1428	1073	1182	1881	929	870
9	1806	1336	1237	894	845	959	613	575	1491	656
10	1206	1393	772	811	499	543	630	349	373	1250
$11+$	11938	6632	5491	4083	2457	1489	2063	1492	1273	1598
1+	18121	14798	12490	13772	11271	9263	8721	6854	6493	5456

Age	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	72	69
4	8	17	87	102	84	100	106	237	489	744
5	113	127	893	684	1007	912	1069	1219	1248	1743
6	340	439	903	1406	1262	1955	1893	2185	1537	2828
7	1178	407	706	587	1116	985	2142	2030	1735	2172
8	482	1142	255	379	240	481	562	1652	1482	1378
9	750	368	770	157	222	99	195	348	1183	1010
10	435	602	188	399	82	85	44	108	192	734
11+	1968	1220	753	318	211	163	256	181	609	690
1+	5274	4321	4555	4032	4222	4779	6267	7960	8548	1368

Table G8. Summary of projection input and results for witch flounder. Projected median estimates of catch (median landings + median discards), landings, discards and spawning stock biomass are provided for fishing mortality with a 15% reduction in current $\mathrm{F}\left(\mathrm{F}_{2002}=\mathrm{F}_{2001} * .85=0.38\right)$.

Projection input:

Age	Fish Mort. Pattern	Proportion Mature	Discard Fraction	Average Weights		
				Landings	Stock	Discards
3	0.0090	0.020	1.00	0.116	0.047	0.089
4	0.0960	0.090	0.93	0.293	0.114	0.168
5	0.2500	0.250	0.75	0.335	0.207	0.194
6	0.4150	0.540	0.15	0.387	0.295	0.219
7	1.0000	0.780	0.00	0.482	0.420	0.219
8	1.0000	0.930	0.00	0.563	0.524	0.219
9	1.0000	0.990	0.00	0.695	0.635	0.219
10	1.0000	1.000	0.00	0.805	0.777	0.219
11+	1.0000	1.000	0.00	0.961	0.961	0.219

Projection results (weight reported in '000 mt)

Scenario	Year	F full	Median Catch	Median Landings	Median Discards	Median SSB
85\% of F2001	2002	0.38	7.11	5.96	1.15	18.31
FMSY	2003	0.164	4.37	3.98	0.39	25.41
FMSY	2004	0.164	6.26	6.06	0.20	34.70

Figure G1. Historical USA witch flounder landings (mt), excluding USA landings from the Grand Banks in the mid-1980's. The thin line represents provisional landings data taken from Lange and Lux (1978). Discards are from the shrimp and large-mesh otter trawl fisheries.

TOTAL CATCH ('000 of fish) AT AGE

Figure G2. Number of witch flounder ('000 of fish) at age in the total catch, by fishery, 1982-2001. Open bar represents discards in the shrimp fishery, diagonal bar represents discards in large-mesh fishery and hatched bar represents landings.

\square DISCARDS IN SHRIMP FISHERY
$\square / \square I \Delta$ DISCARDS IN L-M OTTER TRAWL FISHERY
LANDINGS

Figure G2 continued.

Figure G3. Stratified mean weight (kg) per tow (A) and mean number per tow (B) of witch flounder in the NEFSC spring and autumn bottom trawl surveys, 1963-2002.

Figure G4. Trends in total catch and fishing mortality for witch flounder, 1982-2001.

Figure G5. Trends in spawning stock biomass and recruitment (age 3) for witch flounder.

Figure G6. Retrospective analysis results of fishing mortality(A), spawning stock biomass (B), and age 3 recruitment(C).

Figure G7. Stock status of witch flounder in 2001 (solid circle with 80\% confidence intervals) and three sensitivity analyses: the open circle represents stock status when the 2000-2002 survey tuning indices were arbitrarily adjusted upward by 1.1 ; open square represents results when $2000-2002$ survey tuning indices were arbitrarily adjusted by 1.25 ; open triangle represents results when $2002-2002$ survey tuning indices were arbitrarily adjusted by 2.0 .

Figure G8. Projected median spawning stock biomass (`000 mt) and median catch ('000 mt) with 80\% confidence intervals.
H. Gulf of Maine-Georges Bank American Plaice by L. O’Brien, C. Esteves, and L. Col

1.0 Background

This stock was last assessed in 2000 (O'Brien and Esteves 2001) and reviewed by the 32nd Northeast Regional SAW (NEFSC 2001). Fully recruited F (ages 5-8, unweighted average) in 1999 was estimated to be 0.27 , a decrease of 10% from 1998. Spawning stock biomass was $14,056 \mathrm{mt}$ in 1999, a decrease of 9% from 1998. The most recent strong recruitment since 1993 was the above- average 1998 year class with an average recruit/SSB survival ratio.

2.0 Fishery

Total commercial landings of Gulf of Maine-Georges Bank American plaice were 4,479 mt in 2001, a 3\% increase from 2000 and a 38\% increase from 1999 (Table H1, Figure H1). Canadian fisheries landed 46 mt in 2001, and 143 mt in 2000, accounting for about $1 \%-3 \%$ of the total landings. The otter trawl fleet accounts for more than 90% of the landings. The fishery is prosecuted primarily during the $2^{\text {nd }}$ and $3^{\text {rd }}$ calendar quarter of the year.

Discarding of small fish occurs in the northern shrimp fishery during the $1^{\text {st }}$ and $4^{\text {th }}$ calendar quarter, and year-round by the large mesh fishery. Discarded catch in the Northern shrimp fishery is estimated directly from sea-sampled trips (1989-1997) and indirectly using survey data (1980-1988,1998-2001). Discards in the large mesh fishery are also estimated based on survey data. Since 1998 discards in the shrimp fishery account for about 5% of the total catch (in numbers) and discards in the large mesh fishery account for about $20-30 \%$ of the total catch (in numbers) (Figure H2).

3.0 Research Surveys

The NEFSC survey indices of abundance and biomass have generally been increasing since 1988. The most recent spring and autumn indices, however, both indicate a decreasing trend (Table H2, Figure H3 and H4). Recruitment indices of age 1 fish from NEFSC autumn surveys indicate that both the 1997 and 1998 year classes are above average and similar in size to the 1992 year class (Table 3a). These same year classes in the autumn Massachusetts state survey are just below the time series average (Table 3b) .

4.0 Assessment

Input data and Analyses

The current assessment is an update and employs the same ADAPT formulation as in the 2000 assessment (O'Brien and Esteves 2001). Landings at age has been updated with total 2000 and 2001 landings, and discards have been estimated for the Northern shrimp fishery and the large mesh fishery. Number of samples obtained for characterizing the catch at age have improved since 1995 and samples were adequate for 2000-2001 (Table H4). The total catch at age includes estimates of discarded fish from both the Northern shrimp fishery and the large mesh
fishery and landings from the commercial fishery (Table H5, Figure H2).
Research survey indices have been estimated for the spring NEFSC (ages 1-8) and MADMF (ages 1-5) surveys and the autumn NEFSC (ages1-6) and MADMF (ages 1-5) surveys for 20002001. The ADAPT calibration method (Parrack 1986, Gavaris 1988, Conser and Powers 1990) was used to derive estimates of instantaneous fishing mortality and beginning year stock sizes in 2002. A conditional non-parametric bootstrap procedure (Efron 1982) was used to evaluate the precision of fishing mortality, spawning stock biomass, and mean biomass estimates. A retrospective analysis was performed for terminal year fishing mortality, spawning stock biomass, and age 1 recruitment.

Assessment results

Fully recruited fishing mortality (age 5-8) was estimated to be 0.43 in 2001 (Table H6, Figure H5). Spawning stock biomass in 2001 was estimated to be 13,822 mt, a 3\% decrease from 2000 and a 5\% decrease from 1999 (Table H6, Figure H6). Recruitment of the 2001 year class (39.3 million age 1 fish) is estimated to be similar to the above average 1998 year class (40 million age 1 fish) (Table H6, Figure H6).

VPA Diagnostics

Stock size estimates for ages 1-8 were well estimated with CVs ranging from 0.16 to 0.48 . The distribution of F estimates from the bootstrap analysis ranged from 0.32 to 0.75 with an 80% probability that F in 2001 was between 0.37 and 0.50 . The distribution of SSB estimates from the bootstrap analysis ranged from $10,500 \mathrm{mt}$ to $18,500 \mathrm{mt}$ with an 80% probability that SSB in 2000 was between $12,250 \mathrm{mt}$ to $15,390 \mathrm{mt}$.

There is not a strong retrospective pattern in this model formulation (Figure H7). The terminal year estimates of fishing mortality exhibit a pattern of being more than the converged estimates prior to 1997. The SSB estimates do not have a retrospective pattern. The terminal year estimates of recruits are less than converged estimates from 1993. These patterns are similar to the previous assessment (O’Brien and Esteves 2001).

Sensitivity Analyses

Analyses were conducted to determine the sensitivity of fishing mortality and spawning stock biomass estimates to changes in the magnitude of the research survey indices used to calibrate the VPA. NEFSC spring and autumn survey indices for 2000-2002 were arbitrarily increased by $10 \%, 25 \%$ and 100% and used to re-calibrate the VPA (Figure H8). Results are summarized in Section 5.2 (Summary of Assessment Advice).

5.0 Projections

Long term forecasts of catch (landings plus discards) and SSB were conducted with $\mathrm{F}_{2002}=0.85^{*}$ F_{2001}. Input data and results for 2002-2004 are presented in Table H7. The $\mathrm{F}_{\text {rebuild }}$ that would enable 50% probability of reaching SSBmsy by 2009 was 0.10 . The current estimate of $\mathrm{F}_{\text {rebuild }}$ is similar to the previous estimate of 0.13 (NEFSC 2002) which was based on the assessment results from 2000 (O'Brien and Esteves 2001). Landings are projected to be 1,336 mt in 2003 and $1,562 \mathrm{mt}$ in 2004, and discards are projected to be 161 mt in 2003 and 128 mt in 2004 (Figure H9). SSB is projected to be 15,938 mt in 2003 and 17,038 mt in 2004 (Figure H9).

6.0 Biological Reference Points

Biological reference points were established for Gulf of Maine -Georges Bank American plaice based on yield per recruit analyses using $\mathrm{F}_{40 \%}$ as a proxy for $\mathrm{F}_{\text {MSY }}$ (NEFSC 2002) as :
$\mathrm{MSY}=4,900 \mathrm{mt}$
$\mathrm{SSB}_{\text {MSY }}=28,600 \mathrm{mt}$ and $\mathrm{F}_{\mathrm{MSY}}=0.166$

In 2001, spawning stock biomass was estimated at $13,822 \mathrm{mt}$, about 48% of the target $\mathrm{SSB}_{\text {MSY }}$. The stock is considered to be overfished, although the upper 80% confidence interval includes biomass $>50 \% \mathrm{SSB}_{\text {MSY }}$ Overfishing is occurring on this stock because $2001 \mathrm{~F}=0.43>\mathrm{F}_{\text {MSY }}$. The 80% confidence intervals about F_{2001} were also above $\mathrm{F}_{\text {MSY }}$.

7.0 Summary

American plaice in the Gulf of Maine-Georges Bank region are overfished and overfishing is occurring. Fishing mortality on this stock declined during 1996-1999, but then increased in 2000-2001 as the 1996 and 1997 year classes recruited to the fishery. Spawning stock biomass increased from 1995 to 1998 and has been decreasing since 1998. Spawning stock biomass was $13,822 \mathrm{mt}$ in 2001. The 1998 and 2001 year classes appear to be above average, whereas the 2000 year class is the lowest on record. The survey biomass indices generally show an increasing trend during the last decade and the 1997 and 1998 year classes appear to be near or above average. The recent strong year classes represent an opportunity to rebuild the stock with lower fishing mortality rates.

8.0 Sources of Uncertainty

- Lack of direct estimates of discards from sea sampled trips for large mesh fishery and shrimp fishery.
- Projections of SSB are likely to be underestimated if recruits are underestimated as indicated by the strong retrospective pattern of age 1 recruits.

9.0 GARM Panel Comments

Discards are estimated with a method that uses survey indices for 2001-2002. The sensitivity analyses of the impact of the offset trawl warp on survey catches could also include the impact on discard estimates. The working group asked to see one year's discard estimates bumped up to reflect a 100% increase in survey catch in order to see the magnitude of discards.

The GARM concluded that it is inappropriate to use the MADMF indices in sensitivity analyses of the influence of a single survey series on estimates of F and SSB because of the limited geographic coverage of the survey.

Discards are an important part of the catch at age. Sea sampling of small mesh fisheries has been incomplete in recent years e.g., no sampling of the northern shrimp fishery since 1997. It was recommended that improved sea sampling for the northern shrimp fishery and other small mesh fisheries (e.g. the whiting fishery), and the scallop fishery be implemented (this is also a general recommendation since these fisheries generate discards for many stocks (e.g., Cape Cod yellowtail, SNE yellowtail, witch, American plaice).

The GARM noted a strong pattern in residuals for the age 1 survey index. This is most likely because the catch at age 1 consists solely of discards that were, in some periods, estimated using the same survey indices that have the residual pattern.

10. Research Recommendations

The GARM panel recommended that sensitivity analyses be conducted to evaluate effects of uncertainty in discard estimates on assessment results.

The survey time series could be split into two tuning indices based on time periods corresponding to changes in methods for estimating discards

11.0 References

Conser, R. J. and J. E. Powers. 1990. Extensions of the ADAPT VPA tuning method designed to facilitate assessment work on tuna and swordfish stocks. Int. Comm. Conserv. Atlantic Tunas, Coll. Vol. Sci. Pap. 32: 461-467.

Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Phila. Soc. Ind. and Appl. Math. 34: 92 p.

Gavaris, S. 1988. An adaptive framework for the estimation of population size. CAFSAC Res.Doc. 88/29: 12 p.

NEFSC. 2001. Report of the 32nd Northeast Regional Stock Assessment Workshop (32nd SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments. Northeast Fish. Sci. Cent. Ref. Doc. 01-05, 289 p.

NEFSC 2002. Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. NMFS/NEFSC, Reference Document 02-04, 254p.

O’Brien, L.and C. Esteves. 2001. Update assessment of American plaice in the Gulf of MaineGeorges Bank Region for 2001. Northeast Fish. Sci. Cent. Ref. Doc. 01-02, 114p.

Parrack, M.L. 1986. A method of analyzing catches and abundance indices from a fishery. Int Comm. Conserv. Atlantic Tunas, Coll. Vol. Sci. Pap. 24:209-221.

Table H1. Commercial landings (metric tons, live weight) of American plaice from the Gulf of Maine, Georges Bank, Southern New England and the Mid-Atlantic, $1960-2001$.

Year	Gulf of Maine			Georges Bank					Southern New England				Mid - Atlantic			Grand Total		
	USA	Can	Total	USA	Can	USSR	Other	Total	USA	USSR	Other	Total	USA	Other	Total	USA	Other	Total
1960	620	1	621	689	-	-	-	689	-	-	-	0	-	-	0	1309	1	1310
1961	692	-	692	830	-	-	-	830	-	-	-	0	-	-	0	1522	0	1522
1962	694	-	694	1233	44	-	-	1277	-	-	-	0	-	-	0	1927	44	1971
1963	693	-	693	1489	127	24	-	1640	-	-	-	0	-	-	0	2182	151	2333
1964	811	-	811	2800	177	-	11	2988	-	-	-	0	-	-	0	3611	188	3799
1965	967	-	967	2376	180	112	-	2668	-	-	-	0	-	-	0	3343	292	3635
1966	955	2	957	2388	242	279	1	2910	-	-	-	0	-	-	0	3343	524	3867
1967	1066	6	1072	2166	203	1018	10	3397	-	-	-	0	4	-	4	3236	1237	4473
1968	904	5	909	1695	173	193	5	2066	637	145	-	782	18	2	20	3254	523	3777
1969	1059	7	1066	1738	71	63	17	1889	505	349	-	854	130	-	130	3432	507	3939
1970	895	-	895	1603	92	927	658	3280	88	18	40	146	8	-	8	2594	1735	4329
1971	648	5	653	1511	38	228	296	2071	11	112	206	329	6	2	8	2176	887	3063
1972	569	-	569	1222	22	358	-	1602	3	71	-	74	-	-	0	1794	451	2245
1973	687	-	687	910	38	289	-	1237	5	158	-	163	-	-	0	1602	485	2087
1974	945	2	947	1039	27	16	2	1084	92	4	-	96	-	-	0	2076	51	2127
1975	1507	-	1507	913	25	148	-	1086	3	-	-	3	-	-	0	2423	173	2596
1976	2550	-	2550	948	24	3	-	975	10	-	-	10	1	-	1	3509	27	3536
1977	5647	-	5647	1408	35	50	-	1493	6	78	-	84	7	-	7	7068	163	7231
1978	7287	30	7317	2193	77	-	-	2270	15	-	-	15	8	-	8	9503	107	9610
1979	8835	-	8835	2478	23	-	-	2501	13	-	7	20	4	-	4	11330	30	11360
1980	11139	-	11139	2399	43	-	5	2447	10	-	-	10	1	-	1	13549	48	13597
1981	10327	1	10328	2482	15	-	2	2499	26	-	2	28	46	-	46	12881	20	12901
1982	11147	-	11147	3935	27	-	1	3963	35	-	2	37	9	-	9	15126	30	15156
1983	9142	7	9149	3955	30	-	-	3985	40	-	-	40	4	-	4	13141	37	13178
1984	6833	2	6835	3277	6	-	-	3283	17	-	-	17	7	-	7	10134	8	10142
1985	4766	1	4767	2249	40	-	-	2289	12	-	-	12	2	-	2	7029	41	7070
1986	3319	-	3319	1146	34	-	-	1180	4	-	-	4	3	-	3	4472	34	4506
1987	2766	-	2766	1032	48	-	-	1080	2	-	-	2	1	-	1	3801	48	3849
1988	2271	-	2271	1097	108	-	-	1205	13	-	-	13	1	-	1	3382	108	3490
1989	1646	-	1646	703	68	-	-	771	1	-	-	1	3	-	3	2353	68	2421
1990	1802	-	1802	639	52	-	-	690	2	-	-	2	2	-	2	2445	52	2497
1991	2936	-	2936	1310	26	-	-	1310	15	-	-	15	0	-	0	4261	26	4287
1992	4564	-	4566	1838	3	-	-	1838	10	-	-	10	4	-	4	6416	3	6419
1993	3865	-	3865	1838	-	-	-	1838	11	-	-	11	4	-	4	5718	-	5718
1994	3357	-	3431	1683	30	-	-	1562	22	-	-	22	4	-	4	5066	30	5096
1995	3105	-	3126	1505	2	-	-	1486	15	-	-	15	20	-	20	4645	2	4647
1996	2912	-	2922	1430	2	-	-	1423	40	-	-	40	15	-	15	4396	2	4398
1997	2312	-	2396	1576	65	-	-	1560	23	-	-	23	26	-	26	3937	65	4002
1998	2234	-	2234.4	1385	20	-	-	1405	23			23	20		20	3663	20	3683
1999	1718	-	1717.7	1384	123	-	-	1507	11			11	21		21	3134	123	3257
2000	2497		2497.5	1687	143	-	-	1830	10			10	19		19	4213	143	4356
2001	2602	-	2601.7	1814	46	-	-	1860	7			7	10		10	4433	46	4479

** 1994-2001 data are provisional and spatially distributed based on proportions of landings recorded by area in the VTR database

Table H2. Standardized stratified mean number and mean weight per tow (kg) of American plaice in NEFSC spring and autumn bottom trawl surveys in the Gulf of Maine - Georges Bank area, 1963-2002 (Offshore strata 26-30,36-40,13-25)

	SPRING		AUTUMN	
	Number	Weight	Number	Weight
1963	-	-	14.17	5.87
1964	-	-	8.20	2.84
1965	-	-	11.95	3.80
1966	-	-	17.78	4.90
1967	-	-	11.05	2.69
1968	11.36	3.40	8.61	2.91
1969	8.59	2.68	7.51	2.36
1970	5.43	1.81	6.46	2.01
1971	3.80	1.26	7.47	1.96
1972	4.28	1.32	7.44	1.60
1973	7.18	1.85	6.19	1.94
1974	8.34	1.94	6.89	1.42
1975	5.78	1.72	8.12	2.43
1976	11.85	3.37	9.98	2.99
1977	14.57	5.11	11.80	3.52
1978	10.61	3.82	15.13	4.66
1979	9.23	3.62	9.96	4.00
1980	18.34	4.78	14.24	5.12
1981	18.75	5.88	13.04	5.62
1982	11.61	3.80	5.88	2.49
1983	16.94	4.60	9.34	3.45
1984	4.10	1.42	7.12	2.02
1985	4.94	1.88	6.95	2.00
1986	3.09	0.92	5.61	1.56
1987	3.50	0.81	4.38	1.09
1988	3.58	0.84	9.69	1.46
1989	4.81	0.75	9.21	1.17
1990	5.09	0.75	15.46	2.90
1991	5.91	1.05	7.71	1.56
1992	4.11	1.36	6.31	1.78
1993	5.29	1.39	11.89	2.39
1994	4.89	0.85	18.07	2.67
1995	9.43	1.94	11.84	2.58
1996	7.83	1.69	7.58	2.23
1997	7.62	1.62	6.27	1.94
1998	4.52	1.11	9.29	2.22
1999	4.18	1.20	11.03	2.57
2000	9.96	2.30	12.23	2.80
2001	10.65	2.19	10.40	2.63
2002	6.70	1.76		

 traw 1 surveys in the Gulf of Maine - Georges Bank¹ area, 1980-2002.

YEAR	0	1	2	3	4	5	6	AGE GROUP									
								7	8	9	10	11	12	13	14	\#/tow	kg/tow
1980	0.00	0.57	3.55	4.49	3.00	2.89	1.60	1.12	0.25	0.31	0.23	0.04	0.02	0.02	0.04	18.34	4.78
1981	0.00	0.13	3.49	4.31	3.55	2.67	1.74	1.45	0.79	0.41	0.34	0.07	0.09	0.07	0.09	18.75	5.88
1982	0.00	0.06	1.04	1.79	3.17	2.13	1.34	0.92	0.49	0.35	0.19	0.07	0.01	0.04	0.02	11.601	3.80
1983	0.00	0.20	3.68	3.33	4.48	2.64	1.18	0.58	0.32	0.15	0.15	0.11	0.05	0.02	0.04	16.94	4.60
1984	0.00	0.02	0.35	0.57	0.90	1.30	0.58	0.22	0.10	0.01	0.02	0.01	0.01	0.00	0.03	4.10	1.42
1985	0.00	0.03	0.32	0.98	0.86	0.73	0.86	0.46	0.42	0.12	0.07	0.04	0.02	0.02	0.02	4.94	1.88
1986	0.00	0.01	0.46	0.34	1.01	0.59	0.29	0.21	0.10	0.04	0.04	0.00	0.00	0.00	0.00	3.09	0.92
1987	0.00	0.09	0.61	0.99	0.69	0.51	0.25	0.17	0.07	0.03	0.03	0.03	0.01	0.00	0.00	3.50	0.81
1988	0.00	0.20	0.99	0.84	0.76	0.31	0.23	0.12	0.01	0.09	0.01	0.01	0.00	0.00	0.00	3.58	0.84
1989	0.00	0.05	1.59	1.27	0.86	0.49	0.29	0.16	0.03	0.07	0.01	0.01	0.00	0.00	0.00	4.81	0.75
1990	0.00	0.00	0.57	2.65	1.02	0.54	0.17	0.06	0.04	0.05	0.00	0.00	0.00	0.00	0.00	5.09	0.75
1991	0.00	0.03	0.71	1.63	2.33	0.92	0.15	0.07	0.04	0.02	0.00	0.02	0.00	0.00	0.01	5.91	1.05
1992	0.00	0.06	0.34	1.15	0.88	1.07	0.43	0.11	0.04	0.02	0.01	0.00	0.01	0.00	0.00	4.11	1.36
1993	0.00	0.33	0.84	1.16	1.58	0.61	0.45	0.17	0.08	0.02	0.01	0.02	0.03	0.00	0.00	5.29	1.39
1994	0.00	0.03	1.43	1.14	1.12	0.75	0.23	0.10	0.03	0.01	0.00	0.01	0.01	0.01	0.01	4.88	0.85
1995	0.00	0.31	1.97	3.21	2.31	1.11	0.44	0.22	0.03	0.03	0.03	0.01	0.02	0.01	0.01	9.43	1.94
1996	0.00	0.02	0.47	1.94	3.30	1.31	0.53	0.20	0.05	0.02	0.00	0.00	0.00	0.00	0.00	7.83	1.69
1997	0.00	0.01	0.85	1.66	2.52	2.05	0.39	0.09	0.01	0.00	0.01	0.00	0.02	0.00	0.00	7.62	1.62
1998	0.00	0.06	0.19	1.02	1.12	1.22	0.68	0.16	0.06	0.01	0.01	0.003	0.01	0.00	0.00	4.52	1.11
1999	0.00	0.08	0.41	0.52	1.13	0.79	0.64	0.41	0.17	0.02	0.02	0.00	0.00	0.00	0.00	4.18	1.20
2000	0.00	0.03	1.91	2.48	2.22	1.60	0.86	0.60	0.15	0.07	0.02	0.003	0.01	0.00	0.00	9.96	2.30
2001	0.00	0.00	0.71	3.67	3.37	1.45	0.75	0.37	0.17	0.09	0.05	0.02	0.00	0.00	0.00	10.65	2.19
$\underline{2002}$	0.00	0.10	0.35	0.98	2.35	1.66	0.51	0.33	0.20	0.14	0.07	0.01	0.00	0.00	0.00	6.70	1.76

 autumn bottom trawl surveys in the Gulf of Maine - Georges Bank¹ area, 1980-2002.

AGE GROUP																	
YEAR	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	\#/tow	kg/tow
Autumn																	
1980	0.00	1.58	2.22	2.72	2.85	1.53	1.03	0.93	0.57	0.31	0.20	0.11	0.04	0.07	0.08	14.24	5.12
1981	0.00	0.43	2.79	2.22	2.62	2.30	1.55	0.63	0.58	0.07	0.20	0.20	0.02	0.02	0.12	13.04	5.62
1982	0.00	0.20	0.91	1.65	1.27	0.57	0.48	0.30	0.17	0.19	0.08	0.03	0.00	0.00	0.02	5.88	2.49
1983	0.06	0.50	1.01	2.02	2.92	1.36	0.68	0.34	0.17	0.10	0.03	0.05	0.06	0.01	0.03	9.34	3.45
1984	0.02	0.22	2.24	1.56	1.21	1.07	0.51	0.12	0.10	0.00	0.03	0.01	0.02	0.00	0.01	7.12	2.02
1985	0.02	0.91	0.83	2.64	1.05	0.79	0.41	0.19	0.05	0.03	0.02	0.00	0.00	0.01	0.00	6.95	2.00
1986	0.10	0.51	1.48	0.89	1.45	0.47	0.43	0.16	0.12	0.04	0.01	0.02	0.01	0.00	0.00	5.61	1.56
1987	0.01	0.53	1.27	0.99	0.43	0.69	0.25	0.10	0.04	0.04	0.01	0.02	0.00	0.00	0.00	4.38	1.09
1988	0.00	2.84	2.97	2.39	0.78	0.47	0.10	0.07	0.00	0.03	0.00	0.02	0.00	0.00	0.00	9.69	1.46
1989	0.05	0.48	4.45	2.86	0.98	0.19	0.10	0.02	0.02	0.02	0.02	0.00	0.01	0.02	0.00	9.21	1.17
1990	0.01	1.52	2.26	7.49	2.89	0.59	0.25	0.11	0.07	0.02	0.02	0.01	0.01	0.00	0.01	15.46	2.90
1991	0.02	0.47	2.48	2.03	1.59	0.73	0.30	0.04	0.07	0.00	0.01	0.00	0.00	0.00	0.01	7.71	1.56
1992	0.02	0.65	1.23	1.85	1.28	0.78	0.30	0.07	0.05	0.03	0.02	0.00	0.02	0.00	0.00	6.31	1.78
1993	0.01	1.71	2.35	3.47	2.28	1.05	0.80	0.11	0.04	0.04	0.04	0.00	0.00	0.00	0.00	11.89	2.39
1994	0.04	3.83	7.53	2.81	1.71	1.30	0.04	0.25	0.13	0.01	0.03	0.02	0.00	0.00	0.00	18.07	2.67
1995	0.01	0.50	3.80	3.82	2.50	0.90	0.22	0.04	0.03	0.00	0.00	0.00	0.02	0.00	0.00	11.84	2.58
1996	0.01	0.54	0.81	2.00	2.74	0.93	0.39	0.07	0.04	0.03	0.00	0.00	0.02	0.00	0.02	7.58	2.23
1997	0.01	0.36	1.06	1.55	1.86	1.04	0.32	0.04	0.01	0.01	0.00	0.00	0.00	0.00	0.02	6.27	1.94
1998	0.01	1.73	0.60	1.88	2.01	1.78	1.08	0.12	0.05	0.01	0.01	0.00	0.01	0.00	0.00	9.29	2.22
1999	0.02	2.00	2.20	2.05	2.13	1.60	0.81	0.20	0.03	0.00	0.00	0.00	0.00	0.00	0.00	11.03	2.57
2000	0.03	0.47	2.90	3.91	2.28	1.35	0.75	0.33	0.14	0.03	0.03	0.00	0.00	0.00	0.00	12.23	2.79
2001	0.02	0.40	1.22	3.31	2.64	1.46	0.53	0.41	0.20	0.17	0.02	0.00	0.01	0.00	0.00	10.40	2.63

 (Regions 4+5), 1982-2002.

		Small				Medium				Large				Total	Number of tons landed / sample			Total Lengths Measured	Total Numbers Aged
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Samples	Sm.		Lrg.		
1985	GB	2	4	14	3	---	2	2	2	---	3	7	1	40				537	828
	GM	2	5	5	5	3	1	9	5	1	10	6	5	57				1885	1321
	total	4	9	19	8	3	3	11	7	1	13	13	6	97	49	55	116	2422	2149
1986	GB	3	6	5	3	2	4	3	2	1	4	3	2	38				908	716
	GM	9	5	3	5	3	4	5	1	10	10	7	4	66				1199	1420
	total	12	11	8	8	5	8	8	3	11	14	10	6	104	33	35	56	2107	2136
1987	GB	4	5	5	1	---	2	3	2	2	4	4	1	33				715	633
	GM	2	6	5	3	1	5	2	3	3	3	6	5	44				1226	885
	total	6	11	10	4	1	7	5	5	5	7	10	6	77	39	40	63	1941	1518
1988	GB	3	7	4	2	1	3	4	2	4	5	2	4	41				1023	505
	GM	4	7	4	5	6	6	4	3	6	5	3	2	55				2166	803
	total	7	14	8	7	7	9	8	5	10	10	5	6	96	34	21	40	3189	1308
1989	GB	2	5	5	---	1	1	6	1	5	3	3	---	32				869	600
	GM	1	3	3	3	1	---	4	3	2	1	---	1	22				863	432
	total	3	8	8	3	2	1	10	4	7	4	3	1	54	35	29	63	1732	1032
1990	GB	---	5	6	--	2	1	2	2	---	2	5	---	25				698	494
	GM	5	5	3	3	1	6	3	5	1	5	3	5	45				1558	938
	total	5	10	9	3	3	7	5	7	1	7	8	5	70	33	26	42	2256	1432
1991	GB	---	3	1	---	3	,	1	---	3	3	2	---	17				494	123
	GM	5	3	7	6	3	1	4	3	---	1	5	2	40				1211	736
	total	5	6	8	6	6	2	5	3	3	4	7	2	57	78	67	67	1705	859
1992	GB	---	4	1	---	---	1	1	---	---	2	2	1	12				200	158
	GM	1	5	2	2	1	4	3	2	2	2	3	2	29				1148	684
	total	1	9	3	2	1	5	4	2	2	4	5	3	41	168	143	155	1348	842
1993	GB	---	2	1	1	---	1	---	---	---	3	2	1	11				69	190
	GM	2	4	4	1	---	2	2	---	---	1	2	---	18				445	251
	total	2	6	5	2	0	3	2	0	0	4	4	1	29	133	260	253	514	441
1994	GB	---	---	---	---	---	---	1	1	---	1	---	1	4				204	52
	GM	---	2	5	3	---	4	3	3	---	2	3	3	28				1307	458
	total	0	2	5	3	0	4	4	4	0	3	3	4	32	205	97	181	1511	510
1995	GB	1	---	---	---	1	---	---	---	1	---	---	---	3				149	44
	GM	1	3	---	2	---	2	---	---	---	2	---	1	11				276	149
	total	2	3	0	2	1	2	0	0	1	2	0	1	14	323	336	332	425	193
1996	GB	---	2	2	1	---	1	4	---	---	2	1	1	14				852	222
	GM	2	3	2	1	2	1	3	5	3	1	4	2	29				1582	435
	total	2	5	4	2	2	2	7	5	3	3	5	3	43	189	53	75	2434	657
1997	GB	2	4	2	3	---	2	3	1	---	2	---	---	19				460	231
	GM	4	4	3	1	2	3	3	---	1	5	3	2	31				1138	489
	total	6	8	5	4	2	5	6	1	1	7	3	2	50	82	77	69	1598	720
1998	GB	1	4	1	---	2	1	1	1	1	1	1	1	15				1440	247
	GM	2	3	1	1	6	3	7	7	2	2	2	2	38				3994	577
	total	3	7	2	1	8	4	8	8	3	3	3	3	53	111	41	87	5434	824
1999	GB	4	4	---	1	5	2	1	---	---	4	1	---	22				2356	308
	GM	6	8	6	9	7	4	5	7	1	6	3	2	64				6428	967
	total	10	12	6	10	12	6	6	7	1	10	4	2	86	31	29	61	8784	1275
2000	GB	14	11	3	1	1	2	---	1	2	2	2	2	41				2546	412
	GM	14	28	4	1	2	7	3	---	---	4	1	3	67				4567	743
	total	28	39	7	2	3	9	3	1	2	6	3	5	108	22	79	78	7113	1155
2001	GB	4	2	1	2	---	2	2	3	---	3	2	1	22				2143	228
	GM	4	3	4	--	3	2	2	2	4	2	1	4	31				3089	435
	total	8	5	5	2	3	4	4	5	4	5	3	5	53	87	79	81	5232	663

Table H5. Catch at age (thousands of fish; metric tons) and mean weight (kg), of commercial landings, large mesh and northern shrimp fishery discards of American plaice, ages 1-9+, from Gulf of Maine - Georges Bank, and South, 1980-2001.

Year	0	1	2	3	4	5	6	7	8	9+	Total
Catch in Numbers (000's) at Age											
1980	0	5	99	1072	2672	3939	3933	3632	1185	3369	19906
1981	0	5	982	2192	5055	5337	3648	2401	1582	1706	22907
1982	0	10	603	3348	4574	4503	3599	3297	2038	2710	24681
1983	0	15	663	1478	5177	4918	3913	2270	1272	2062	21768
1984	0	3	370	991	2422	6031	3244	1936	580	1350	16927
1985	0	65	158	1217	1336	2405	2872	2228	1081	887	12250
1986	0	59	639	738	2284	1700	1476	1307	631	460	9295
1987	0	38	590	1840	1439	2282	1337	895	543	309	9274
1988	0	314	786	1840	1833	1597	1444	553	270	321	8957
1989	0	132	1653	1831	1125	829	536	753	471	411	7740
1990	0	68	676	3389	2664	1369	531	291	349	450	9787
1991	0	13	323	1001	4410	3403	1123	321	164	402	11161
1992	0	37	231	1083	2222	6810	2724	819	198	342	14467
1993	0	107	426	2032	4141	3583	3139	1403	265	563	15658
1994	1	288	506	623	2627	4459	1703	1288	608	688	12791
1995	1	518	1488	2285	6503	4826	2001	654	584	315	19174
1996	0	195	936	1418	4443	2958	1471	549	250	224	12444
1997	0	158	1375	803	2739	3919	1701	718	230	335	11978
1998	0	37	63	281	883	2607	2476	1044	320	272	7983
1999	0	4	202	205	985	1713	2073	1273	463	261	7180
2000	0	3	320	744	1229	1838	2354	1676	560	220	8944
2001	0	0	85	520	1322	2470	2063	1649	935	439	9485

Table H5. (continued) Catch at age (thousands of fish; metric tons) and mean weight (kg), of commercial landings, large mesh and northern shrimp fishery continued discards of American plaice, ages 1-9+, from Gulf of Maine - Georges Bank, and South, 1980-2001

Year	0	1	2	3	4	5	6	7	8	9+	Average
Mean Weight at age (kg)											
1980	0.000	0.030	0.076	0.154	0.267	0.409	0.653	0.829	1.039	1.523	0.725
1981	0.000	0.032	0.108	0.168	0.316	0.442	0.778	0.885	0.978	1.315	0.576
1982	0.000	0.018	0.115	0.230	0.290	0.418	0.564	0.960	1.138	1.479	0.631
1983	0.002	0.013	0.033	0.185	0.378	0.530	0.670	0.823	1.042	1.479	0.630
1984	0.000	0.004	0.045	0.161	0.303	0.524	0.630	0.888	1.187	1.657	0.636
1985	0.000	0.018	0.058	0.084	0.209	0.331	0.534	0.847	1.167	1.618	0.596
1986	0.001	0.016	0.042	0.138	0.229	0.384	0.587	0.842	1.174	1.702	0.516
1987	0.000	0.013	0.046	0.131	0.234	0.409	0.609	0.892	1.173	1.688	0.465
1988	0.000	0.016	0.046	0.159	0.284	0.449	0.641	0.880	1.231	1.630	0.429
1989	0.000	0.012	0.041	0.135	0.275	0.446	0.566	0.736	0.857	1.537	0.373
1990	0.000	0.021	0.058	0.138	0.265	0.455	0.639	0.824	0.968	1.352	0.344
1991	0.000	0.015	0.053	0.120	0.330	0.498	0.710	0.960	1.161	1.479	0.464
1992	0.000	0.028	0.065	0.159	0.315	0.485	0.717	0.948	1.202	1.617	0.533
1993	0.000	0.016	0.078	0.212	0.304	0.434	0.590	0.936	1.234	1.647	0.492
1994	0.001	0.014	0.028	0.194	0.328	0.418	0.564	0.763	1.083	1.807	0.525
1995	0.001	0.012	0.027	0.203	0.322	0.453	0.646	0.909	1.166	1.399	0.407
1996	0.000	0.014	0.038	0.110	0.338	0.474	0.637	0.902	1.172	1.657	0.418
1997	0.000	0.014	0.021	0.111	0.316	0.402	0.605	0.746	0.951	1.565	0.407
1998	0.001	0.013	0.030	0.165	0.281	0.371	0.518	0.805	1.031	2.482	0.550
1999	0.000	0.008	0.018	0.198	0.324	0.417	0.535	0.702	0.879	1.401	0.537
2000	0.000	0.013	0.031	0.221	0.314	0.436	0.538	0.732	1.002	1.234	0.524
2001	0.000	0.000	0.018	0.131	0.297	0.418	0.518	0.681	0.823	1.130	0.522
1980-2001	0.001	0.016	0.049	0.159	0.296	0.437	0.611	0.841	1.075	1.564	0.514
1997-2001	0.001	0.012	0.024	0.165	0.306	0.409	0.543	0.733	0.937	1.562	0.508

Table H6. Estimates of beginning year stock size (thousands of fish), instantaneous fishing mortality (F) and spawning stock biomass (mt) of Gulf of Maine-Georges Bank
American plaice, estimated from virtual population analysis (VPA) and calibrated using the commercial catch at age ADAPT formulation, 1980-2001.

Stock Numbers (Jan 1) in thousands																							
	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	52640	25117	21944	25115	13179	14379	18433	36791	53241	27075	33006	33292	40176	44722	40917	31176	29111	21210	34525	39965	14071	4015	39260
2	42215	43094	20559	17957	20548	10787	11714	15038	30088	43306	22048	26961	27245	32860	36518	33240	25056	23658	17223	28233	32717	11517	3287
3	35914	34473	34394	16287	14102	16489	8689	9012	11778	23923	33961	17440	21782	22097	26518	29441	25868	19667	18125	14044	22932	26497	9353
4	24231	28434	26241	25130	11997	10649	12399	6446	5714	7978	17929	24738	13373	16853	16253	21148	22037	19896	15376	14585	11313	18102	21223
5	21550	17421	18706	17345	15890	7631	7510	8085	3976	3020	5514	12269	16263	8938	10052	10930	11430	14022	13811	11790	11050	8150	13625
6	17203	14080	9434	11240	9751	7553	4072	4610	4554	1810	1722	3276	6966	7153	4076	4195	4582	6682	7934	8949	8102	7384	4438
7	11092	10526	8227	4467	5662	5048	3585	1998	2565	2422	997	929	1666	3238	3016	1796	1624	2420	3931	4255	5451	4504	4179
8	5101	5795	6445	3752	1603	2884	2117	1752	826	1600	1302	553	471	623	1382	1304	879	833	1332	2274	2332	2946	2195
$9+$	14407	6202	8496	6025	3694	2342	1531	989	973	1384	1666	1344	803	1307	1544	694	781	1204	1125	1274	910	1371	2295
$1+$	224352	185140	154444	127318	96428	77763	70049	84722	113716	112518	118145	120802	128745	137793	140277	133924	121368	109592	113381	125369	108878	84486	99854
Fishing Mortality																							
	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	
1	0	0	0	0	0	0.01	0	0	0.01	0.01	0	0	0	0	0.01	0.02	0.01	0.01	0	0	0	0	
2	0	0.03	0.03	0.04	0.02	0.02	0.06	0.04	0.03	0.04	0.03	0.01	0.01	0.01	0.02	0.05	0.04	0.07	0	0.01	0.01	0.01	
3	0.03	0.07	0.11	0.11	0.08	0.09	0.1	0.26	0.19	0.09	0.12	0.07	0.06	0.11	0.03	0.09	0.06	0.05	0.02	0.02	0.04	0.02	
4	0.13	0.22	0.21	0.26	0.25	0.15	0.23	0.28	0.44	0.17	0.18	0.22	0.2	0.32	0.2	0.42	0.25	0.17	0.07	0.08	0.13	0.08	
5	0.23	0.41	0.31	0.38	0.54	0.43	0.29	0.37	0.59	0.36	0.32	0.37	0.62	0.59	0.67	0.67	0.34	0.37	0.23	0.18	0.2	0.41	
6	0.29	0.34	0.55	0.49	0.46	0.55	0.51	0.39	0.43	0.4	0.42	0.48	0.57	0.66	0.62	0.75	0.44	0.33	0.42	0.3	0.39	0.37	
7	0.45	0.29	0.59	0.82	0.47	0.67	0.52	0.68	0.27	0.42	0.39	0.48	0.78	0.65	0.64	0.51	0.47	0.4	0.35	0.4	0.42	0.52	
8	0.3	0.36	0.43	0.47	0.51	0.53	0.4	0.42	0.45	0.39	0.35	0.4	0.63	0.64	0.67	0.68	0.38	0.36	0.31	0.25	0.31	0.43	
$9+$	0.3	0.36	0.43	0.47	0.51	0.53	0.4	0.42	0.45	0.39	0.35	0.4	0.63	0.64	0.67	0.68	0.38	0.36	0.31	0.25	0.31	0.43	
mn 5-8,u	0.32	0.35	0.47	0.54	0.50	0.55	0.43	0.47	0.44	0.39	0.37	0.43	0.65	0.64	0.65	0.65	0.41	0.37	0.33	0.28	0.33	0.43	

Table H6 continued.

SSB at the start of the spawning season - males and females (mt)																						
	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
age																						
1	24	12	8	5	0	5	11	17	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	164	186	95	32	37	12	71	92	14	21	11	17	16	15	7	6	5	4	10	12	15	5
3	878	873	1206	529	230	225	395	327	156	299	400	230	320	287	370	246	157	144	182	184	245	289
4	2413	2943	2719	3438	1320	929	1285	853	611	988	2003	3084	1525	1955	2331	2720	3094	2027	1553	1917	1583	2633
5	4546	4061	4723	4651	4638	1633	1787	2036	995	878	1611	3634	4980	2555	2704	3183	3673	4218	3899	3377	3456	2332
6	7938	6457	3632	4659	4446	3084	1488	1908	1971	778	780	1556	3405	3053	1627	1703	2077	3105	3065	3491	3283	3012
7	7051	6935	5724	2308	3614	2906	2011	1160	1668	1425	588	614	1068	2144	1641	1076	1048	1436	2393	2208	2926	2277
8	4181	4535	5528	3174	1326	2443	1817	1492	736	1197	957	466	411	547	1121	986	785	670	1029	1707	1723	1952
9+	19379	7092	10734	7538	5125	3153	2243	1430	1349	1834	1962	1712	1056	1748	2247	779	1120	1636	2458	1593	989	1323
Total	46575	33094	34369	26333	20739	14391	11108	9315	7501	7420	8312	11313	12781	12303	12048	10699	11960	13240	14589	14490	14220	13822

Percent Mature (females)

	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001
age																						
1	3	3	3	3	3	3	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	8	8	8	8	8	8	24	24	2	2	2	2	2	1	1	1	1	1	3	3	3	3
3	24	24	24	24	24	24	55	55	17	17	17	17	17	12	12	12	12	12	18	18	18	18
4	52	52	52	52	52	52	83	83	65	65	65	65	65	60	60	60	60	60	61	61	61	61
5	79	79	79	79	79	79	95	95	94	94	94	94	94	94	94	94	94	94	92	92	92	92
6	93	93	93	93	93	93	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99	99
7	98	98	98	98	98	98	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
8	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Table H7. Input parameters and results of stochastic projection analysis using an empirical resampling model for Gulf of Maine-Georges Bank American plaice for 2002-2009 for $\mathrm{F}_{2002}=0.85 \mathrm{~F}_{2001}$.

Input for Projections:

Age	Fishing	Discard		Average Weight		
	Mortality(PR)	Fraction	\% Mature	Stock	Landed	Discarded
1	0.02	1.00	0.00	0.001	0.009	0.011
2	0.03	1.00	0.03	0.172	0.015	0.022
3	0.07	0.92	0.18	0.391	0.068	0.165
4	0.28	0.70	0.61	0.432	0.246	0.260
5	0.72	0.29	0.92	0.478	0.360	0.287
6	1.00	0.14	0.99	0.568	0.465	0.297
7	1.00	0.07	1.00	0.735	0.612	0.297
8	1.00	0.03	1.00	0.919	0.819	0.334
9	1.00	0.02	1.00	1.268	1.255	0.415

Projection results for 2002-2004

Year	$\left.\begin{array}{c}\text { Recruitment } \\ (000 ~ f i s h\end{array}\right)$	F	Median Landings	$(000 \mathrm{mt})$

F2002 $=0.85$ F2001

2002	30174		0.37	4.030	0.711	15.269
2003	30121	$F_{\text {rebuild }}$	0.10	1.336	0.161	15.938
2004	30101		0.10	1.562	0.128	17.038

Figure H1. Total commercial landings of Gulf of Maine-Georges Bank American plaice (Division 5Z and 6), 1960-2001.

TOTAL CATCH ('000 of fish) AT AGE

Figure H2. Number of American plaice ('000 of fish) at age in the total catch (discards from shrimp and large mesh fisheries, and landings), $1980-2001$.

Figure H 2 continued.

Figure H3. Standardized stratified mean weight per tow (kg) of American plaice in NEFSC spring and autumn research vessel bottom trawl survey in the Gulf of Maine-Georges Bank region, 1963-2002.

Figure H4. Standardized stratified mean number per tow of American plaice in NEFSC spring and autumn research vessel bottom trawl survey in the Gulf of Maine-Georges Bank region, 1963-2002.

Figure H5. Trends in total commercial landings and fishing mortality for Gulf of Maine-Georges Bank American plaice, 1980-2001.

Figure H6. Trends in recruitment and spawning stock biomass for Gulf of Maine-Georges Bank American plaice, 1980-2001.

GM- GB American plaice Sensitivity Runs ($80 \% \mathrm{Cl}$)

Figure H8. Fishing mortality and spawning stock biomass estimates from VPA calibrated using survey indices increased by 0% (base), 10% (110), 25% (125), and $100 \%(200)$.

Figure H9. Median and 80% confidence intervals of predicted spawning stock biomass (panel A) and predicted landings (panel B) for American plaice under $F_{\text {rebuild }}=0.10$.

I. Georges Bank Winter Flounder by Lisa Hendrickson

1.0 Background

The Georges Bank winter flounder stock was last assessed in November, 2001 at SAW/SARC 34 (NEFSC 2002a). The assessment was based on a biomass dynamics model (ASPIC) (Prager 1995) which incorporated catch (1964-2000) and biomass indices from the NEFSC autumn (1963-2000) and spring (1968-2001) bottom trawl surveys. Model results indicated a reasonable fit to the input data and that yield has been below surplus production since 1994. Relative estimates of mean biomass ($\mathrm{B}_{\mathrm{t}} / \mathrm{B}_{\text {MSY }}$) declined sharply during 1977-1994, then increased to $\mathrm{B}_{\text {MSY }}$ in 2000. Relative fishing mortality rates ($\mathrm{F}_{\mathrm{t}} / \mathrm{F}_{\text {MSY }}$) have been at or below $\mathrm{F}_{\mathrm{MSY}}$ since 1994. During 2000, the stock was not overfished and overfishing was not occurring.

In 2002, the biological reference points adopted at SAW34 were re-examined and use of the absolute estimates of $\mathrm{F}_{\text {MSY }}$ and $\mathrm{B}_{\text {MSY }}$, rather than survey-based equivalents, were recommended (NEFSC 2002b). In addition, medium term stochastic projections (Prager 1995) were generated for 2002-2008 using bootstrap distributions of stock biomass in 2001 generated from the SAW 34 ASPIC model and assuming $\mathrm{F}_{2002}=\mathrm{F}_{2001}$ and $\mathrm{F}_{2003-2008}=\mathrm{F}_{\text {MSY }}$. Projected biomass was maintained at $\mathrm{B}_{\text {MSY }}$ throughout the projected time series with high probability. Projected catch increased to $3,000 \mathrm{mt}$ and was also maintained throughout the projected time series.

2.0 Assessment Results

Stock status was assessed from the results of an updated run of the SAW 34 ASPIC model. Data updates included the addition of NEFSC survey biomass indices from autumn of 2001 and spring of 2002, as well as total landings in 2001.

The sensitivity of catch rate underestimation, due to trawl warp length offsets, during NEFSC surveys conducted between the spring of 2000 and 2002 was also assessed.

2.1 The Fishery

Total commercial landings of Georges Bank winter flounder are predominately from the U.S., but prior to 1977 also included landings from Canadian and distant water fleets. Since 1994, the Canadian proportion of total landings has increased to $5-10 \%$. Total landings peaked at 4,500 mt in 1972 then declined between 1984 and 1995 from 3,900 mt to 800 mt , respectively (Table I1 and Figure I1). Landings have been increasing since 1995 and reached 2,500 mt in 2001.

Discarding of winter flounder occurs in the multi-species otter trawl fishery and the scallop dredge fishery. However, existing data are insufficient to produce reliable estimates of the magnitude or size and age composition of these discards (NEFSC 2002a).

2.2 Research Survey Indices

Relative biomass (stratified mean kg per tow) and abundance (stratified mean number per tow) indices from the NEFSC spring (April 1968-2002) and autumn (October 1963-2001) bottom trawl surveys, as well the Canadian spring bottom trawl surveys (March 1987-2002) are presented in Table I2. Biomass indices from all three surveys are presented in Figure I2. Canadian survey indices were not included in the current assessment because not all winter flounder habitat on Georges Bank is sampled during that survey (NEFSC 2001). Despite considerable variability, both NEFSC series of biomass indices indicate a declining trend during the 1980s and an increasing trend since the early 1990s. The Canadian biomass indices also indicate an increasing trend since 1992. In 2001, biomass indices from all three surveys were above their time series averages.

2.3 Biological Reference Points

The biological reference points for Georges Bank winter flounder are the absolute estimates of $\mathrm{F}_{\text {MSY }}$ and $\mathrm{B}_{\text {MSY }}$ from the SAW 34 ASPIC model (NEFSC 2002b). A maximum sustainable yield of $3,020 \mathrm{mt}$ was estimated to be produced by a biomass ($\mathrm{B}_{\text {MSY }}$) of $9,355 \mathrm{mt}$ at a $\mathrm{F}_{\text {MSY }}$ value of 0.32 . Threshold F is defined as $\mathrm{F}_{\text {MSY }}(=0.32)$ when biomass is greater than $\mathrm{B}_{\text {MSY }}(=9,355 \mathrm{mt})$ then declines linearly to zero at $1 / 2 \mathrm{~B}_{\mathrm{MSY}}(=4,677 \mathrm{mt})$. The target fishing mortality rate is defined as 75% of $\mathrm{F}_{\text {MSY }}(=0.24)$ when biomass is greater than $9,355 \mathrm{mt}$ then declines linearly to zero at a threshold biomass of $4,677 \mathrm{mt}$.

2.4 \quad ASPIC Model Results and Stock Status

Fishing mortality rates declined sharply during 1993 and 1999, from 0.71 to 0.14 , (Table I3 and Figure I3) and were at or below $\mathrm{F}_{\text {MSY }}(=0.32)$ during 1995-2001. Average total biomass has been increasing since 1994 and was slightly above $\mathrm{B}_{\text {MSY }}$ during 2001 (Figure I4). There was no retrospective pattern in the ASPIC-derived estimates of fishing mortality rates or total biomass (Figure I5). The 2001 fishing mortality rate estimate is 0.25 and the 2001 total biomass estimate is $9,805 \mathrm{mt}$. Therefore, in 2001 the stock was not overfished and overfishing was not occurring.

2.5 Sensitivity Analyses

Autumn and spring survey biomass indices from 2000-2002 were increased by $10 \%, 25 \%$ and 100% and included in a sensitivity analysis using the updated ASPIC model configuration (Table I4). Relative total biomass and fishing mortality rate point estimates for 2001 and their respective 80% confidence intervals, generated from 1,000 bootstrap iterations, are shown for the nominal run and the three sets of increased survey indices (Figure I6). The ASPIC model produces new reference point estimates with each run, so a solid line is used in Figure I6 to indicate a ratio of the current $\mathrm{F}_{\text {MSY }}$ and $\mathrm{B}_{\text {MSY }}$ reference points in relation to those re-estimated for comparison of the sensitivity analysis results (dashed line). Relative fishing mortality rates decreased and relative total biomass increased with increases in the survey biomass indices. However, overlapping confidence intervals indicate there was no significant difference between the nominal run and the three runs that incorporated increased survey biomass indices.

3.0 Projections

Short-term (2002-2005) and long-term (2002-2010) stochastic projections (Figure I7) were performed under a scenario where $\mathrm{F}_{2002}=15 \%$ reduction in F_{2001} and fishing mortality rates for the following years were set at $\mathrm{F}_{\mathrm{MSY}}(=0.32)$. Biomass levels above $\mathrm{B}_{\mathrm{MSY}}$ were projected for 20032005 and yields of about 3,000 mt (MSY) were projected for the same time period (Table I5).

4.0 Sources of Uncertainty

1. Exclusion of the discards from the U.S. otter trawl and scallop dredge fisheries results in an underestimation of fishery removals of the younger age classes (ages 0 to 3).
2. Current biomass levels estimated from the ASPIC model may not be reliable because recruitment is implicitly assumed to be a function of stock biomass.
3. U.S. landings are based on prorations of preliminary logbook data which are subject to change.
4. There is some uncertainty about the accuracy of reported Canadian landings because of the non-targeted nature of the Canadian fishery and the tendency to report landings of some flatfish species, including winter flounder, as unclassified flounders.

5.0 Literature Cited

Northeast Fisheries Science Center. 2002a. Report of the $34^{\text {th }}$ Northeast Regional Stock Assessment Workshop ($34^{\text {th }}$ SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments. Northeast Fish. Sci. Cent. Ref. Doc. 02-06; 346 p.

Northeast Fisheries Science Center. 2002b. Final report of the working group on re-evaluation of biological reference points for New England groundfish. 231 p.

Prager, M.H. 1995. User's manual for ASPIC: a stock production model incorporating covariates. SEFSC Lab. Doc. MIA

Table I1. Landings (mt) of Georges Bank winter flounder, by statistical area and country, during 1964-2001.

YEAR	$\begin{gathered} 522-525 \\ 561-562 \\ \text { USA }^{1} \\ \hline \end{gathered}$	$\begin{gathered} 5 \mathrm{Ze}^{2} \\ (521-526 \text { and } 541-562) \end{gathered}$		$\begin{gathered} 5 \mathrm{Z} \\ (521-562) \end{gathered}$		TOTAL
		CANADA	USSR	CANADA	USSR	
1964	1,371			146		1,517
1965	1,176			199	312	1,687
1966	1,877			164	156	2,197
1967	1,917			83	349	2,349
1968	1,570	57	372			1,999
1969	2,167	116	235			2,518
1970	2,615	61	40			2,716
1971	3,092	62	1,029			4,183
1972	2,805	8	1,699			4,512
1973	2,269	14	693			2,976
1974	2,124	12	82			2,218
1975	2,409	13	515			2,937
1976	1,877	15	1			1,893
1977	3,572	15	7			3,594
1978	3,185	65				3,250
1979	3,045	19				3,064
1980	3,931	44				3,975
1981	3,993	19				4,012
1982	2,961	19				2,980
1983	3,894	14				3,908
1984	3,927	4				3,931
1985	2,151	12				2,163
1986	1,762	25				1,787
1987	2,637	32				2,669
1988	2,804	55				2,859
1989	1,880	11				1,891
1990	1,898	55				1,953
1991	1,814	14				1,828
1992	1,822	27				1,849
1993	1,662	21				1,683
1994	907	65				972
1995	706	54				760
1996	1,265	71				1,336
1997	1,287	143				1,430
1998	1,243	93				1,336
1999	938	104				1,042
2000	1,677	161				1,838
2001	1.945	529				2,474

${ }^{1}$ USA landings prior to 1985 include those from Statistical Areas 551 and 552 and landings during 1994-2001 were prorated from Vessel Trip Reports based on gear, month and state.
${ }^{2}$ Includes landings from statistical areas 521 and 526; outside of the Georges Bank winter flounder stock area.

Table I2. Standardized, stratified abundance (numbers) and biomass (weight) indices for Georges Bank winter flounder from the U.S. NEFSC spring and autumn, and Canadian spring research vessel bottom trawl surveys. U.S. offshore survey strata 13-22; Canadian survey strata (5Z1-5Z4). Trawl door standardization coefficients of 1.46 (numbers) and 1.39 (weight) were applied to indices from U.S. survey indices conducted prior to 1985 to account for differences in catchability between survey doors.
U.S. Spring Survey U.S. Autumn Survey Canada Spring Survey

	Number/tow	kg/tow	Number/tow	kg/tow	Number/tow	kg/tow
1963			1.20	1.82		
1964			1.30	1.82		
1965			2.15	2.05		
1966			5.16	5.66		
1967	Spring Surve	din 1968	1.79	2.07		
1968	2.70	3.11	1.31	1.07		
1969	3.14	4.29	2.37	2.39		
1970	1.86	2.29	5.62	6.49		
1971	1.84	2.17	1.32	1.26		
1972	4.95	5.32	1.26	1.58		
1973	2.95	3.51	1.22	1.20		
1974	6.05	5.78	1.19	1.46		
1975	1.96	1.41	3.79	2.06		
1976	4.67	3.01	5.99	3.93		
1977	3.79	1.58	4.86	3.99		
1978	7.07	5.06	4.06	3.10		
1979	1.74	2.21	5.07	3.83		
1980	3.22	2.80	1.66	1.87		
1981	3.73	3.75	3.83	2.43		
1982	2.30	1.52	5.30	2.69		
1983	8.41	7.11	2.73	2.36		
1984	5.53	5.60	3.93	2.45		
1985	3.84	2.65	1.98	1.12		
1986	2.00	1.21	3.58	2.18	Ininitiated	
1987	2.80	1.25	0.76	0.89	1.24	1.74
1988	2.93	1.65	4.08	1.27	4.31	2.75
1989	1.30	0.76	1.56	1.05	4.05	1.95
1990	2.80	1.57	0.50	0.35	4.93	2.64
1991	2.40	1.32	0.27	0.14	1.98	1.38
1992	1.42	0.90	0.68	0.38	0.51	0.59
1993	1.02	0.57	1.17	0.66	3.53	1.76
1994	1.29	0.58	0.87	0.58	5.10	2.01
1995	2.61	1.49	2.36	1.34	5.63	1.96
1996	2.31	1.50	1.54	1.76	4.12	2.30
1997	1.61	1.19	1.74	1.53	4.58	3.09
1998	0.76	0.72	1.78	1.57	1.14	1.21
1999	3.83	3.48	1.54	1.76	1.25	1.89
2000	4.42	3.69	2.16	2.66	1.48	2.22
2001	1.29	1.22	2.45	2.51	2.28	2.54
2002	5.05	5.16			3.17	3.85

Table I3. Fishing mortality rates and average total biomass (mt) estimates for Georges Bank winter flounder during 1964-2001.

Year	Fishing Mortality	Total Biomass (mt)
1964	0.26	5,752
1965	0.25	6,883
1966	0.28	7,850
1967	0.27	8,569
1968	0.21	9,420
1969	0.25	10,160
1970	0.26	10,510
1971	0.42	9,978
1972	0.52	8,622
1973	0.38	7,933
1974	0.27	8,340
1975	0.34	8,765
1976	0.20	9,393
1977	0.37	9,630
1978	0.35	9,243
1979	0.34	9,120
1980	0.46	8,589
1981	0.53	7,567
1982	0.43	7,007
1983	0.62	6,327
1984	0.80	4,945
1985	0.51	4,232
1986	0.40	4,454
1987	0.60	4,446
1988	0.76	3,771
1989	0.57	3,313
1990	0.62	3,154
1991	0.62	2,949
1992	0.69	2,688
1993	0.71	2,365
1994	0.40	2,420
1995	0.25	3,089
1996	0.34	3,927
1997	0.30	4,730
1998	0.23	5,823
1999	0.14	7,407
2000	0.21	8,950
2001	0.25	9,805

Table I4. Summary of results from a sensitivity analysis of increases in survey biomass indices using an ASPIC biomass dynamics model for the assessment of Georges Bank winter flounder.

Input Data	$\begin{aligned} & \text { U.S. autumn survey, 1964-2001 } \\ & \text { U.S.spring survey, 1968-2002 } \\ & \text { Total landings, 1964-2001 } \\ & \text { (Nominal run) } \end{aligned}$	Nominal run with 10% increase in 2000-2002 survey indices	Nominal run with 25% increase in 2000-2002 survey indices	Nominal run with 100% increase in 2000-2002 survey indices
Total Objective Function	1.959	1.954	1.956	2.055
B coverage	0.923	0.938	0.945	1.130
B nearness	1.000	1.000	1.000	1.000
R^{2} in CPUE				
U.S. Autumn Survey	0.34	0.35	0.36	0.41
U.S. Spring Survey	0.23	0.24	0.25	0.29
B1 Ratio	0.57	0.56	0.54	0.47
r	0.66	0.69	0.72	0.86
$\mathrm{F}_{\text {msv }}$	0.33	0.35	0.36	0.43
$\mathrm{B}_{\text {msy }}(\mathrm{mt})$	9,119	8,742	8,429	7,193
MSY (mt)	3,028	3,036	3,047	3,097
$\mathrm{B}_{2002} / \mathrm{B}_{\text {MSY }}$	1.10	1.16	1.22	1.38
$\mathrm{F}_{2001} / \mathrm{F}_{\text {MSY }}$	0.76	0.72	0.68	0.58

Table I5. Short-term stochastic projections of yield (mt) and total biomass (mt), during 2002-2005, for Georges Bank winter flounder assuming F2002=15\% reduction in F2001 and F2003-2005 = FMSY.

Year	Yield	Total Biomass (mt)
2002	2,250	10,250
2003	3,433	11,020
2004	3,323	10,590
2005	3,253	10,310

Figure I1. Total commercial landings of Georges Bank winter flounder during 1964-2001.

Figure I2. Relative biomass indices (stratified mean kg per tow) of Georges Bank winter flounder from NEFSC spring (1968-2002) and autumn (1963-2001) bottom trawl surveys and the Canadian spring (1987-2002) bottom trawl survey.

Figure I3. Trends in total landings and fishing mortality rates for Georges Bank winter flounder during 1964-2001.

Figure I4. Trends in Georges Bank winter flounder total biomass, estimated from an ASPIC biomass dynamics model, during 1964-2001 in relation to $\mathrm{B}_{\mathrm{MSY}}(9,355 \mathrm{mt})$.

Figure I5. Retrospective analysis of ASPIC-derived estimates of (A) fishing mortality rates and (B) total biomass for Georges Bank winter flounder during 1995-2001.

Figure I6. Point estimates and 80% confidence intervals of relative total biomass and fishing mortality rates during 2001 generated from a bootstrapped nominal run of an ASPIC biomass dynamics model and three sensitivity runs, including increased NEFSC survey biomass indices during spring 2000-2002, for the Georges Bank winter flounder stock. Solid lines represent ratios of the current $\mathrm{B}_{\mathrm{MSY}}$ and $\mathrm{F}_{\mathrm{MSY}}$ reference points in relation to those re-estimated from the sensitivity analysis (dashed line).

Figure I7. Median and 80% confidence intervals of projected (A) yield (mt) and (B) total biomass (mt) of Georges Bank winter flounder under $\mathrm{F}_{\mathrm{MSY}}$ fishing mortality rates $(\mathrm{F}=0.32$) during 2003-2010 and assuming $\mathrm{F}_{2002}=15 \%$ reduction in F_{2001}.

J. Southern New England/Mid-Atlantic (SNE/MA) winter flounder by Mark Terceiro

1.0 Background

The current assessment of the SNE/MA stock complex of winter flounder is an update of the previous assessments completed in 1998 at SARC 28 (NEFSC 1999). The SARC 28 assessment included catch through 1997, research survey abundance indices through 1998, catch-at-age analyzed by virtual population analysis (VPA) for 1981-1997, and biological reference points based on a production model conditioned on VPA results. The SARC 28 assessment concluded that the stock complex was fully exploited and at a medium level of biomass. Total biomass in 1997 was estimated to be $17,900 \mathrm{mt}$, spawning stock biomass was estimated to be $8,600 \mathrm{mt}$, and the fully recruited fishing mortality rate was estimated to be $\mathrm{F}=0.31$ Subsequent to the SARC 28 assessment, the status of SNE/MA winter flounder has been evaluated annually by projection methods to provide advice to the New England Fishery Management Council (NEFMC). The last such status update was provided in 2001, and projected total biomass to be 25,300 mt, spawning stock biomass to be $13,800 \mathrm{mt}$, and fully recruited $\mathrm{F}=0.29$, in 1999 (NEFSC 2001). The current assessment, conducted by the ASMFC Winter Flounder Technical Committee in September 2002, updates landings and discard estimates, research survey abundance indices, and assessment models through 2001-2002, as applicable.

2.0 2002 Assessment

The Fishery

After reaching an historical peak of 11,977 metric tons (mt) in 1966, then declining through the 1970s, total U.S. commercial landings of winter flounder again peaked at $11,176 \mathrm{mt}$ in 1981, and then steadily declined to a record low of $2,159 \mathrm{mt}$ in 1994. Landings have increased since 1994 to $4,448 \mathrm{mt}$ in 2001 (Table J1, Figure J1). The primary gear in the fishery is the otter trawl which accounts for an average of 95% of landings since 1989. Scallop dredges account for 4%, with such gears as handlines, pound nets, fyke nets, and gill nets each accounting for about 1% of total landings.

Recreational landings reached a peak in 1984 of $5,772 \mathrm{mt}$ but declined substantially thereafter (Table J2, Figure J1). Recreational landings have been less than 1,000 mt since 1991, with the lowest estimated landings in 1998 of 290 mt . Recreational landings in 2001 from the Southern New England/Mid Atlantic stock complex were 552 mt . The principal mode of fishing is private/rental boats, with most recreational landings occurring during January to June.

Input data and analyses

Length samples of winter flounder are available from both the commercial and recreational landings. In the commercial fishery, annual sampling intensity varied from 59 to 264 mt landed per 100 lengths measured during 1981-2001 (Table J3). Since 1997, port sampling has been adequate to develop the commercial fishery landings at age on a half-year, market category basis across all statistical areas.

In the recreational fishery, annual sampling intensity varied from 36 to 231 mt landed per 100 lengths measured during 1981-1997. Ages were determined using NEFSC survey spring and fall age-length keys.

Since 1995, the ASMFC Winter Flounder Technical Committee has considered NEFSC Fishery Observer data (OB), and NER vessel trip report (VTR) data as sources of information to use in the estimation of commercial fishery discards. The Committee concluded that the VTR mean discard to landed ratio aggregated over all trips in annual half-year season strata provided the most reliable data from which to estimate commercial fishery discards. VTR trawl gear fishery discards to landings ratios on a half-year basis were applied to corresponding commercial fishery landings to estimate discards in weight (Table J4, Figure J1). The Fishery Observer length frequency samples were judged adequate to directly characterize the proportion discarded at length. A discard mortality rate of 50% (Howell et al., 1992) was applied to trawl discards to produce the number of fish discarded dead at length. For 1998, discard estimates at length were made by half-year; for 1999-2001, sample lengths were applied on an annual basis due to low sample sizes. Ages were determined using NEFSC survey spring and fall age-length keys.

A discard mortality of 15% was assumed for recreational discards (B2 category from MRFSS data), as assumed in Howell et al. (1992). Discard losses peaked in 1984-1985 at 0.7 million fish. Discards have since declined, reaching a low in 1999 of 62,000 fish. In 2001, 81,000 fish were estimated to have been discarded (Table J4, Figure J1). Since 1997, irregular sampling of the recreational fisheries by state fisheries agencies has indicated that the discard is usually of fish below the minimum landing size of 12 inches (30 cm). For 1998-2001, the recreational discard has been assumed to have the same length frequency as the landed portion of the catch below 12 inches, and so is predominantly ages 1,2 , and 3 fish. The recreational discard for 1998-2001 is aged using NEFSC survey spring and fall age-length keys.

The virtual population analysis (VPA) was calibrated using the NEFSC Woods Hole Fisheries Assessment Compilation Toolbox (FACT) version 1.50 of the ADAPT VPA (Conser and Powers 1990). Abundance indices at age were available from several research surveys: NEFSC spring bottom trawl ages 1-7+, NEFSC fall ages 1-5 (advanced to tune January 1 abundance of ages 26), NEFSC winter ages $1-5$, Massachusetts spring ages 1-7+, Rhode Island fall age 0 (advanced to tune age-1), Rhode Island spring ages 1-7+, Connecticut spring ages 1-7+, New York age 0 (advanced to tune age-1) and age-1, Massachusetts summer seine index of age-0 (advanced to tune age-1), Delaware juvenile trawl survey age-0 (advanced to tune age-1), New Jersey Ocean trawl survey ages 1-7+, and New Jersey River trawl survey ages 1-7+. Survey indices were selected for inclusion in VPA tuning based on consideration of the partial variance in a VPA trial run including all indices, residual error patterns from the trial runs, and on the significance of the correlation among indices and with VPA abundance estimates from the trial run including all indices. A conditional non-parametric bootstrap procedure (Efron 1982) was used to evaluate the precision of fishing mortality and spawning stock biomass. A retrospective analysis was performed for terminal year fishing mortality, spawning stock biomass, and age 1 recruitment.

3.0 Assessment results

Research surveys

Mean weight per tow and number per tow indices for the NEFSC spring, fall, and winter time series are presented in Table J5. Indices dropped from the beginning of the time series in the 1960s to a low point in the early to mid- 1970s, then rose to a peak by the early 1980s. Following several years of high indices, abundance once again declined to below the low levels of the 1970s. NEFSC survey indices reached near- or record low levels for the time series in the late 1980s- 1990s. Indices from the three survey series generally increased during 19931998/1999, but have since declined (Figure J2).

Several state survey indices were available to characterize abundance of winter flounder. The Massachusetts Division of Marine Fisheries (MADMF) spring and fall survey (1978-2001), Rhode Island Division of Fish and Wildlife (RIDFW) spring and fall survey (1979-2001), Connecticut Department of Environmental Protection (CTDEP), Long Island Sound Trawl Survey (1984-2001), and the New Jersey Division of Fish, Game and Wildlife (NJDFW) ocean survey trends are summarized in Table J6 and Figure J2. The numerous state recruitment surveys (MADMF, RIDFW, CTDEP, New York Department of Environmental Conservation (NYDEP), NJDFW, Delaware Division of Fish and Game (DEDFG)) are summarized in Table J7 and Figure J3.

Virtual Population Analysis

During 1981-1993, fishing mortality (fully recruited F, ages 4-5) varied between 0.4 (1982) and 1.4 (1988), and was as high as 1.2 as recently as 1997. Fishing mortality has been in the range of 0.5-0.6 during 1999-2001 ($\mathrm{F}_{2001}=0.51$, Table J8, Figure J4). SSB declined from $14,800 \mathrm{mt}$ in 1983 to a record low of $2,700 \mathrm{mt}$ in 1994. SSB has increased since 1994 to $7,600 \mathrm{mt}$ in 2001 (Table J8, Figure J5). Recruitment declined continuously from 62.9 million age-1 fish in 1981 to 7.8 million in 1992. Recruitment then averaged 14.7 million fish during 1993-2001, below the VPA time series average of 23.9 million. The 2002 year class is estimated to be the smallest on record, at only 5.7 million fish (Table J8, Figure J5).

VPA diagnostics

The Technical Committee considered six different configurations of tuning indices. In general, tuning indices were excluded if they exhibited high partial variance (indicating a lack of fit within the VPA model) and low correlation with other indices with similar spatial and temporal characteristics and with the VPA estimates of 2002 stock size. Run W36ALL was the initial trial including all indices. Run W36_1 excluded eight indices with high partial variance within the VPA and low correlation with other indices and/or the VPA estimates of stock size, resulting in improvements both in overall fit (mean square residual (MSR) reduced by 14\%) and in the precision of the stock size estimates. Run W36_2 dropped an additional seven indices from the W36_1 configuration, resulting in further improvements in fit (21% improvement over run W36_1) and precision. This was the run adopted as final by the Technical Committee, and is the basis for all further analyses.

The precision of the 2002 stock size, fishing mortality at age in 2001, and SSB estimates from VPA was evaluated using bootstrap techniques (Efron 1982). Five hundred bootstrap iterations were realized in which errors (differences between predicted and observed survey values) were resampled. Bootstrap estimates of stock size at age indicate low bias ($<6 \%$) for ages 2-7+ and bootstrap standard errors provide stock size CVs ranging from 18% at age 3 to 34% at age 1 . Bootstrapped estimates of spawning stock biomass indicate a CV of 9%, with low bias (bootstrap mean estimate of spawning stock biomass of $7,705 \mathrm{mt}$ compared with VPA estimate of 7,643 $\mathrm{mt})$. There is an 80% probability that spawning stock in 2001 was between $6,800 \mathrm{mt}$ and 8,400 mt . The bootstrap estimates of standard error associated with fishing mortality rates at age indicate good precision. Coefficients of variation for F estimates ranged from 16% at age 3 to 21% at ages 1,6 and $7+$. There is an 80% probability that fully recruited F for ages $4-5$ in 2001 was between 0.44 and 0.58 .

A retrospective analysis of the VPA was conducted back to a terminal catch year of 1997 (Figure J6). The SNE/MA winter flounder VPA exhibits a severe retrospective pattern of underestimation of F and overestimation of SSB during the late 1990s. The most likely cause of this pattern is the underestimation of the total catch. The analysis indicated a tendency for the significant underestimation of fully recruited F for the terminal years 1993-1999. In that period, underestimation of F ranged from 232% for 1997 to 14% for 1993 . The pattern reversed for 2000 (i.e., F was overestimated), indicating that survey variability may also contribute to the retrospective pattern of the SNE/MA winter flounder VPA. Fishing mortality appears to have been overestimated for 2000 by 7%. The retrospective pattern for spawning stock biomass has been a tendency for overestimation since 1991. The overestimation of SSB was most severe for the 1997 and 1998 terminal years (115% and 198% overestimation). The retrospective estimation of age-1 recruits indicated a tendency for overestimation during 1993-2000, with recruitment apparently underestimated for 2001 (2000 year class).

Sensitivity of VPA estimates to hypothetical NEFSC survey adjustments

Sensitivity analyses of the VPA results to hypothetical changes in the recent NEFSC spring and fall survey values were conducted (Figure J7). Results are summarized in Section 5.2 (Summary of Assessment Advice).

4.0 Biological reference points

The Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish (RPWG; NEFSC 2002) re-estimated the biological reference points for SNE/MA winter flounder in 2002 using yield and SSB per recruit (Thompson and Bell 1936) and Beverton-Holt stock-recruitment models (Beverton and Holt 1957, Brodziak et al. 2001, Mace and Doonan 1988) based on the SARC 28 assessment (NEFSC 1999). The yield and SSB per recruit analyses indicate that $\mathrm{F}_{40 \%}=0.21$ and $\mathrm{F}_{0.1}=0.25$. The stock-recruitment model indicated that $\operatorname{MSY}=10,600 \mathrm{mt}, \mathrm{F}_{\mathrm{msy}}=0.32$, and $\mathrm{B}_{\text {msy }}=30,100 \mathrm{mt}$.

Biological reference points estimated by the RPWG (NEFSC 2002) were updated by the Technical Committee with partial recruitment pattern and mean weights at age for 1998-2000 (the 2001 estimates were not included in the averages due to the retrospective variability of the
partial recruitment pattern in the terminal year of the VPA). Given the stability of the input data to these analyses and the consistency of the results with the previous work, the Technical Committee elected to retain the RPWG (NEFSC 2002) estimates of biological reference points for this assessment. The assessment indicates that the stock complex is overfished and overfishing is occurring.

5.0 GARM comments

The discussion focused on 2 major issues. The first involved the research vessel surveys, and the apparent lack of consistency between the total biomass and young-of-the-year indices derived from the individual state and NEFSC time series. Several reasons for the inconsistency were discussed, however the major issue is spatial and temporal discontinuity. Each of the surveys covers different portions of the population and they are not conducted concurrently. Each of the state surveys samples a relatively small portion of the inshore range of the species while the NEFSC survey samples the broad offshore area. Due to the migratory behavior of the species, environmental variability in the inshore waters may have a strong influence on the species availability to the survey gear. The GARM recommended that the subcommittee explore methods to weight the surveys based on their area of coverage of the population.

The second major issue discussed at the GARM was the problematic retrospective pattern of underestimation of F and overestimation of SSB during the late 1990s exhibited in the VPA. The pattern in the late 1990s may have been due to a low level of samples from the commercial fishery. The GARM agreed that the VPA provides information on stock status, i.e. the stock complex is overfished and overfishing is occurring, however projections based on the current VPA should not be conducted for this assessment.

6.0 Sources of uncertainty

1) Landings data for 1994 and later years are derived by proration and are considered provisional.
2) Length frequency sampling intensity of the recreational fishery landings has been low in some recent years.
3) Length frequency sampling intensity of the commercial fishery discards has been low in some recent years.
4) Commercial fishery discard estimates are based on rates provided by fishermen in the vessel trip reports, due to inadequate fishery observer sampling.
5) The SNE/MA winter flounder VPA exhibits a severe retrospective pattern of underestimation of F and overestimation of SSB during the late 1990s.

7.0 Summary

The Southern New England/Mid-Atlantic winter flounder stock complex is overfished and overfishing is occurring. Fully recruited fishing mortality in 2001 was 0.51 (exploitation rate $=$ 37%), about 60% above the RPWG (NEFSC 2002) re-estimate of Fmsy $=0.32$. There is an 80% chance that the 2001 F was between 0.44 and 0.58 . Spawning stock biomass was estimated to be $7,600 \mathrm{mt}$ in 2001 , about 25% of the re-estimate of Bmsy $=30,100 \mathrm{mt}$. There is an 80% chance that the spawning stock biomass was between $6,800 \mathrm{mt}$ and $8,400 \mathrm{mt}$ in 2001.

Spawning stock biomass declined substantially from 13,000-14,000 mt during the early 1980 s to only $2,700 \mathrm{mt}$ during 1994-1996, but has increased since the mid 1990s to about 7,600 mt in 2001 due to reduced fishing mortality rates since 1997. The arithmetic average recruitment from 1981 to 2001 is 23.9 million age- 1 fish, with a median of 18.9 million fish. Recent recruitment to the stock has been below average since 1989. The 2001 year class, at only 5.6 million fish, is the smallest in the 22-year time series.

References

Beverton, R.J.H., and S.J. Holt. 1957. On the dynamics of exploited fish populations. Chapman and Hall, London. Facsimile reprint 1993.

Brodziak, J.T.K., W.J. Overholtz, and P. Rago. 2001. Does spawning stock affect recruitment of New England groundfish? Can. J. Fish. Aquat. Sci. 58(2): 306-318.

Conser, R. and J. Powers. 1990. Extension of the ADAPT VPA tuning method designed to facilitate assessment work on tuna and swordfish stocks. Int. Comm. Conserv. Atlantic Tunas. Coll. Vol. Sci. Pap. 32: 461-467.

Efron, B. 1982. The jackknife, the bootstrap and other resampling plans. Phila. Soc. for Ind. and Appl. Math. 38.

Howell, P., A. Howe, M. Gibson and S. Ayvasian. 1992. Fishery management plan for inshore stocks of winter flounder. Atlantic States Marine Fisheries Commission. Fisheries Management Report No. 21. May, 1992.

Mace, P.M., and I..J. Doonan. 1988. A generalized bioeconomic simulation model for fish population dynamics. N.Z. Fish. Ass. Res. Doc. 88/4.

NEFSC. 1999. Report of the $28^{\text {th }}$ Northeast Regional Stock Assessment Workshop (28th SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments. Northeast Fish. Sci. Cent. Ref. Doc. 99-08. 304 p.

NEFSC. 2001. Assessment of 19 Northeast Groundfish Stocks through 2000: a report to the New England Fishery Management Council's Multi-Species Monitoring Committee. Northeast Fish. Sci. Cent. Ref. Doc. 01-20. 217 p.

NEFSC. 2002. Final report of the Working Group on re-evaluation of biological reference points for New England groundfish. Northeast Fish. Sci. Cent. Ref. Doc. 02-04. 123 p.

Thompson, W. F. and F. H. Bell. 1934. Biological statistics of the Pacific halibut fishery. 2. Effect of changes in intensity upon total yield and yield per recruit of gear. Rep. Int. Fish. (Pacific halibut) Comm. 8: 49 p .

Table J1. Winter flounder commercial landings (metric tons) for southern New England/MidAtlantic stock complex area (U.S. statistical reporting areas 521, 526, divisions 53, 6163) as reported by NEFSC weighout, state bulletin and general canvass data.

Year	Metric Tons
1964	7,474
1965	8,678
1966	11,977
1967	9,478
1968	7,070
1969	8,107
1970	8,603
1971	7,367
1972	5,190
1973	5,573
1974	4,259
1975	3,982
1976	3,265
1977	4,413
1978	6,327
1979	6,543
1980	10,627
1981	11,176
1982	9,438
1983	8,659
1984	8,882
1985	7,052
1986	4,929
1987	5,172
1988	4,312
1989	3,670
1990	4,232
1991	4,823
1992	3,816
1993	3,010
1994	2,159
1995	2,634
1996	2,781
1997	3,441
1998	3,208
1999	3,444
2000	3,783
2001	4,448

Table J2. Estimated number (000 's) and weight (mt) of winter flounder caught, landed, and discarded in the recreational fishery, Southern New England/Mid-Atlantic stock complex.

	Number (000's)				Metric tons
	$\begin{gathered} \text { Catch } \\ \mathrm{A}+\mathrm{B} 1+\mathrm{B} 2 \\ \hline \end{gathered}$	Landed $\mathrm{A}+\mathrm{B} 1$	$\begin{aligned} & \text { Released } \\ & \text { B2 } \\ & \hline \end{aligned}$	15\% Release Mortality	Landed $\mathrm{A}+\mathrm{B} 1$
1981	11006	8089	2916	437	3050
1982	10665	8392	2273	341	2457
1983	11010	8365	2645	397	2524
1984	17723	12756	4967	745	5772
1985	18056	13297	4759	714	5198
1986	9368	6995	2374	356	2940
1987	9213	6900	2313	347	3141
1988	10134	7358	2775	416	3423
1989	5919	3682	2236	335	1802
1990	3827	2486	1340	201	1063
1991	4325	2795	1530	230	1214
1992	1360	806	555	83	393
1993	2211	1180	1031	155	543
1994	1829	1209	620	93	598
1995	1850	1390	461	69	661
1996	2679	1554	1125	169	689
1997	1901	1207	694	104	621
1998	1008	584	425	64	290
1999	1071	658	412	62	320
2000	2043	1346	697	105	831
2001	1441	901	540	81	552

Table J3. The total number of commercial lengths sampled by market category for Southern New England/Mid-Atlantic winter flounder. The landing (mt) and metric tons per 100 lengths are also shown.

year	number of lengths					landing (mt)	$\mathrm{mt} / 100$ lengths
	unclass	small	medium	large	total		
1981	1,904	1,542	-	784	4,230	11,176	264
1982	513	2,425	657	2,201	5,796	9,438	163
1983	927	1,790	1,044	1,840	5,601	8,659	155
1984	551	1,171	637	1,338	3,697	8,882	240
1985	716	2,632	1,663	1,396	6,407	7,052	110
1986	799	2,206	1,024	1,091	5,120	4,929	96
1987	99	2,524	670	1,978	5,271	5,172	98
1988	269	1,731	958	1,250	4,208	4,312	102
1989	106	1,224	1,220	975	3,525	3,670	104
1990	102	1,473	1,180	1,333	4,088	4,232	104
1991	-	1,220	921	917	3,058	4,823	158
1992	402	1,343	1,259	1,159	4,163	3,816	92
1993	62	1,249	401	642	2,354	3,010	128
1994	142	1,092	816	543	2,593	2,159	83
1995	79	1,182	290	325	1,876	2,634	140
1996	480	854	521	109	1,964	2,781	142
1997	201	1,327	1,176	1,301	4,005	3,441	86
1998	942	899	1,325	415	3,581	3,208	90
1999	2,381	798	607	821	4,607	3,444	75
2000	1,653	942	2,893	965	6,453	3,783	59
2001	760	897	2,301	2,297	6,255	4,448	71

Table J4. Total winter flounder recreational and commercial catch for the Southern New England/Mid-Atlantic stock complex in weight (mt) and numbers (000s).

Year	Commercial Landings		CommercialDiscards		Recreational Landings		Recreational Discards		Total Catch		$\begin{gathered} \% \\ \text { Discards/Total } \end{gathered}$	
	mt	000s										
1981	11,176	20,705	1,343	5,123	3,050	8,089	88	437	15,657	34,354	9.1	16.2
1982	9,438	19,016	1,149	4,271	2,457	8,392	66	341	13,110	32,020	9.3	14.4
1983	8,659	16,312	1,311	5,251	2,524	8,365	125	399	12,619	30,327	11.4	18.6
1984	8,882	17,116	986	3,936	5,772	12,756	148	745	15,788	34,553	7.2	13.5
1985	7,052	14,211	1,534	4,531	5,198	13,297	230	714	14,014	32,753	12.6	16.0
1986	4,929	9,460	1,273	4,902	2,940	6,994	66	356	9,208	21,712	14.5	24.2
1987	5,172	10,524	950	3,545	3,141	6,899	61	347	9,324	21,315	10.8	18.3
1988	4,312	8,377	904	3,728	3,423	7,359	69	416	8,708	19,880	11.2	20.8
1989	3,670	7,888	1,404	5,761	1,802	3,684	49	335	6,925	17,668	21.0	34.5
1990	4,232	7,202	673	2,567	1,063	2,485	31	201	5,999	12,455	11.7	22.2
1991	4,823	9,063	784	2,701	1,214	2,794	51	230	6,872	14,788	12.2	19.8
1992	3,816	6,759	511	1,811	393	802	15	83	4,735	9,455	11.1	20.0
1993	3,010	5,336	457	1,580	543	1,180	31	155	4,041	8,251	12.1	21.0
1994	2,159	1,948	304	344	598	1,210	34	93	3,095	3,595	10.9	12.2
1995	2,634	2,321	121	107	661	1,390	23	69	3,439	3,887	4.2	4.5
1996	2,781	2,372	173	149	689	1,555	64	168	3,707	4,244	6.4	7.5
1997	3,441	5,834	267	1,200	618	1,204	26	85	4,352	8,323	6.7	15.4
1998	3,208	6,224	456	1,503	290	584	13	64	3,967	8,375	11.8	18.7
1999	3,444	7,356	329	1,074	320	658	14	62	4,107	9,150	8.4	12.4
2000	3,783	6,590	148	534	831	1,346	30	105	4,792	8,575	3.7	7.5
2001	4,448	7,690	83	285	552	901	19	81	5,102	8,957	2.0	4.1

Table J5. Winter flounder NEFSC survey index stratified mean number and mean weight (kg) per tow for the Southern New England- Mid-Atlantic stock complex. Spring and fall strata set (offshore 1-12, 25, 69-76 ; inshore 1-29, 45-56); winter strata set (offshore 1-2, 5-6,9-10,69,73).

Year	Spring				Fall			
	Number	$\mathrm{N}(\mathrm{CV})$	Weight	W(CV)	Number	N(CV)	Weight	W(CV)
1963					8.554	33.2	3.284	41.4
1964					13.673	22.1	4.894	19.4
1965					15.537	32.5	4.435	28.7
1966					9.843	31.5	3.275	27.3
1967					9.109	20.6	2.745	18.7
1968	2.444	26.7	0.734	37.2	8.105	21.0	2.190	18.7
1969	5.640	34.3	3.414	53.7	6.841	34.9	1.939	29.7
1970	2.729	30.9	1.326	35.6	5.110	36.1	2.375	47.8
1971	2.035	32.9	0.756	36.2	3.861	17.5	1.231	19.1
1972	1.865	28.1	0.656	32.1	7.687	39.4	3.053	44.6
1973	7.458	19.9	2.013	20.6	2.691	26.9	0.775	25.8
1974	3.362	21.9	1.043	19.3	2.032	31.1	0.822	29.4
1975	1.135	22.6	0.354	20.8	2.196	20.3	0.688	22.1
1976	3.085	16.3	0.804	17.2	2.376	32.2	1.251	42.9
1977	4.209	17.2	1.189	18.6	4.722	22.5	1.735	25.2
1978	6.695	11.1	1.758	13.3	3.743	17.6	1.430	22.6
1979	2.966	16.8	1.069	25.0	10.058	18.4	2.606	15.4
1980	15.250	17.5	3.551	13.6	9.964	31.0	3.216	29.5
1981	18.234	20.9	4.762	16.9	10.206	20.3	3.110	19.9
1982	6.986	20.1	1.918	15.8	4.927	22.8	1.683	25.9
1983	6.262	18.4	2.469	28.0	8.757	37.6	2.690	31.7
1984	5.524	19.0	2.072	28.4	2.681	21.1	0.887	21.0
1985	5.360	17.4	1.983	16.5	2.727	21.5	0.991	21.5
1986	2.266	23.9	0.766	23.4	1.538	21.9	0.487	19.1
1987	1.763	21.3	0.568	17.9	1.167	28.9	0.419	37.8
1988	2.126	19.6	0.730	19.3	1.246	22.4	0.530	27.5
1989	2.485	33.5	0.582	29.6	1.435	40.7	0.341	30.4
1990	1.992	36.8	0.472	33.1	1.979	29.6	0.546	25.8
1991	2.473	15.6	0.692	14.7	1.950	23.6	0.708	25.6

Table J5 continued.

	Spring				Fall				Winter			
Year	Number	$\mathrm{N}(\mathrm{CV})$	Weight	W(CV)	Number	$\mathrm{N}(\mathrm{CV})$	Weight	W(CV)	Number	$\mathrm{N}(\mathrm{CV})$	Weight	W(CV)
1992	1.579	23.4	0.435	22.1	2.963	32.4	0.829	31.8	3.680	27.3	0.928	26.0
1993	0.961	19.1	0.219	14.8	1.382	25.0	0.392	25.9	2.590	29.4	0.456	21.5
1994	1.510	26.4	0.329	21.9	4.134	24.8	1.482	27.3	3.797	30.8	1.183	35.5
1995	2.097	23.4	0.592	19.1	2.253	20.7	0.626	17.3	2.221	26.1	0.697	29.1
1996	1.517	14.3	0.428	15.2	3.186	39.8	1.063	45.3	3.778	28.4	0.734	25.2
1997	1.436	22.1	0.399	20.0	7.893	32.6	2.583	26.7	3.906	19.7	1.043	21.6
1998	2.774	20.6	0.845	22.1	6.597	13.6	2.232	9.9	7.169	21.6	1.830	24.1
1999	4.171	16.2	1.245	16.4	3.596	17.0	1.549	16.5	10.328	31.8	3.100	32.3
2000	3.172	26.6	1.123	31.9	6.168	25.5	2.143	26.2	5.571	32.9	1.525	29.5
2001	1.568	14.3	0.581	13.3	4.877	28.1	2.030	28.5	3.096	31.6	0.873	29.0
2002	2.043	15.7	0.782	16.3					2.901	27.7	1.188	38.3

NOTE: 1968-1972 spring index does not include inshore strata ; 1963-1971 fall index does not include inshore strata. All indices calculated with trawl door conversion factors where appropriate. Winter trawl survey began in 1992.

Table J6. SNE/MA winter flounder mean weight per tow for annual state surveys.

Year	MADMF spring	RIDFW spring	RIDFW fall	CTDEP	NJDFW Ocean (April)
1978	18.12				
1979	18.17	7.72	7.24		
1980	15.18	13.57	4.88		
1981	15.77	12.13	2.12		
1982	14.82	5.23	1.30		
1983	19.67	9.52	2.28		
1984	14.68	8.43	3.38	15.68	
1985	11.60	5.93	3.01	13.82	
1986	10.36	6.47	3.12	10.33	
1987	9.57	8.14	2.25	11.76	
1988	6.64	6.02	1.45	18.29	
1989	8.46	3.09	0.79	22.62	5.86
1990	5.38	3.07	0.71	29.02	4.78
1991	2.91	7.38	0.18	24.59	5.32
1992	7.99	0.95	0.42	12.29	2.48
1993	8.16	0.22	0.50	10.26	3.87
1994	12.59	1.67	0.33	12.20	3.25
1995	7.98	6.04	0.89	7.72	8.06
1996	9.78	4.45	0.91	20.41	3.73
1997	10.02	4.57	0.64	15.53	6.52
1998	7.99	5.00	0.32	14.66	4.17
1999	4.44	3.66	0.57	10.29	6.83
2000	6.52	4.52	0.56	12.63	5.24
2001	3.73	3.56	0.28	14.02	6.36
2002				10.90	8.80

Table J7. State survey indices (stratified mean number per tow or haul) for young-of-year winter flounder in Southern New England/Mid-Atlantic stock complex.

	CTDEP	RIDFW	DEDFG	MADMF	NYDEC
Year					
1975				0.30	
1976				0.32	
1977				0.60	
1978				0.34	
1979				0.49	
1980				0.40	
1981				0.32	
1982				0.37	
1983				0.23	
1984				0.32	
1985				0.34	0.75
1986		29.00	0.17	0.32	
1987		11.60	0.09	0.27	0.97
1988	15.50	8.90	0.02	0.18	0.69
1989	1.90	18.90	0.29	0.42	1.67
1990	3.10	22.10	0.63	0.33	2.71
1991	5.80	12.00	0.03	0.27	2.57
1992	13.70	33.20	0.27	0.29	11.49
1993	6.00	5.50	0.04	0.07	4.73
1994	16.60	2.60	0.31	0.15	2.44
1995	12.50	5.30	0.10	0.16	0.91
1996	19.20	2.80	0.04	0.22	3.80
1997	7.47	4.40		0.39	4.42
1998	9.38	2.50		0.16	3.11
1999	8.70	14.60		0.19	7.49
2000	4.30	52.90		0.33	0.90
2001	1.30	12.90		0.21	2.31
2002				0.10	

Table J8. Virtual Population Analysis for SNE/MA winter flounder, 1981-2001.
STOCK NUMBERS (Jan 1) in thousands

Table J8 continued.

FISHING	$\begin{gathered} \text { MORTALITY } \\ 1981 \end{gathered}$	1982	1983	1984	1985	1986	1987
1	0.02	0.01	0.01	0.02	0.01	0.01	0.00
2	0.35	0.38	0.21	0.33	0.33	0.29	0.25
3	0.85	0.60	0.74	0.82	0.75	0.91	0.86
4	0.81	0.55	0.69	0.68	1.09	0.59	0.96
5	0.69	0.30	0.56	0.44	1.23	0.54	1.00
6	0.81	0.50	0.67	0.60	1.18	0.59	1.00
7	0.81	0.50	0.67	0.60	1.18	0.59	1.00
	1988	1989	1990	1991	1992	1993	1994
1	0.00	0.02	0.00	0.01	0.00	0.03	0.01
2	0.23	0.31	0.13	0.27	0.20	0.44	0.19
3	0.94	0.86	0.75	0.91	0.81	0.90	0.48
4	1.31	1.24	1.12	1.31	1.05	0.89	0.48
5	1.44	1.23	1.06	1.36	1.11	0.73	0.38
6	1.41	1.29	1.15	1.39	1.10	0.86	0.45
7	1.41	1.29	1.15	1.39	1.10	0.86	0.45
	1995	1996	1997	1998	1999	2000	2001
1	0.00	0.00	0.02	0.00	0.01	0.01	0.00
2	0.03	0.10	0.18	0.15	0.22	0.16	0.24
3	0.57	0.36	0.65	0.53	0.46	0.48	0.76
4	0.86	0.82	1.06	0.93	0.52	0.58	0.65
5	0.57	1.04	1.40	1.04	0.65	0.53	0.37
6	0.76	0.88	1.16	0.98	0.55	0.57	0.23
7	0.76	0.88	1.16	0.98	0.55	0.57	0.23
Average F for 4,5							
	1981	1982	1983	1984	1985	1986	1987
4,5	0.75	0.42	0.63	0.56	1.16	0.57	0.98
	1988	1989	1990	1991	1992	1993	1994
4,5	1.38	1.23	1.09	1.34	1.08	0.81	0.43
	1995	1996	1997	1998	1999	2000	2001
4,5	0.72	0.93	1.23	0.98	0.58	0.55	0.51

Table J8 continued.
SSB AT THE START OF THE SPAWNING SEASON -MALES AND FEMALES (MT) (using SSB mean weights)

	1981	1982	1983	1984	1985	1986	1987
1	00	00	00	00	00	00	00
2	00	00	00	00	00	00	00
3	4739	4757	3771	3557	3615	2395	2482
4	3893	4592	5119	3855	3106	3541	1958
5	1205	2157	2899	2927	1838	1374	1779
6	341	603	1387	1540	1272	634	644
7	214	900	1590	2129	1037	718	489
1+	10393	13009	14766	14008	10869	8662	7353
	1988	1989	1990	1991	1992	1993	1994
1	00	00	00	00	00	00	00
2	00	00	00	00	00	00	00
3	2282	1923	1831	1980	1414	960	600
4	1863	1642	1556	1627	1626	1242	902
5	744	576	590	526	559	667	639
6	516	169	177	200	156	203	300
7	260	248	169	140	93	206	215
1+	5663	4559	4323	4474	3848	3278	2656
	1995	1996	1997	1998	1999	2000	2001
1	00	00	00	00	00	00	00
2	00	00	00	00	00	00	00
3	849	1028	1563	1817	2128	1756	2579
4	665	857	1311	1354	1990	2548	2103
5	589	293	389	452	563	1251	1692
6	376	301	113	107	170	296	715
7	279	214	84	224	73	169	553
1+	2759	2693	3459	3954	4923	6021	7643

SNE/MA Winter Flounder
 Landings and Discards

Figure J1. Commercial landings (1964-2001), commercial discards (1981-2001) recreational landings (1981-2001), recreational discards (1981-2001) and total fishery catch (198-2001) for the SNE/MA winter flounder stock complex.

SNE/MA Winter Flounder Survey Biomass Indices

Figure J2. Trends in research survey biomass indices for SNE/MA winter flounder.

SNE/MA Winter Flounder Recruitment Indices

Figure J3. Trends in research survey recruitment indices for SNE/MA winter flounder. Includes spring survey age-1 indices and fall YOY indices advanced one year

SNE/MA Winter Flounder
Recruitment Indices

Figure J3 continued.

SNE/MA Winter Flounder
 Total Catch and Fishing Mortality

Figure J4. Total catch (landings and discards, thousands of metric tons) and fishing mortality rate (F , ages $4-5$, unweighted) for $\mathrm{SNE} / \mathrm{MA}$ winter flounder.

SNE/MA Winter Flounder SSB and Recruitment

Figure J5. Spawning stock biomass (SSB, ages 3-7+, '000 mt) and recruitment (millions of fish at age-1) for SNE/MA winter flounder.

SNE/MA winter flounder retrospective VPAs

Figure J6. Retrospective VPAs for SNE/MA winter flounder.

Figure J7. SNE/MA winter flounder VPA sensitivity to hypothetical NEFSC winter, spring, and fall survey index adjustments.

K. Georges Bank/Gulf of Maine White Hake by K.A. Sosebee

1.0 Background

This stock was last assessed in 2001 and reviewed at SAW 33. An ASPIC model was used to estimate stock sizes and fishing mortality. Only fish $>60 \mathrm{~cm}$ were included to eliminate species identification as a source of uncertainty. Landings and discards were used in the model, which was tuned with spring and autumn survey biomass indices. Fishing mortality in 2000 was estimated to be more than twice the value for $\mathrm{F}_{\text {msy }}$. Biomass estimates were less than $1 / 4 \mathrm{~B}_{\text {msy }}$. NEFSC spring and autumn research vessel bottom trawl survey indices had declined to near record low levels in 1999 but increased in 2000.

2.0 The Fishery

United States commercial landings of white hake increased to 3,364 metric tons (mt) in 2001, a 16% increase from 2000 (Table K1; Figure K1). Canadian landings declined to 228 mt (9% decline). Discard estimates were derived for 2001 using the same method as in the previous assessment. Discards increased 38% to 439 mt overall (Figure K1). Only otter trawl discards are used in the assessment. Such discards increased to 334 mt (34\%).

3.0 2002 Assessment

Landings-at-length were estimated using port samples collected in 2001. The sampling intensity (Table K2) and coverage were adequate, except for the unclassified market category. As in the previous assessment, unclassified landings were low and were raised with the total at the end.

Discards-at-length were estimated using length samples from 2000 and 2001. The otter trawl sampling in the observer program was very low (one sample in the first half) in 2001 so pooling was necessary (Table K3). The possible mis-identification of species is a problem, particularly for estimation of discards. The length compositions of both the landings and discards were broken out into fish $<=60 \mathrm{~cm}$ and fish $>60 \mathrm{~cm}$ (Table K4, Figure K2). This length cutoff ensures that most of the fish $>60 \mathrm{~cm}$ are white hake since red hake do not reach this size. For years prior to 1985, an average proportion of fish $>60 \mathrm{~cm}$ for 1985-2000 was used to split the landings into two parts $(75 \%>60 \mathrm{~cm})$. All discards prior to 1989 were assumed to be $<=60 \mathrm{~cm}$. The NEFSC surveys were also split into two parts as in the commercial length compositions (Figure K2, Table K6). The rate of decline for the $>60 \mathrm{~cm}$ portion of the stock is apparently greater than that for the stock as a whole.

The ASPIC model from the previous assessment using catch of white hake greater than 60 cm was updated.

4.0 Assessment Results

NEFSC research vessel bottom trawl survey abundance and biomass indices for white hake remained relatively low through autumn 1999 (Table K5, Figure K3). Autumn indices increased sharply in 2000 and 2001.

Estimates of $\mathrm{F}_{\text {msy }}$ and $\mathrm{B}_{\text {msy }}$ from the $>60 \mathrm{~cm}$ ASPIC model changed significantly with the addition of one year of data. The estimated value for r, the intrinsic rate of increase, also changed (from 0.58 to 0.73). This value of r appears to be implausibly high for a gadid species which lives to be 20 years old. Therefore, the GARM did not accept the ASPIC model results.

Since the ASPIC model was not accepted, an alternative was developed. An index of relative exploitation (catch/survey biomass index) corresponding to a replacement ratio of 1.0, as described in NEFSC (2002) was developed for biomass indices and catches of white hake >60 cm . Autumn NEFSC survey biomass indices from 1963 through 2001 (Figure K2) were used to calculate the replacement ratios, defined as the biomass index in the current year divided by the average biomass indices from the previous 5 years. The biomass indices and total catch (Figure K2) were used to compute the relative exploitation rates, defined as the catch in the current year divided by the 3 year average survey biomass index for the previous 2 years and the current year (Figure K4). These relative exploitation rates (or relative F) may be considered a proxy for F for white hake.

Prior to the 1980 s , a high proportion of the replacement ratios equaled or exceeded 1.0 (Figure K4). During the 1980 s and early 1990 s, most of the replacement ratios were less than 1.0 , with ratios greater than 1.0 appearing sporadically. The values for the last two years were greater than 1.0 due to the large increase in the survey biomass index in the last two years.

The relationship between replacement ratios and relative F was evaluated by a linear regression of the $\log _{\mathrm{e}}$ replacement ratio on $\log _{\mathrm{e}}$ relative F (NEFSC 2002) and the results were used to derive an estimate of relative F corresponding to a replacement ratio of 1.0 (Figure K4). Results for white hake were highly significant (NEFSC 2002). The regression indicates that, on average, when the relative F is greater than 0.55 , the stock is not likely to replace itself.

The GARM decided to use the value of MSY estimated from the last accepted ASPIC model run at SAW 33. In evaluating this number, the GARM also looked at the relationship between the catches and survey indices. It appears that when catches exceeded $4,200 \mathrm{mt}$, the survey indices of biomass declined, and when catches dropped below this value, the indices either stabilized or increased. The value of $4,234 \mathrm{mt}$ can then be used to derive $\mathrm{B}_{\text {MSY }}$ by dividing it by $\mathrm{F}_{\text {MSY }}$. This gives a value of $7.70 \mathrm{~kg} /$ tow for $\mathrm{B}_{\text {msy }}$.

The current value for biomass of $2.35 \mathrm{~kg} /$ tow is below that of $1 / 2 \mathrm{~B}_{\text {msy }}$ and indicates that this stock is overfished. Likewise, the relative F value of 1.36 is above $\mathrm{F}_{\text {msy }}$ indicating that overfishing is occurring.

5.0 Biological Reference Points

The following biological reference point proxies were obtained from an index-based model of replacement ratios (NEFSC 2002) derived from indices of relative exploitation:

MSY	$4,234 \mathrm{mt}$
$\mathrm{B}_{\text {MSY }}$	$7.70 \mathrm{~kg} /$ tow
$\mathrm{F}_{\text {MSY }}$	0.55 (Relative F)

6.0 Trawl Warp Analyses

Analyses were conducted to determine the effects of increasing the survey biomass indices for 2000 and 2001 to account for possible trawl warp problems. Results are summarized in section 5.2 (Summary of Assessment Advice).

7.0 GARM comments

The GARM reviewed the ASPIC results for white hake and noted a significant change in the estimate of r from the last assessment. The GARM concluded that the ASPIC model does not provide reliable results for determining stock status and that stock status should be determined directly from the surveys.

8.0 Sources of Uncertainty

- Catch at age and length are not well characterized due to possible mis-identification of species in the commercial and sea sampling data, low sampling of commercial landings, and sparse discard data.
- Catchability of older ages and larger fish in the survey may be low.

9.0 References

NEFSC. 2001. 33rd Northeast Regional Stock Assessment Workshop (33rd SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS/NEFSC, Woods Hole Laboratory Ref. Doc. 01-18.

NEFSC. 2002. Final Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. NMFS/NEFSC, Woods Hole Laboratory Ref. Doc. 02-04.

Table	Total by cou Cape H 1964-2	anding ry fr teras .	ive) Gulf Subar	te hake ne to and 6),
				Grand
	Canada	USA	Other	Total
1964	29	3016	0	3045
1965	0	2617	0	2617
1966	0	1563	0	1563
1967	16	1126	0	1142
1968	85	1210	0	1295
1969	34	1343	6	1383
1970	46	1807	280	2133
1971	100	2583	214	2897
1972	40	2946	159	3145
1973	117	3279	5	3401
1974	232	3773	0	4005
1975	146	3672	0	3818
1976	195	4104	0	4299
1977	170	4976	338	5484
1978	155	4869	29	5053
1979	251	4044	4	4299
1980	305	4746	2	5053
1981	454	5969	0	6423
1982	764	6179	2	6945
1983	810	6408	0	7218
1984	1013	6757	0	7770
1985	953	7353	0	8306
1986	956	6109	0	7065
1987	555	5818	0	6373
1988	534	4783	0	5317
1989	583	4548	0	5131
1990	547	4927	0	5474
1991	552	5607	0	6159
1992	1138	8444	0	9582
1993	1681	7466	0	9147
1994	955	4737	0	5692
1995	481	4333	0	4814
1996	372	3287	0	3659
1997	290	2225	0	2515
1998	228	2364	0	2592
1999	174	2624	0	2798
2000	224	2990	0	3214
2001	203	3482	0	3685

Table K2. Summary of US commercial white hake landings (mt), number of length samples (n), and number of fish measured(len) by market category and quarter from the Gulf of Maine to the Mid-Atlantic (SA 464,465, 511-515,521-526,533-539,611-626) for all gear types, 1985-2001.

Table K2 cont.

1995	mt N	39	$\begin{array}{r} 43 \\ 1 \end{array}$	98	56	$\begin{array}{r} 245 \\ 3 \end{array}$	140 -	$\begin{array}{r} 238 \\ 2 \end{array}$	616	399	$\begin{array}{r} 1393 \\ 5 \end{array}$	197	$\begin{array}{r} 398 \\ 2 \end{array}$	595	374	1564 3	134 -	225 1	504	268 -	$\begin{array}{r} 1130 \\ 1 \end{array}$	$\begin{array}{r} 4333 \\ 12 \end{array}$	361
	\#fish	-	107	97	105	309	-	191	222	111	524	-	221	-	103	324	-	100	-	-	100	1257	
1996	mt	23	34	80	43	181	96	207	531	269	1103	208	331	416	280	1234	110	152	339	169	769	3287	122
	N	-	-	-	-	-	1	-	4	4	9	-	2	4	5	11	1	1	3	2	7	27	
	\#fish	-	-	-	-	-	101	-	435	541	1077	-	202	451	759	1412	127	72	326	220	745	3234	
1997	mt	31	58	124	83	295	76	113	369	193	751	146	146	438	335	1065	34	28	26	26	113	2225	32
	N	4	2	4	2	12	3	7	6	13	29	5	7	7	9	28	-	-	-	1	1	70	
	\#fish	458	206	430	261	1355	276	694	564	1200	2734	541	720	678	896	2835	-	-	-	58	58	6982	
1998	mt	31	54	128	105	318	55	77	218	152	502	159	311	571	407	1449	28	23	34	14	100	2370	74
	N	1	2	1	1	5	3	-	3	2	8	7	2	8	1	18	-	-	1	-	1	32	
	\#fish	53	220	120	59	452	327	-	402	305	1034	684	213	1311	110	2318	-	-	118	-	118	3922	
1999	mt	50	76	103	87	317	85	110	236	149	580	303	468	633	257	1661	11	14	25	16	66	2624	119
	N	-	-	1	-	1	1	1	3	4	9	1	6	2	3	12	-	-	-	-	-	22	
	\#fish	-	-	119	-	119	111	102	315	313	841	166	665	202	327	1360	-	-	-	-	-	2320	
2000	mt	55	70	81	81	286	118	202	289	201	811	293	497	596	446	1833	14	15	20	12	60	2990	120
	N	4	-	-	1	5	5	1	5	4	15	1	1	-	3	5	-	-	-	-	-	25	
	\#fish	428	-	-	123	551	527	106	573	450	1656	103	126	-	336	565	-	-	-	-	-	2772	
2001	mt	59	122	167	177	525	131	155	219	310	815	413	497	697	434	2041	10	22	57	12	101	3482	97
	N	2	3	2	2	9	2	1	2	2	7	3	4	7	6	20	-	-	-	-	-	36	
\#	fish	231	329	213	224	997	221	100	235	215	771	328	456	797	660	2241	-	-	-	-	-	4009	

Table K3. Summary of Domestic Observer number of number of trips (trips) and number of age samples taken (age) by gear type, half year, and catch disposition, 1989-2001.

Table K4. Commercial catch of white hake by size group.

Year	$>60 \mathrm{~cm}$			$<=60 \mathrm{~cm}$		
	Landings	Discards	Total	Landings	Discards	Total
1964	2284	0	2284	761	664	1425
1965	1963	0	1963	654	408	1062
1966	1173	0	1173	391	298	689
1967	857	0	857	286	288	574
1968	971	0	971	324	325	649
1969	1037	0	1037	346	370	716
1970	1600	0	1600	533	582	1115
1971	2173	0	2173	724	760	1484
1972	2359	0	2359	786	678	1464
1973	2551	0	2551	850	767	1617
1974	3004	0	3004	1001	731	1732
1975	2864	0	2864	954	536	1490
1976	3224	0	3224	1075	634	1709
1977	4113	0	4113	1371	914	2285
1978	3790	0	3790	1263	862	2125
1979	3224	0	3224	1075	813	1888
1980	3790	0	3790	1263	1049	2312
1981	4817	0	4817	1606	1372	2978
1982	5209	0	5209	1736	1525	3261
1983	5414	0	5414	1805	1923	3728
1984	5828	0	5828	1943	2037	3980
1985	6306	0	6306	1987	2176	4163
1986	6405	0	6405	654	1845	2499
1987	5025	0	5025	1353	1895	3248
1988	3295	0	3295	2041	1444	3485
1989	3944	0	3944	1186	2050	3236
1990	3156	0	3156	2330	4297	6627
1991	3824	0	3824	2347	1350	3697
1992	6147	0	6147	3434	715	4149
1993	5576	0	5576	3583	603	4186
1994	3985	55	4040	1706	177	1883
1995	2185	2	2187	2625	133	2758
1996	2850	0	2850	806	517	1323
1997	2248	75	2323	270	147	417
1998	2421	78	2499	173	160	333
1999	2530	565	3095	269	1509	1778
2000	2999	17	3016	215	263	478
2001	3093	107	3200	593	264	857

Table K5. Stratified mean catch per tow in numbers and weight (kg) for white hake from NEFSC offshore spring and autumn research vessel bottom trawl surveys (strata 21-30,33-40), 1963-2002.

	Spring			Autumn		
Year	No/Tow	Wt/Tow	Length	No/Tow	Wt/Tow	Length
1963				5.00	6.31	46.2
1964				1.77	4.14	56.3
1965				4.39	6.86	50.4
1966				6.79	7.67	45.1
1967				3.92	3.64	42.6
1968	1.60	1.74	44.1	4.24	4.54	44.9
1969	3.76	5.09	46.3	9.24	13.09	46.8
1970	5.84	11.86	52.9	8.05	12.82	51.3
1971	3.31	5.14	51.3	10.38	12.10	43.6
1972	10.18	12.66	47.3	12.52	13.10	45.2
1973	9.24	12.22	49.9	9.05	13.46	51.7
1974	8.08	13.99	55.0	5.35	11.00	54.5
1975	9.32	11.22	44.7	5.28	7.23	48.5
1976	9.98	17.01	52.7	6.04	10.56	54.7
1977	6.13	11.01	55.5	9.78	13.74	47.8
1978	3.22	6.14	51.8	7.87	12.54	50.2
1979	5.26	4.97	43.0	5.62	10.31	53.1
1980	10.38	13.96	49.7	10.86	16.66	48.8
1981	17.09	19.92	45.9	8.70	12.16	49.9
1982	6.06	8.91	51.0	1.96	2.11	46.7
1983	3.23	3.12	43.7	8.22	10.79	48.8
1984	2.75	4.17	51.4	5.32	8.23	51.9
1985	4.33	5.38	48.5	9.37	9.74	42.9
1986	8.24	5.61	40.0	14.42	11.56	41.9
1987	7.15	6.44	45.3	7.59	9.62	49.2
1988	4.52	3.69	41.9	8.12	9.88	46.1
1989	3.65	3.22	43.0	11.76	9.23	40.5
1990	11.11	18.37	53.3	13.09	10.58	41.5
1991	8.42	6.14	41.6	13.22	12.20	44.6
1992	7.59	7.11	45.1	10.16	11.24	47.7
1993	7.93	6.84	45.1	11.35	11.66	45.2
1994	4.59	3.17	40.1	8.44	7.02	42.3
1995	4.38	4.02	44.1	9.54	8.20	40.8
1996	2.87	3.07	45.9	4.52	6.35	51.2
1997	1.88	0.89	38.4	4.69	4.55	41.5
1998	2.25	1.09	37.7	4.41	4.27	44.5
1999	3.32	2.97	44.6	5.68	3.44	36.3
2000	5.19	3.33	40.4	7.57	6.72	43.8
2001	4.81	5.18	48.4	5.74	7.97	52.7
$\underline{2002}$	5.13	6.32	49.0			

Table K6. NEFSC autumn and spring survey indices by size group.

Year	Autumn		Spring	
	>60	< $=60$	>60	<= 60
1964	3.25	0.89		
1965	4.60	2.26		
1966	4.00	3.67		
1967	1.77	1.85		
1968	2.20	2.34	0.98	0.76
1969	8.38	4.71	3.58	1.52
1970	7.76	5.07	9.12	2.74
1971	8.00	4.10	3.62	1.52
1972	7.04	6.05	8.95	3.71
1973	8.22	5.23	7.01	5.21
1974	8.19	2.80	10.34	3.65
1975	4.46	2.77	7.48	3.74
1976	6.83	3.73	12.90	4.10
1977	9.07	4.67	7.97	3.04
1978	8.46	4.08	4.97	1.17
1979	6.97	3.34	2.83	2.14
1980	11.60	5.06	8.73	5.23
1981	8.44	3.72	13.47	6.45
1982			6.15	2.76
1983	6.06	4.73	1.54	1.58
1984	5.05	3.18	2.68	1.49
1985	5.49	4.24	3.06	2.32
1986	4.38	7.18	2.29	3.32
1987	4.56	5.06	2.56	3.88
1988	5.41	4.48	1.90	1.80
1989	3.84	5.39	1.80	1.42
1990	3.79	6.79	12.14	6.22
1991	4.83	7.37	2.76	3.38
1992	4.14	7.10	2.30	4.81
1993	4.90	6.76	2.68	4.16
1994	2.46	4.56	1.23	1.94
1995	2.96	5.23	1.96	2.06
1996	3.34	3.01	1.77	1.30
1997	2.60	1.95	0.14	0.75
1998	1.64	2.64	0.26	0.84
1999	1.26	2.17	1.43	1.53
2000	2.91	3.81	1.08	2.26
2001	2.89	5.08	2.16	3.02
2002			3.44	1.73

Table K7. Three-year moving average of the NEFSC autumn survey index and the relative F values used in the index-based model of replacement ratios.

	Survey	Relative
Year	Index	F
1965	3.92	0.50
1966	3.95	0.30
1967	3.46	0.25
1968	2.66	0.36
1969	4.12	0.25
1970	6.11	0.26
1971	8.05	0.27
1972	7.60	0.31
1973	7.75	0.33
1974	7.82	0.38
1975	6.96	0.41
1976	6.49	0.50
1977	6.79	0.61
1978	8.12	0.47
1979	8.17	0.39
1980	9.01	0.42
1981	9.00	0.54
1982	9.09	0.57
1983	7.25	0.75
1984	6.12	0.95
1985	5.53	1.14
1986	4.97	1.29
1987	4.81	1.04
1988	4.78	0.69
1989	4.60	0.86
1990	4.35	0.73
1991	4.15	0.92
1992	4.25	1.44
1993	4.63	1.21
1994	3.84	1.05
1995	3.44	0.64
1996	2.92	0.98
1997	2.97	0.78
1998	2.52	0.99
1999	1.83	1.69
2000	1.94	1.56
2001	2.35	1.36

Figure K1. Total landings (circles) and discards (squares) of white hake from the Gulf of Maine to Mid-Atlantic region, 1964-2001.

Gulf of Maine-Georges Bank White Hake

Trends in Catch

Trends in Biomass

Figure K2. Trends in catch (Panel A) and survey indices of biomass (Panel B) by size class.

Figure K3. White hake indices of biomass (top panel) and abundance (bottom panel) from the NEFSC bottom trawl spring (solid line) and autumn (dashed line) surveys in the Gulf of Maine to Northern Georges Bank region (offshore strata 21-30, 33-40), 1963-2002.

Gulf of Maine-Georges Bank White Hake

Figure K4. Six-panel plot depicting relatioship between relative F and replacement ratio (A), trend in replacement ratio (B), relationship between biomass and relative $\mathrm{F}(\mathrm{C})$, trend in biomass (D), trend in catch (E), and trend in relative $\mathrm{F}(\mathrm{F})$.

L. Scotian Shelf-Georges Bank-Gulf of Maine Pollock by R.K. Mayo and L. Col

1.0 Background

Pollock, Pollachius virens (L.) Are assessed as a unit stock from the eastern Scotian Shelf (NAFO Division 4V) to Georges Bank, the Gulf of Maine and portions of the Mid-Atlantic region (Subareas 5 and 6). This stock was last assessed over its range via VPA at SAW 16 in 1993 (Mayo and Figuerido 1993, NEFSC 1993a, 1993b). At that time, spawning stock biomass had been declining since the mid-1980s, and was expected to reach its long-term average $(144,000 \mathrm{mt})$. Fishing mortality was estimated to be 0.72 in 1992, above $\mathrm{F}_{20 \%}(0.65)$ and well above Fmed (0.47). The stock was then considered to be fully exploited and at a medium biomass level.

The state of this stock was most recently evaluated in 2000 via index assessment (Mayo 2001). At that time, it was noted that biomass indices for the Gulf of Maine-Georges Bank portion of the stock, derived from NEFSC autumn bottom trawl surveys, had increased during the mid1970s, declined sharply during the 1980s, but have been generally increasing since the mid1990s. Indices derived from Canadian bottom trawl surveys, conducted on the Scotian Shelf, increased during the 1980s, but declined sharply during the early 1990s. The index assessment provided no basis with which to evaluate the state of the stock relative to the control rule as determined by the Overfishing Definition Review Panel (Anon. 1998).

An assessment of this stock over the major portion of its range (NAFO Divisions 4VWX and Subdivision 5Zc) has been conducted by Canada since 1989. The most recent full stock assessment was conducted in 1999 (Neilson et al. 1999) and the most recent update was performed in 2001. In 1999, it was noted that age $5+$ population biomass reached a maximum in 1985 and then declined steadily to a minimum in 1995. Biomass had increased slightly after 1995 due to recruitment from the 1992 year class. Recent recruitment has been declining, and it was concluded that most indicators of stock status suggest that the resource remains depleted. The 2001 update indicated a further decline in the relative biomass indices and a reduction in the size structure of the population.

2.0 The Fishery

2.1 Divisions 4VWX and Subareas 5\&6

Nominal commercial catches from the Scotian Shelf, Gulf of Maine, and Georges Bank region increased from an annual average of 38,200 mt during 1972-76 to 68,800 mt in 1986 (Table L1, Figure L1). Canadian landings increased steadily from 24,700 mt in 1977 to an annual average of 43,900 mt during 1985-87, while U.S. landings increased from an average of 9,700 mt during 1973-77 to more than 19,000 mt annually from 1985-1987, peaking at 24,500 mt in 1986. Landings by distant-water fleets declined from an annual average of 9,800 mt during 1970-73 to less than $1,100 \mathrm{mt}$ per year during 1981-88. Distant-water fleet landings increased to $3,300 \mathrm{mt}$ in 1991, but have since declined to negligible levels. Over time, most of the distant water fleet catch has been taken by the USSR/Russian fleet on the Scotian Shelf (Table L1).

By 1996, USA and Canadian landings had declined to $2,963 \mathrm{mt}$ and $9,145 \mathrm{mt}$, respectively, the lowest landings by either country in over 3 decades. Landings by distant water fleets fishing on the Scotian Shelf remained almost negligible. Since 1996, USA and Canadian landings have increased slightly but remain low relative to past levels. From 1999 to 2001, USA landings fluctuated between 4,111 and $4,600 \mathrm{mt}$, and Canadian landings ranged from 5,700 to 7,700 mt (Table L1).

Since 1984, the USA fishery has been restricted to areas of the Gulf of Maine and Georges Bank west of the line delimiting the USA and Canadian fishery zones. The Canadian fishery occurs primarily on the Scotian Shelf and additional landings are obtained from Georges Bank east of the line delimiting the USA and Canadian fishery zones. This fishery on the Scotian Shelf has shifted westward over time, and the contribution to the total catch from larger, mobile gear vessels has steadily diminished since 1981.

2.2 Subareas 5\&6

The commercial fishery in Subareas $5 \& 6$ is dominated by United States landings with additional catches taken by some distant water fleets primarily during the 1970s and by Canada. The total landings increased steadily from less than $10,000 \mathrm{mt}$ during the 1960 s to a maximum of over 26,000 mt in 1986 (Figure L2). Landings declined sharply during the late 1980s and have remained below 10,000 mt throughout most of the 1990s. Landings since 1999 have fluctuated between 5,000 and $6,000 \mathrm{mt}$.

3.0 Research Survey Indices

Indices of relative biomass (ln re-transformed), derived from NEFSC autumn bottom trawl surveys have varied considerably since 1963 (Table L2, Figure L2). Indices generally fluctuated between 2 and 5 kg per tow throughout most of the 1960s and 1970s, peaking at over $5-7 \mathrm{~kg}$ per tow during the mid-to-late 1970s, reflecting recruitment of several moderate-to strong year classes from the early 1970s. Strong year classes were also produced in 1979 and 1980, after which recruitment began to diminish.

Biomass indices declined rapidly during the early 1980s, and continued to decline steadily through the early 1990s, remaining below 1 kg per tow and reaching a minimum in 1994. Since 1994, biomass indices from the Gulf of Maine-Georges Bank region have generally increased, reaching 1.5 kg per tow in 1999 and $2.45 \mathrm{~kg} /$ tow in 2001 (Table L2, Figure L2). On the Scotian Shelf, Canadian biomass indices, derived from commercial fishery catch rates, declined rapidly after 1985, following the recruitment of the 1979 year class. After increasing slightly from 1994 to 1996, catch rate indices have continued to decline (Neilson et al. 1999).

4.0 Assessment Results

4.1 Divisions 4VWX and Subareas 5\&6

As evident from recent trends in total landings from the entire stock and NEFSC autumn biomass indices calculated for the Gulf of Maine-Georges Bank region, exploitation ratios (total landings/NEFSC autumn biomass index) peaked in the mid-to-late 1980s after which they steadily declined (Table L3, Figure L3). Biomass indices from the Gulf of Maine-Georges Bank region have been increasing since the late 1990s, and now indicate that biomass may have returned to levels evident during the early 1980s. Measures of stock biomass on the Scotian Shelf, however, remain extremely low relative to past levels.

4.2 Subareas 5\&6

As evident from recent trends in total landings from Subareas 5 and 6 and NEFSC autumn biomass indices calculated for the Gulf of Maine-Georges Bank region, exploitation ratios (Subarea $5 \& 6$ landings/NEFSC autumn biomass index) peaked in the mid-to-late 1980s after which they steadily declined (Table L3, Figure L4). Biomass indices from the Gulf of MaineGeorges Bank region have been increasing during the late 1990s and now indicate that biomass may have returned to levels evident during the early 1980s.

Relative Exploitation Rate Analyses

An index of relative exploitation (catch/survey biomass index) corresponding to a replacement ratio of 1.0, as described in NEFSC (2002) was developed for the portion of the unit stock of pollock within the USA EEZ (NAFO Subareas 5\&6). Autumn NEFSC survey biomass indices from the Gulf of Maine and Georges Bank region from 1963 through 2001 (Figure L5) were used to calculate the replacement ratios, defined as the biomass index in the current year divided by the average biomass indices from the previous 5 years. The biomass indices and total landings (Figure L6) from the same region were used to compute the relative exploitation rates, defined as the catch in the current year divided by the 3 year average survey biomass index for the current year and the previous 2 years (Figure L7). These relative exploitation rates (or relative F) may be considered a proxy for F for that portion of the pollock stock considered in this analysis.

Prior to the 1980s, a high proportion of the replacement ratios equaled or exceeded 1.0 (Figure L8). During the 1980s and early 1990s, most of the replacement ratios were less than 1.0 , with ratios greater than 1.0 appearing again by the late 1990s as the biomass indices began to gradually increase from the very low levels of the mid-1990s.

The relationship between replacement ratios and relative F was evaluated by a linear regression of the $\log _{\mathrm{e}}$ replacement ratio on $\log _{\mathrm{e}}$ relative F (NEFSC 2002) and the results were used to derive an estimate of relative F corresponding to a replacement ratio of 1.0 (Figure L9). Results for pollock were highly significant (NEFSC 2002), and the estimate of the relative replacement F (F rel rep) has a low standard error compared to the point estimate (5.88). The regression
indicates that, on average, when the relative F is greater than 5.88 , the stock is not likely to replace itself in the long-term.

The data displayed in Figures L5, L8 and L10 also provide a means to derive a biomass index which relates to the replacement ratios. In this case, it is evident that most of the replacement ratios below 1.0 occurred during the 1980s when the biomass index was less than about 3.0. This index may be considered as the biomass proxy for Bmsy that corresponds to the relative F proxy for Fmsy.

5.0 Biological Reference Points

Since the relative F relates the catch directly to survey biomass, the catch corresponding to the Bmsy proxy can be estimated from the relative F and the biomass index of Bmsy. For pollock, this computes to $3.0 * 5.88=17.64$, or $17,640 \mathrm{mt}$ as a proxy for MSY.

The following biological reference point proxies were obtained from an index-based model of replacement ratios (NEFSC 2002) derived from indices of relative exploitation (Table L3):

MSY	$17,640 \mathrm{mt}$
$\mathrm{B}_{\text {MSY }}$	$3.00 \mathrm{~kg} /$ tow
$\mathrm{F}_{\text {MSY }}$	5.88 (Relative F)

Since the mid-1990s, the NEFSC autumn survey biomass has been increasing towards the 3.0 $\mathrm{kg} /$ tow Bmsy proxy, and the replacement ratio has remained at or above 1.0. Since 1999 the relative F has remained below the 5.88 Fmsy proxy.

Short term projections indicate total commercial landings (including Canadian) of 5,500 mt from Subareas $5 \& 6$ in 2003 based on a relative F which will allow the biomass to increase by 10% annually.

6.0 Sensitivity Analysis

Clearly, analyses that are directly linked to survey indices will be more sensitive to changes in survey catchability than model-based analyses such as VPA. The sensitivity of estimates of relative F and replacement ratios to presumed changes in survey catchability during autumn 2000 and 2001 were evaluated and the results are presented in Section 4.2. Results are summarized in Section 5.2 (Summary of Assessment Advice).

7.0 Summary

In 2001, the 3-year average biomass index for pollock was 1.60 , approximately 58% of the 3.00 Bmsy proxy. Thus, current biomass is estimated to be between $1 / 2 \mathrm{Bmsy}$ and Bmsy. In 2001, the 3 -year average relative F was 3.55 , approximately 60% of the 5.88 Fmsy proxy. Thus, current F is estimated to be below Fmsy. Accordingly, in 2001 the stock was not overfished and overfishing was not occurring.

8.0 GARM Panel Comments

After the survey proxy reference point analyses were described, the GARM panel suggested that performance of the method should be verified by comparing results from the proxy method with estimates of absolute values of the same reference points derived from VPA-based results.

The projections of catch based on a 10% growth in biomass should be updated in the present analysis using 2001 starting conditions.

The survey biomass indices which form the basis of the estimates of the biomass and F proxy reference points are based on a set of survey strata that have been incompletely sampled over the 1963-2001 time period. The Panel recommends that the survey data be re-evaluated with a goal of achieving a consistent strata set over the entire time period.

9.0 Sources of Uncertainty

- \quad Survey indices for pollock exhibit considerable inter-annual variability
- Movement of pollock among the NAFO Divisions comprising the stock unit is likely to vary over time, contributing to the year effects noted in the surveys

10.0 References

Anon. 1998. Evaluation of existing overfishing definitions and recommendations for new overfishing definitions to comply with the Sustainable Fisheries Act. Final Report. Overfishing Definition Review Panel. June 17, 1998.

Mayo, R.K. and B.F. Figuerido. 1993. Assessment of Pollock, Pollachius virens (L.), in Divisions 4VWX and Subareas 5 and 6, 1993. NMFS, Northeast Fisheries Science Center Reference Document 93-13, 108 p.

Mayo, R.K. 2001. Pollock. In: Assessment of 19 Northeast Groundfish Stocks through 2000. Northern and Southern Demersal Working Groups, Northeast Regional Stock Assessment Workshop. NMFS, Northeast Fisheries Science Center Reference Document 01-20, 217p.

NEFSC 1993a. Report of the $16^{\text {th }}$ Northeast Regional Stock Assessment Workshop ($16^{\text {th }}$ SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS, Northeast Fisheries Science Center Reference Document 93-18, 118 p.

NEFSC 1993b. Report of the $16^{\text {th }}$ Northeast Regional Stock Assessment Workshop ($16^{\text {th }}$ SAW). The Plenary. NMFS, Northeast Fisheries Science Center Reference Document 93-19, 57p.

Neilson, J., P. Perley and C. Nelson. 1999. The 1999 Assessment of Pollock (Pollachius virens)
in NAFO Divisions 4VWX and Subdivision 5Zc. DFO Can. Stock Assess. Sec. Res. Doc. 99/160.

NEFSC 2002. Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish, . NMFS/NEFSC, Reference Document 02-04, 254p.

Table L1. Pollock landings (metric tons, live) from Divisions 4VWX and Subareas 5 and 6 by country, 1960-2001.

Year	Canada	USA	FRG	GDR	Japan	Spain	USSR	Cuba	Others	Total DWF	Total
1960	29470	10132	0	0	0	783	0	0	1	784	40386
1961	26323	10265	0	0	0	982	0	0	1	983	37571
1962	31721	7391	0	0	0	0	0	0	0	0	39112
1963	28999	6650	126	0	0	0	793	0	28	947	36596
1964	30007	6006	208	0	0	0	4603	0	429	5240	41253
1965	27316	5303	71	0	0	1361	2667	0	11	4110	36729
1966	18271	3791	0	0	0	2384	9865	0	12	12261	34323
1967	17567	3312	0	0	0	1779	644	0	15	2438	23317
1968	18062	3276	0	0	0	1128	372	0	7	1507	22845
1969	15968	3943	1188	2195	0	1515	227	0	7	5132	25043
1970	10753	3976	3233	4710	40	532	527	0	0	9042	23771
1971	11757	4890	633	6849	15	912	2216	0	3	10628	27275
1972	18022	5729	475	4816	8	616	3495	0	58	9468	33219
1973	26990	6303	1124	948	1570	3113	3092	0	36	9883	43176
1974	24975	8726	149	2	40	1500	2301	0	62	4054	37755
1975	26548	9318	236	95	0	708	2004	0	124	3167	39033
1976	23568	10863	994	24	0	303	1466	0	390	3177	37608
1977	24654	13056	368	0	1	2	182	0	53	606	38316
1978	26801	17714	0	0	110	0	502	141	39	792	45307
1979	29967	15541	7	0	19	0	1025	50	23	1124	46632
1980	35986	18280	0	0	81	0	950	32	99	1162	55428
1981	40270	18171	0	0	15	0	358	0	90	463	58904
1982	38029	14357	0	0	3	0	297	84	44	428	52814
1983	32749	13967	0	0	6	0	226	261	22	515	47231
1984	33465	17903	0	1	1	0	97	123	46	268	51636
1985	43300	19457	0	0	17	0	336	66	77	496	63253
1986	42845	24542	0	0	51	0	564	387	81	1083	68470
1987	45407	20353	0	0	82	0	314	343	28	767	66527
1988	41690	14960	0	0	1	0	1054	225	0	1280	57930
1989	41093	10553	0	0	1	0	1782	99	478	2360	54006
1990	36178	9645	0	0	0	0	1040	261	3	1304	47127
1991	37931	7950	0	0	38	0	1117	459	167	1781	47662
1992	32002	7183	0	0	72	0	1006	1015	9	2102	41287
1993	20253	5629	0	0	0	0	176	644	0	820	26702
1994	15240	3768	0	0	0	0	0	10	0	10	19018
1995	9781	3358	0	0	0	0	0	58	0	58	13197
1996	9145	2963	0	0	0	0	6	129	0	135	12243
1997	11927	4267	0	0	0	0	0	64	0	64	16258
1998	14371	5583	0	0	0	0	1	9	0	10	19964
1999	7737	4594	0	0	0	0	0	6	0	6	12337
2000	5676	4043	0	0	0	0	0	0	0	0	9719
2001	6306	4111	0	0	0	0	0	0	0	0	10417

[^4]Table L2. Stratified mean catch per tow in numbers and weight (kg) for Scotian Shelf, Gulf of Maine, and Georges Bank pollock in NEFSC offshore spring ${ }^{1}$, summer 2, and autumn ${ }^{1}$ bottom traw 1 surveys, 1963-2001.

Year	Spring ${ }^{3}$				Summer				Autumn			
	Weight		Numbers		Weight		Numbers		Weight		Numbers	
	Linear	Retransformed	Linear	Retrans formed								
1963	-	-	-	-	10.28	3.45	2.31	1.07	5.79	4.96	1.46	1.32
1964	-	-	-	-	5.27	2.32	2.06	0.96	4.35	2.42	1.63	1.04
1965	-	-	-	-	2.56	1.05	1.72	0.63	2.75	2.12	0.83	0.77
1966	-	-	-	-	-	-	-	-	2.35	1.61	0.97	0.58
1967	-	-	-	-	-	-	-	-	1.80	1.16	0.52	0.44
1968	4.50	2.90	1.10	0.93	-	-	-	-	3.17	2.30	0.69	0.62
1969	2.66	2.53	1.12	0.99	1.75	1.19	0.70	0.47	6.59	3.01	1.31	0.85
1970	4.91	3.53	1.67	1.47	-	-	-	-	2.59	2.00	0.64	0.62
1971	4.39	3.30	1.18	1.05	-	-	-	-	3.96	1.90	1.09	0.69
1972	5.67	4.07	4.43	2.62	-	-	-	-	4.37	3.13	1.41	1.16
1973	4.82	3.77	4.00	1.61	-	-	-	-	4.71	4.04	1.64	1.25
1974	4.10	4.43	1.39	1.24	-	-	-	-	3.18	1.52	0.90	0.56
1975	5.90	5.37	1.67	1.32	-	-	-	-	2.04	1.50	0.70	0.50
1976	6.84	7.02	1.59	1.48	-	-	-	-	16.66	7.32	3.69	1.70
1977	3.38	3.04	1.61	1.23	9.98	8.35	2.07	1.67	8.78	5.26	2.14	1.25
1978	6.56	3.71	2.48	1.06	4.05	3.80	1.29	0.92	5.83	3.56	0.98	0.67
1979	4.75	4.07	1.06	0.97	17.57	4.14	2.96	1.19	5.81	4.67	1.28	0.91
1980	4.40	3.92	1.52	1.17	9.83	6.61	12.21	2.25	4.63	3.32	0.83	0.68
1981	6.17	5.42	1.95	1.40	. 8	. 61	12.21	2.25	7.75	1.56	5.24	0.63
1982	6.62	3.68	3.98	2.02	-	-	-	-	3.14	1.63	1.40	0.78
1983	1.83	1.20	0.90	0.69	-	-	-	-	3.03	1.41	0.98	0.61
1984	2.87	2.06	1.00	0.84	-	-	-	-	1.10	0.70	0.43	0.38
1985	26.81	7.85	13.70	3.05	-	-	-	-	2.43	1.97	1.12	0.77
1986	7.69	4.10	1.84	1.25	-	-	-	-	1.83	1.20	0.88	0.58
1987	13.17	2.50	6.94	1.14	-	-	-	-	2.01	1.20	0.60	0.51
1988	1.98	1.36	0.89	0.74	-	-	-	-	12.83	1.75	3.71	0.86
1989	5.17	2.18	1.98	1.02	-	-	-	-	1.20	0.61	1.86	0.76
1990	1.79	1.14	0.75	0.55	-	-	-	-	2.11	1.05	0.83	0.60
1991	5.14	2.96	2.32	1.44	-	-	-	-	1.04	0.64	0.72	0.54
1992	3.35	2.17	1.79	1.24	-	-	-	-	1.69	0.92	1.05	0.65
1993	1.63	1.29	1.64	1.16	-	-	-	-	0.76	0.56	1.03	0.56
1994	1.17	0.94	0.59	0.54	-	-	-	-	0.72	0.41	0.50	0.37
1995	3.89	1.48	3.46	0.89	-	-	_	-	1.38	0.67	0.93	0.54
1996	1.07	0.75	0.65	0.51	-	-	-	-	1.10	0.70	1.02	0.69
1997	4.51	2.01	3.33	1.78	-	-	-	-	1.49	0.98	1.74	0.90
1998	2.69	1.65	2.64	1.56	-	-	-	_	1.29	0.76	2.07	0.74
1999	1.07	0.86	2.16	1.02	-	-	-	-	3.07	1.52	2.40	1.40
2000	1.35	0.98	1.49	0.98	-	-	-	-	1.42	0.83	2.74	1.33
2001	2.03	1.28	1.69	1.27	-	-	-	-	3.57	2.45	2.38	1.81

Strata 13-40 (See Figure 3).
Strata 21-28 and 37-40 (See Figure 3)
3 The "36 Yankee" traw1 was used from 1968-1972, and 1982-1999; the "41 Yankee" traw 1 was used from $1973-1981$. No gear conversion factors are available to adjust for differences in fishing power.

Table L3. Total commercial landings (mt), NEFSC autumn survey biomass index (kg/tow, Ln, retransformed), replacement index and exploitation ratio for pollock in NAFO Subareas 5\&6.

Year	Total Landings (mt)	NEFSC Biomass Annual	Autumn Survey Index (kg/tow) $3-y r$ Avg	Relative Annual	$\begin{aligned} & \text { F Ratio } \\ & 3-y r \text { Avg } \\ & \hline \end{aligned}$	Replacement Ratio 5-yr Avg
1963	6241	4.960		1.258		
1964	9008	2.420		3.722		
1965	9000	2.120	3.167	4.245	2.842	
1966	9847	1.610	2.050	6.116	4.803	
1967	8534	1.160	1.630	7.357	5.236	
1968	5222	2.300	1.690	2.270	3.090	0.937
1969	9822	3.010	2.157	3.263	4.554	1.566
1970	11976	2.000	2.437	5.988	4.915	0.980
1971	15203	1.900	2.303	8.002	6.600	0.942
1972	13013	3.130	2.343	4.158	5.553	1.509
1973	13076	4.040	3.023	3.237	4.325	1.637
1974	12393	1.520	2.897	8.153	4.278	0.540
1975	13871	1.500	2.353	9.247	5.894	0.596
1976	13382	7.320	3.447	1.828	3.883	3.027
1977	16273	5.260	4.693	3.094	3.467	1.502
1978	22305	3.560	5.380	6.265	4.146	0.906
1979	18452	4.670	4.497	3.951	4.103	1.219
1980	23539	3.320	3.850	7.090	6.114	0.744
1981	22068	1.560	3.183	14.146	6.932	0.323
1982	19466	1.629	2.170	11.950	8.972	0.443
1983	17816	1.414	1.534	12.600	11.612	0.480
1984	20633	0.700	1.248	29.476	16.537	0.278
1985	21069	1.967	1.360	10.711	15.488	1.141
1986	26507	1.205	1.291	21.998	20.537	0.829
1987	22347	1.202	1.458	18.592	15.327	0.869
1988	17304	1.753	1.387	9.871	12.479	1.351
1989	11903	0.608	1.188	19.577	10.022	0.445
1990	11201	1.054	1.138	10.627	9.840	0.782
1991	9600	0.640	0.767	15.000	12.511	0.550
1992	10225	0.920	0.871	11.114	11.735	0.875
1993	9873	0.496	0.685	19.905	14.406	0.498
1994	7099	0.409	0.608	17.357	11.670	0.550
1995	4362	0.667	0.524	6.540	8.324	0.948
1996	4164	0.704	0.593	5.915	7.018	1.124
1997	5483	0.984	0.785	5.572	6.985	1.539
1998	7441	0.758	0.815	9.817	9.126	1.163
1999	5591	1.522	1.088	3.673	5.139	2.161
2000	5240	0.833	1.038	6.291	5.050	0.899
2001	5680	2.448	1.601	2.320	3.548	2.549

Divs. 4VWX+SA 5 Pollock
Trends in Landings and Biomass

Figure L1. Trends in total and USA landings of pollock from Divisions 4VWX and Subareas 5 and 6, and NEFSC autumn survey biomass index (kg/tow), 1963-2001.

Divs. 4VWX+SA 5 Pollock
Trends in Landings and Biomass

Figure L2. Trends in total landings of pollock from Divisions $4 V W X$ and from Subareas 5 and 6, and NEFSC autumn survey biomass index (kg/tow), 1963-2001.

Divs. 4VWX+SA5 Pollock
Landings and Exploitation Ratio

Figure L3. Trends in total landings of pollock from Divisions 4VWX and Subareas 5 and 6, and indices of relative exploitation (landings/survey biomass), 1963-2001.

Divs. 4VWX+SA5 Pollock
Landings and Exploitation Ratio

Figure L4. Trends in total landings of pollock from Subareas 5 and 6, and indices of relative exploitation (landings/survey biomass), 1963-2001.

Figure L5. Trends in the NEFSC autumn survey biom ass index for pollock from Subareas 5 and 6, 1963-2001.

SA 5\&6 Pollock

Figure L6. Trends in total landings of pollock from Subareas 5 and 6, 1963-2001.

SA 5\&6 Pollock

Figure L7. Trends in relative F for pollock in Subareas 5 and 6, 1963-2001.

SA 5\&6 Pollock

Figure L8. Trends in replacement ratio for pollock in Subareas 5 and 6, 1963-2001.

Figure L9. Relationship between the replacement ratio and relative F for pollock in Subareas 5 and 6, 1963-2001.

SA 5\&6 Pollock

Figure L10. Relationship between the NEFSC autumn survey biomass index and relative F for pollock in Subareas 5 and 6, 1963-2001.

Figure L11. Six-panel plot illustrating relationships between landings, survey biomass indices, relative F, and replacement ratios for pollock in Subareas 5 and 6, 1963-2001.

M. Gulf of Maine-Georges Bank Acadian Redfish by R.K. Mayo and L. Col

1.0 Background

The most recent stock assessment of Acadian redfish in Subarea 5 was completed in 2001 (Mayo et al. 2002), and the results were reviewed at the $33^{\text {rd }}$ Northeast Regional Stock Assessment Workshop in June, 2001 (NEFSC 2001a, 2001b). The assessment was based on several analyses including trends in catch/survey biomass exploitation ratios; a yield and biomass per recruit analysis; an age-structured dynamics model which incorporates information on the age composition of the landings, size and age composition of the population, and trends in relative abundance derived from commercial CPUE and research vessel survey biomass indices; and an age-aggregated biomass dynamics model. Surplus production estimates were derived from the age-structured dynamics model, and information on current biomass and fishing mortality relative to MSY-based reference points were also provided by the biomass dynamics model.

At that time, the NEFSC autumn survey biomass index had increased substantially during the mid-1990s and had remained relatively high through 2000. The rapid increase in abundance and biomass was attributed to recruitment and growth of the 1992 and other early-1990s year classes. The assessment conducted in 2001 provided no basis with which to evaluate the state of the stock relative to the control rule as determined by the Overfishing Definition Review Panel (Anon. 1998).

2.0 The Fishery

During the early development phase of the Gulf of Maine redfish fishery, USA landings increased rapidly to a peak level of about $56,000 \mathrm{mt}$ in 1942 followed by a steep decline through the early 1950s (Table M1; Figure M1). Nominal catches then declined at a more gradual rate to less than $10,000 \mathrm{mt}$ during the 1960s. During the 1970s, USA landings increased again, peaking at $16,000 \mathrm{mt}$ in 1971 and again at $15,000 \mathrm{mt}$ in 1979. During the 1970 s , additional catches by Canadian and distant water fleets increased the total redfish catch to a maximum of about 17,000 to $20,000 \mathrm{mt}$ per year from 1970 through 1973; catches of redfish by these fleets declined to negligible levels after 1976. Landings of redfish declined steadily throughout the 1980s, remaining below $1,000 \mathrm{mt}$ per year since 1989, and at less than 500 mt per year since 1994. Total redfish landings in 2001 were 360 mt compared to 319 mt in 2000.

3.0 Research Survey Indices

Indices of relative biomass, derived from NEFSC autumn research vessel bottom trawl surveys, although variable, exhibited a steady decline between 1963 and 1982 (Table M2, Figure M2). On average, the biomass index appears to have declined by about 90% over a 20 year period. During this time, only 2 year classes of any significance were produced, 1971 and 1978. Between 1983 and 1993, the biomass index approximately doubled, reflecting the relatively low rate of removals by the fishery and the very slow growth rate of the species. No substantial year classes were detected by research vessel surveys in the inshore survey strata traditionally used to
monitor recruitment until autumn 1995 when a substantial number of fish in the $15-19 \mathrm{~cm}$ range were noted, suggesting the possibility of above average reproduction in 1990 and/or 1991 . This was followed by a very large increase in the index in the offshore strata in the autumn of 1996. The autumn biomass index has fluctuated between 20 and 30 kg per tow since then, a magnitude comparable to the period between 1963 and the mid-1970s.

During the earlier periods, however, redfish were generally first detected in the inshore strata at relatively small sizes ($\sim 10 \mathrm{~cm}$ or less, age 1 or 2), only to appear in the offshore strata after about 5 or six years (Mayo 1993). During the 1990s recruitment event, the year class was not detected until fish were close to 20 cm , or about ages 4 or 5 , and the numbers appeared to be present in both inshore and offshore strata. The autumn biomass index increased 4-5 fold between the early 1990s and the mid-1990s, a rate that is inconsistent with the dynamics of this species. The spring index, however, suggests only a very modest change in biomass since the mid-1990s.

4.0 Assessment Results

Since the assessment reviewed at SAW 33 was completed, no additional aging data have become available to allow an assessment update. Landings remained very low in 2001 and the 2001 NEFSC autumn survey biomass index remained similar to that of 2000, indicating no appreciable change in the exploitation rate since 2000. Therefore, the results from the 2001 assessment serve as the basis for the present assessment report.

Exploitation ratios (catch/survey biomass) suggest that fishing mortality has been very low since the mid-1980s compared to previous periods (Table M3; Figure M3). Estimates of fishing mortality derived from the age-structured dynamics model and the age-aggregated biomass model were similar (Mayo et al. 2002), both indicating that current fishing mortality is low relative to past decades and less than 5% of $\mathrm{F}_{\text {MSY }}$. Spawning stock biomass has increased since the mid-1990s, and was estimated to be 119,600 mt in 2000 (Mayo et al. 2002) due, in large part, to strong recruitment from the early 1990s. When measured against the estimates of $\mathrm{F}_{\mathrm{MSY}}$ and $\mathrm{SSB}_{\text {MSY }}$ provided in NEFSC (2002), the stock is not overfished, and overfishing is not occurring.

Given the continued extremely low landings of redfish relative to the recent increase in biomass, exploitation is now extremely low compared to the 1960s and 1970s (Table M3; Figure M3). However, in contrast to this earlier period, where a substantial proportion of the stock persisted in the $30-40 \mathrm{~cm}$ range (Mayo, 1993), during the 1990s, almost all of the redfish were less than 25 cm , and almost none are greater than 30 cm . This suggests that, given the present demographics of the stock, only a small fraction of the biomass would be considered exploitable.

5.0 Biological Reference Points

Estimates of recruitment obtained from the age-structured biomass dynamics model reviewed at the $33^{\text {rd }}$ SAW were used to imply the probable recruitment that could be produced by a rebuilt stock as described in NEFSC (2002). Recruitment estimates derived by the model from the

1952-1999 yearclasses served as the basis for evaluating trends and patterns in recruitment. The stock-recruitment data suggest an increase in the frequency of larger year classes (>50 million fish) at higher biomass levels. Therefore, recruitment estimates corresponding to the upper quartile of the SSB range served as the basis for deriving mean and median recruitment estimates. In accordance with the recommendation of the Stock Assessment Review Committee of the $33^{\text {rd }}$ SAW, the estimate of $\mathrm{F}_{50 \%}(0.04)$ is taken as a proxy for $\mathrm{F}_{\mathrm{MSY}}$. This fishing mortality rate produces 4.1073 kg of spawning stock biomass per recruit and 0.1429 kg of yield per recruit. The resulting mean recruitment of 57.63 million fish results in an $\mathrm{SSB}_{\text {MSY }}$ estimate of 236, 700 mt when multiplied by the SSB per recruit, and an MSY estimate of $8,235 \mathrm{mt}$ when multiplied by the yield per recruit.

Reference points derived from the non parametric approach are:

MSY	$8,235 \mathrm{mt}$
$\mathrm{B}_{\text {MSY }}$	$236,700 \mathrm{mt}$
$\mathrm{F}_{\text {MSY }}$	$0.04=\mathrm{F}_{50 \%}$ MSP

It was determined (NEFSC 2002) that the stock could not be rebuilt to $\mathrm{B}_{\text {MSY }}$ by 2009 even at $\mathrm{F}=0.0$. Therefore, the rebuilding scenario invoked a 20 year plus 1 mean generation time (31 years for Acadian redfish) to achieve rebuilding. This results in an $\mathrm{F}_{\text {rebuild }}=0.01$.

6.0 GARM Panel Comments

A question was raised as to why the catches have not followed the increase in the survey biomass. The current mesh size is too large for the size of the fish which make up the bulk of the biomass. The fishery for redfish from the 1950s to the 1980s used a smaller mesh size for redfish trips (3"). Some fishers claim to be discarding but there do not appear to be any large discarding events in the data. There is no evidence of targeting at present. The market was lost when the stock declined.

The change in mesh size used in the fishery was a concern in the interpretation of exploitation ratios. Ratios of catch to total biomass indices may not be comparable under different mesh regimes because the change in the amount of exploitable biomass would produce different q's. This is probably not a direct concern because exploitation ratios are not the basis for the assessment and the overall conclusion would not change. For species in which larger fish make up the major portion of the catch, this may not be a problem, but it may be for smaller-sized species such as redfish.

There was a question as to whether the year classes from the 1990s may have been inshore of the survey at younger ages. This had not been the case in the past for other large year classes. The Massachusetts survey does occasionally catch small redfish.

Recommendations

- Compute survey biomass indices of exploitable biomass and utilize these for calculating exploitation ratios.
- Perform a more systematic analysis of the data to determine discard rates.

7.0 Sources of Uncertainty

- The sharp increase in the survey biomass index in 1996 is inconsistent with the life history characteristics of this species.
- Given the pelagic diurnal movement and general distribution of redfish, swept area estimates of stock biomass derived from bottom trawl survey data will tend to underestimate absolute stock size.

8.0 References

Anon. 1998. Evaluation of existing overfishing definitions and recommendations for new overfishing definitions to comply with the Sustainable Fisheries Act. Final Report. Overfishing Definition Review Panel. June 17, 1998.

Mayo, R.K.. 1980. Exploitation of Redfish, Sebastes marinus (L.), in the Gulf of MaineGeorges Bank Region, with particular reference to the 1971 Year-Class, J. Northw. Atl. Fish. Sci., Vol 1: 21-37.

Mayo, R.K.. 1993. Historic and Recent Trends in the Population Dynamics of Redfish, Sebastes fasciatus, Storer, in the Gulf of Maine-Georges Bank Region. NMFS, Northeast Fisheries Science Center Reference Document 93-03, 24 p.

Mayo, R.K., J. Brodziak, M. Thompson, J.M. Burnett and S.X., Cadrin. 2002. Biological Characteristics, Population Dynamics, and Current Status of Redfish, Sebastes fasciatus Storer, in the Gulf of Maine-Georges Bank Region. NMFS, Northeast Fisheries Science Center Reference Document 02-05, 130 p.

NEFSC 2001a. Report of the $33^{\text {rd }}$ Northeast Regional Stock Assessment Workshop ($33^{\text {rd }}$ SAW). Stock Assessment Review Committee (SARC) Consensus Summary of Assessments. NMFS, Northeast Fisheries Science Center Reference Document 01-18, 281 p.

NEFSC 2001b. Report of the $33^{\text {rd }}$ Northeast Regional Stock Assessment Workshop ($33^{\text {rd }}$ SAW). The Plenary. NMFS, Northeast Fisheries Science Center Reference Document 01-19.

NEFSC 2002. Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish, . NMFS/NEFSC, Reference Document 02-04, 254p.

Table M1 Nominal redfish catches (metric tons), actual and standardized catch per unit effort, and calculated standardized USA and total effort for the Gulf of Maine-Georges Bank redfish fishery.

	Nominal	Catch	etric tons)	USA Cat Effort	ch per Unit (tons/day)	Calcula Effort	Standard ys fished)
Year	USA	Others	Total	Actual	Standard	USA	Total
1934	519		519				
1935	7549		7549				
1936	23162		23162				
1937	14823		14823				
1938	20640		20640				
1939	25406		25406				
1940	26762		26762				
1941	50796		50796				
1942	55892		55892	6.9	6.9	8100	8100
1943	48348		48348	6.7	6.7	7216	7216
1944	50439		50439	5.4	5.4	9341	9341
1945	37912		37912	4.5	4.5	8425	8425
1946	42423		42423	4.7	4.7	9026	9026
1947	40160		40160	4.9	4.9	8196	8196
1948	43631		43631	5.4	5.4	8080	8080
1949	30743		30743	3.3	3.3	9316	9316
1950	34307		34307	4.1	4.1	8368	8368
1951	30077		30077	4.1	4.1	7336	7336
1952	21377		21377	3.5	3.4	6287	6287
1953	16791		16791	3.8	3.6	4664	4664
1954	12988		12988	3.4	3.1	4190	4190
1955	13914		13914	4.5	4.0	3479	3479
1956	14388		14388	4.4	3.8	3786	3786
1957	18490		18490	4.3	3.6	5136	5136
1958	16043	4	16047	4.4	3.6	4456	4458
1959	15521		15521	4.3	3.5	4435	4435
1960	11373	2	11375	3.8	3.0	3791	3792
1961	14040	61	14101	4.6	3.5	4011	4029
1962	12541	1593	14134	5.4	4.0	3135	3534
1963	8871	1175	10046	4.1	3.0	2957	3349
1964	7812	501	8313	4.3	2.9	2694	2867
1965	6986	1071	8057	7.0	4.4	1588	1831
1966	7204	1365	8569	11.7	6.4	1126	1339
1967	10442	422	10864	12.4	5.6	1865	1940
1968	6578	199	6777	14.7	6.1	1078	1111
1969	12041	414	12455	11.4	4.9	2457	2542
1970	15534	1207	16741	9.0	4.0	3884	4185
1971	16267	3767	20034	7.0	3.2	5083	6261
1972	13157	5938	19095	5.7	2.9	4537	6584
1973	11954	5406	17360	5.3	2.9	4122	5986
1974	8677	1794	10471	5.0	2.6	3337	4027
1975	9075	1497	10572	4.0	2.2	4125	4805
1976	10131	565	10696	4.6	2.3	4405	4650
1977	13012	211	13223	4.9	2.5	5205	5289
1978	13991	92	14083	4.8	2.4	5830	5868
1979	14722	33	14755	3.6	1.9	7748	7766
1980	10085	98	10183	3.2	1.6	6303	6364
1981	7896	19	7915	2.7	1.4	5640	5654
1982	6735	168	6903	2.7	1.5	4490	4602
1983	5215	113	5328	2.1	1.2	4346	4440
1984	4722	71	4793	1.9	1.1	4293	4357
1985	4164	118	4282	1.4	0.9	4627	4758
1986	2790	139	2929	1.0	0.6	4650	4882
1987	1859	35	1894	1.1	0.7	2656	2706
1988	1076	101	1177	0.9	0.5	2152	2354
1989	628	9	637	1.1	0.6	1047	1062
1990	588	13	601				
1991	525		525				
1992	849		849				
19934*	800		800				
1994**	440		440				
1998*	320		320				
1999*	353		353				
2000*	319		319				
2001*	360		360				

* Preliminary

CPUE and effort not calculated after 1989 due to sharp reduction in directed redfish trips

	INSHORE 1				OFFSHORE 2				COMBINED 3	
Year	$\begin{aligned} & \text { Stratif } \\ & \text { Catch pe } \\ & \text { Number } \\ & \hline \end{aligned}$	ed Mean Tow kg	Avg. Wgt. (kg)	Avg. Length (cm)	$\begin{array}{r} \text { Stratifi } \\ \text { Catch p } \\ \text { Number } \\ \hline \end{array}$	$\begin{aligned} & \text { d Mean } \\ & \text { Tow } \\ & \text { (kg) } \\ & \hline \end{aligned}$	Avg. Wgt. (kg)	Avg. Length (cm)	Stratifi Catch Number	$\begin{aligned} & \text { Mean } \\ & \text { Tow } \\ & \text { kg } \\ & \hline \end{aligned}$
1963	86.3	7.6	0.088	17.4	87.5	27.0	0.309	26.4	87.3	24.1
1964	81.3	13.5	0.166	20.2	122.3	61.8	0.505	30.8	116.3	54.6
1965	189.5	22.3	0.118	17.7	33.9	11.5	0.339	25.3	57.0	13.1
1966	172.8	17.0	0.098	16.2	77.8	31.2	0.401	27.4	91.9	29.1
1967	62.9	5.3	0.084	17.7	107.1	27.6	0.258	23.6	100.5	24.3
1968	41.1	4.7	0.114	18.3	161.3	46.6	0.289	25.1	143.4	40.4
1969	105.9	16.0	0.151	20.7	65.2	24.8	0.380	27.4	71.2	23.5
1970	18.2	2.8	0.154	20.3	107.2	38.2	0.356	26.3	94.0	32.9
1971	20.7	4.7	0.227	21.8	52.8	26.7	0.506	29.7	48.0	23.4
1972	36.4	6.6	0.181	20.8	58.9	27.8	0.472	29.2	55.6	24.6
1973	26.2	2.1	0.080	15.6	41.4	19.7	0.476	29.7	39.2	17.0
1974	44.4	4.7	0.106	18.0	49.0	27.6	0.563	30.1	48.3	24.2
1975	45.7	6.0	0.131	19.6	79.9	45.9	0.574	30.6	74.8	39.9
1976	11.6	2.5	0.216	22.6	31.9	17.5	0.549	30.2	28.9	15.3
1977	54.6	12.3	0.225	23.4	37.9	18.1	0.478	28.5	40.4	17.3
1978	20.4	5.5	0.270	24.6	49.5	23.4	0.473	29.0	45.2	20.7
1979	6.2	2.1	0.339	26.5	32.8	18.4	0.561	30.5	28.9	16.0
1980	20.6	6.2	0.301	24.6	20.6	13.8	0.670	31.8	20.6	12.6
1981	6.8	1.9	0.279	24.9	22.7	14.0	0.617	31.8	20.4	12.2
1982	28.2	4.6	0.163	21.2	5.6	3.2	0.571	31.5	9.0	3.4
1983	30.2	8.7	0.288	24.8	6.5	3.3	0.508	29.1	10.0	4.1
1984	7.7	3.2	0.416	27.9	7.8	4.1	0.526	29.0	7.8	3.9
1985	7.2	2.1	0.292	24.8	14.0	6.3	0.450	28.0	13.0	5.7
1986	67.6	15.3	0.226	23.3	18.8	6.7	0.356	26.1	26.1	8.0
1987	26.5	4.8	0.181	21.9	11.5	5.6	0.487	29.2	13.7	5.5
1988	18.5	5.1	0.276	21.9	11.4	6.5	0.570	29.1	12.4	6.3
1989	14.0	2.9	0.207	22.6	21.3	7.5	0.352	25.9	20.3	6.8
1990	57.6	14.5	0.252	23.8	31.7	11.7	0.369	26.7	35.5	12.2
1991	7.2	1.1	0.153	20.4	21.1	9.6	0.455	28.5	19.1	8.4
1992	7.8	1.2	0.147	20.0	24.9	9.3	0.374	27.3	22.4	8.1
1993	53.7	7.4	0.137	20.0	32.5	11.9	0.366	26.3	35.6	11.2
1994	31.5	5.4	0.171	21.7	19.0	6.0	0.317	25.0	20.9	5.9
1995	109.7	11.1	0.102	18.5	19.9	3.5	0.177	21.3	33.2	4.7
1996	53.8	9.1	0.169	21.5	189.9	34.4	0.181	21.9	169.6	30.6
1997	105.6	15.7	0.149	20.3	57.9	19.5	0.337	26.0	65.0	18.9
1998	48.7	10.7	0.219	20.4	128.9	35.4	0.275	23.6	117.0	31.7
1999	164.2	35.1	0.214	23.2	68.2	20.7	0.304	25.6	82.5	22.9
2000	133.3	21.8	0.164	21.6	99.4	26.9	0.271	24.8	104.4	26.2
2001	144.4	28.9	0.200	22.8	80.2	28.0	0.349	27.3	89.8	28.2

1. Strata Set: 26, 27, 39, 40
2. Strata Set: 24, 28-30, 36-38

Table M3. Commercial landings (mt), NEFSC autumn survey biomass index (kg/tow), and index of exploitation for Gulf of Maine redfish.

Year	$\begin{gathered} \text { Commercia1 } \\ \text { 1andings } \\ (\mathrm{mt}) \end{gathered}$	Biomass Index	Exploitation Ratio
1963	10046	24.1	0.4168
1964	8313	54.6	0.1523
1965	8057	13.1	0.6150
1966	8569	29.1	0.2945
1967	10864	24.3	0.4471
1968	6777	40.4	0.1677
1969	12455	23.5	0.5300
1970	16741	32.9	0.5088
1971	20034	23.4	0.8562
1972	19095	24.6	0.7762
1973	17360	17.0	1.0212
1974	10471	24.2	0.4327
1975	10572	39.9	0.2650
1976	10696	15.3	0.6991
1977	13223	17.3	0.7643
1978	14083	20.7	0.6803
1979	14755	16.0	0.9222
1980	10183	12.6	0.8082
1981	7915	12.2	0.6488
1982	6903	3.4	2.0303
1983	5328	4.1	1.2995
1984	4793	3.9	1.2290
1985	4282	5.7	0.7512
1986	2929	8.0	0.3661
1987	1894	5.5	0.3444
1988	1177	6.3	0.1868
1989	637	6.8	0.0937
1990	601	12.2	0.0493
1991	525	8.4	0.0625
1992	849	8.1	0.1049
1993	800	11.2	0.0714
1994	440	5.9	0.0741
1995	440	4.7	0.0946
1996	322	30.6	0.0105
1997	251	18.9	0.0133
1998	320	31.7	0.0101
1999	353	22.9	0.0154
2000	319	26.2	0.0122
$\underline{2001}$	360	28.2	0.0128

Gulf of Maine-Georges Bank Redfish

Commercial Landings

Figure M1. Total commercial landings of Acadian redfish from the Gulf of Maine-Georges Bank region, 1934-2001

Subarea 5 Acadian Redfish

Landings and Biomass Index

Figure M2. Commercial landings and biomass index derived from NEFSC autumn survey biomass indices for Acadian redfish, 1963-2001.

Subarea 5 Acadian Redfish

Landings and Exploitation Ratio

Figure M3. Commercial landings and exploitation ratios derived from NEFSC autumn survey biomass indices for Acadian redfish.

N. Ocean Pout by S.E. Wigley

1.0 Background

Ocean pout, Macrozoarces americanus, are assessed as a unit stock from Cape Cod Bay south to Delaware. An index assessment for this species was last reviewed at SAW 11 in 1990 (NEFSC 1990). The status of this stock was most recently evaluated in 2000 (NEFSC 2001). At that time, the three year average spring biomass index (1997-1999 average $=1.98 \mathrm{~kg} / \mathrm{tow})$ was approximately 40% of the current $\mathrm{B}_{\text {msy }}$ proxy ($1980-1991$ median $=4.9 \mathrm{~kg} /$ tow $)$ and below the biomass threshold ($1 / 2$ $\mathrm{Bmsy}=2.4 \mathrm{~kg} / \mathrm{tow}$). Ocean pout are included in the New England Fishery Management Council's Multispecies Fishery Management Plan under the "nonregulated multispecies" category.

2.0 The Fishery

From 1964 to 1974, an industrial fishery developed for ocean pout, and nominal catches by the U.S. fleet averaged $4,700 \mathrm{mt}$. Distant-water fleets began harvesting ocean pout in large quantities in 1966, and total nominal catches peaked at $27,000 \mathrm{mt}$ in 1969. Foreign catches declined substantially afterward, and none have been reported since 1974 (Table N1, Figure N1). United States landings declined to an average of 600 mt annually during 1975 to 1983. Catches increased in 1984 and 1985 to $1,300 \mathrm{mt}$ and $1,500 \mathrm{mt}$ respectively, due to the development of a small directed fishery in Cape Cod Bay supplying the fresh fillet market. Landings have declined more or less continually since 1987. In recent years, landings from the southern New England/Mid-Atlantic area have continued to dominate the catch, reversing landing patterns observed in 1986-1987, when the Cape Cod Bay fishery was dominant. The shift in landings is attributed to the changes in management (gear/mesh) regulations. Total landings in 2001 were only 18 mt , a near-record low in the time series (Table N1, Figure N1).

3.0 Research Survey Indices

Commercial landings and the NEFSC spring research vessel survey biomass index followed similar trends during 1968 to 1975 (encompassing peak levels of foreign fishing and the domestic industrial fishery); both declined from very high values in 1968-1969 to lows of 300 mt and 1.3 kg per tow, respectively, in 1975. Between 1975 and 1985, survey indices increased to record high levels, peaking in 1981 and 1985. Since 1985, survey catch per tow indices have generally declined, and are presently below than the long-term survey average (3.5 kg per tow); the 2001 spring survey index was 2.8 kg per tow (Table N2, Figure N1). Both NEFSC winter survey and the Massachusetts Division of Marine Fisheries inshore research vessel surveys confirm the declining trend observed in the NEFSC spring survey.

4.0 Exploitation Indices

Annual relative exploitation ratios (landings/NEFSC spring survey biomass index) have declined sharply from a peak in 1973 to low levels in the early 1980s then increased slightly in the late-1980s, after which they declined to record low levels (Table N3, Figure N2). The 2001 exploitation index (0.007) was the lowest in the time series and well below the Fmsy proxy (0.31), derived as the MSY proxy ($1,500 \mathrm{mt}$) divided by the Bmsy proxy. Since discards have not been estimated, and landings,
not total catch, were used to derive exploitation ratios, the exploitation ratios may be under estimated.

5.0 Assessment Results

The index assessment presented above reveals that landings, survey and exploitation ratios trends have remained stable. No substantial change in stock status has occurred since the last assessment.

For ocean pout, the replacement ratio and relative F analyses were not sufficiently informative for estimating Bmsy, Fmsy, and MSY (NEFSC 2002). Thus, the biological reference points for ocean pout remain based upon research vessel survey biomass trends and the exploitation history (Applegate et al. 1998). MSY was chosen to be $1,500 \mathrm{mt}$ and the Bmsy proxy was determined as the median survey index from 1980-1991 ($4.9 \mathrm{~kg} /$ tow $)$. The minimum biomass threshold is $1 / 2$ of the Bmsy proxy ($2.4 \mathrm{~kg} /$ tow $)$. Given these proxies, the threshold Fmsy is 0.31 (1.5/4.9).

To evaluate stock conditions, the three year average of NEFSC spring survey indices and the exploitation ratio (2001 landings/ average of 1999, 2000, 2001 spring survey biomass indices) were used as proxies for biomass and fishing mortality, respectively. In 2001, the three year average survey index ($2.46 \mathrm{~kg} /$ tow) indicates that biomass is slightly above $1 / 2 \mathrm{Bmsy}$ and the exploitation ratio (0.007) indicates F is below the F threshold (Figure N3). Thus, the ocean pout population was not overfished and overfishing did not occur in 2001.

Since the ocean pout fishery occurs primarily in the spring it is possible to evaluate the stock condition for 2002. Using the NEFSC 2002 spring survey ($2.026 \mathrm{~kg} / \mathrm{tow}$), the 3 year average spring biomass index ($2.28 \mathrm{~kg} /$ tow) is below $1 / 2$ Bmsy. Using preliminary 2002 landings (9 mt), the 2002 exploitation ratio (0.004) remains below the F threshold. Thus, the preliminary evaluation for 2002 is that the ocean pout population is overfished and overfishing is not occurring.

Sensitivity analyses

Sensitivity analyses were conducted by deriving exploitation ratios from NEFSC spring biomass indices which were arbitrarily increased by $10 \%, 25 \%$ and 100% (Figure N3). Results are summarized in Section 5.2 (Summary of Assessment Advice).

6.0 GARM Comments

The discussion centered around the conclusion that the stock was defined as overfished despite minimal landings for two decades. Although landings have been low perhaps due to mesh size regulations, the possibility exists that significant numbers are discarded in other fisheries. The panel noted that the landings to survey ratio has not accounted for the changes in commercial catchability which has occurred over time due to changes in mesh regulation. Declining trends in the NEFSC spring biomass correspond with the declining biomass trends observed in the Massachusetts inshore survey. It was noted that any inflation of the NEFSC index to account for potential gear problems would only create a mis-match between these series.

A preliminary examination of length frequency data from the NEFSC spring survey series revealed
little change in the minimum and maximum size over time. The GARM suggested further exploration of the size distribution for evidence of changing stock demographics given the stock decline over time.

7.0 Sources of Uncertainty

- The size composition of the commercial landings could not be characterized, due to the lack of commercial length samples.
- Discards have not been estimated, only landings were used to derive exploitation ratios instead of total catch. Therefore, exploitation ratios may be underestimated.

Research Recommendations

- Explore various data sources to estimate the magnitude of discarding in fisheries which may impact the ocean pout population (e.g. scallop fishery).
- Explore computing survey biomass indices of exploitable biomass and utilize these for calculating exploitation ratios.
- Examine demographic data for changes over time.
- Initiate biological studies to update basic life history information.

8.0 References

Applegate, A., S.X. Cadrin, J. Hoenig, C. Moore, S. Murawski, and E. Pikitch. 1998. Evaluation of existing overfishing definitions and recommendations for new overfishing definitions to comply with the Sustainable Fisheries Act. New England Fishery Management Council Report.

Northeast Fisheries Science Center. 1990. Report of the Eleventh Stock Assessment Workshop (11th SAW), Fall 1990. Woods Hole, MA: NOAA/NMFS/NEFC. NEFC Ref. Doc. 90-09.

Northern Demersal and Southern Demersal Working Groups, Northeast Regional Stock Assessment Workshop. 2001. Assessment of 19 groundfish stocks through 2000: a report to the New England fishery management Council's Multi-species Monitoring Committee. Northeast Fish. Sci. Cent. Ref. Doc. 01-20; 217 p.

Northeast Fisheries Science Center. 2002. Final Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish.

Wigley, S.E. 2000. Ocean Pout. In: Clark, S.H. (Ed.) Status of the Fishery Resources off the Northeastern United States. NOAA Tech. Mem. NMFS-NE-115. Electronic document. http://www.nefsc.nmfs.gov/sos/spsyn/og/pout.html

Table N1. Commercial landings (mt, live) of ocean pout from the Gulf of Maine-Mid-Atlantic region (NAFO Subarea 5 and 6), 1962-2002.

Year	USA			Other	Total
	5	6	Total		
1962	0	0	0	0	0
1963	20	0	20	0	20
1964	2123	0	2123	0	2123
1965	877	0	877	0	877
1966	7149	0	7149	6231	13380
1967	7090	0	7090	271	7361
1968	8373	364	8737	4324	13061
1969	5571	966	6537	20435	26972
1970	5851	426	6277	895	7172
1971	2678	1448	4126	1784	5910
1972	1927	358	2285	1066	3351
1973	2810	285	3095	2275	5370
1974	2790	459	3249	483	3732
1975	209	65	274	3	277
1976	341	337	678	0	678
1977	809	250	1059	0	1059
1978	715	320	1035	0	1035
1979	658	14	672	0	672
1980	339	11	350	0	350
1981	234	17	251	0	251
1982	317	4	321	0	321
1983	408	0	408	0	408
1984	1324	0	1324	0	1324
1985	1450	54	1504	0	1504
1986	801	1	802	0	802
1987	2111	74	2185	0	2185
1988	1765	46	1811	0	1811
1989	1308	6	1314	0	1314
1990	1299	13	1312	0	1312
1991	1361	63	1424	0	1424
1992	406	68	474	0	474
1993	217	15	232	0	232
1994	137	59	196	0	196
1995	51	14	65	0	65
1996	22	29	51	0	51
1997	8	25	33	0	33
1998	8	9	17	0	17
1999	8	10	18	0	18
2000	8	11	19	0	19
2001	9	9	18	0	18
2002*	2	7	9	0	9

1994-1999 spatial patterns are based upon Vessel Trip Report data.

* preliminary.

Table N2. Stratified mean catch per tow in weight and numbers, mean length and individual average fish weight of ocean pout in NEFSC spring surveys, in the Gulf of Maine-Mid-Atlantic region (strata 1-26,73-76), 1968-2002.

Year	Mean weight (kg) per tow	Mean number per tow	Mean Length (cm)	Individual average weight (kg)
1968	5.366	6.766	51.1	0.793
1969	6.154	8.629	49.3	0.713
1970	5.180	6.133	51.9	0.845
1971	2.183	3.135	50.2	0.696
1972	4.453	5.090	51.6	0.875
1973	3.373	4.591	48.8	0.735
1974	1.479	2.310	47.0	0.640
1975	1.293	1.358	53.4	0.952
1976	1.400	2.440	46.5	0.574
1977	3.605	6.366	44.8	0.566
1978	3.371	11.831	31.6	0.285
1979	1.493	5.197	34.7	0.287
1980	5.729	11.837	42.6	0.484
1981	7.605	14.131	42.7	0.538
1982	4.743	8.690	44.0	0.546
1983	4.236	5.076	50.5	0.835
1984	5.540	7.275	50.0	0.762
1985	6.494	9.011	48.7	0.721
1986	6.345	6.995	53.0	0.907
1987	2.705	3.076	51.7	0.879
1988	3.244	5.405	45.0	0.600
1989	2.792	5.323	44.0	0.525
1990	5.074	6.369	50.3	0.797
1991	3.783	5.596	49.7	0.676
1992	2.257	2.639	52.9	0.855
1993	3.084	3.546	53.4	0.870
1994	2.309	2.639	54.3	0.875
1995	1.916	2.525	50.5	0.759
1996	2.058	3.127	47.6	0.658
1997	1.632	2.069	52.4	0.789
1998	1.733	2.957	46.1	0.586
1999	2.561	3.340	50.2	0.767
2000	2.016	3.113	48.2	0.648
2001	2.801	3.748	51.6	0.747
2002	2.026	2.809	51.3	0.721

Table N3. Annual relative exploitation ratios (annual landings /spring survey biomass indices) and relative exploitation ratios used in stock status (annual landings/ 3year average spring biomass indices) for ocean pout, 1968-2002.

Year	Annual relative exploitation rate (landings/spring index)	Relative
1968	2.434	exploitation ratio (landings/ 3 yr avg spring index)
1969	4.383	
1970	1.385	1.2884
1971	2.249	1.0897
1972	0.753	0.8508
1973	1.592	1.6096
1974	2.523	1.20322
1975	0.214	0.1352
1976	0.484	0.4875
1977	0.294	0.5044
1978	0.307	0.3707
1979	0.450	0.2380
1980	0.061	0.0991
1981	0.033	0.0508
1982	0.068	0.0533
1983	0.096	0.0738
1984	0.239	0.2736
1985	0.232	0.2773
1986	0.126	0.1309
1987	0.808	0.4217
1988	0.558	0.4419
1989	0.468	0.4482
1990	0.259	0.3543
1991	0.376	0.3667
1992	0.210	0.1280
1993	0.075	0.0763
1994	0.085	0.0770
1995	0.034	0.0268
1996	0.025	0.0244
1997	0.021	0.0180
1998	0.010	0.0097
1999	0.007	0.0086
2900	0.009	0.0089
2001	0.006	0.0071
2002	0.004	0.0039

Note: preliminary 2002 landings used.

Figure N1. Trends in landings (mt) and NEFSC spring survey biomass (kg/tow) for ocean pout, 1968-2002.

Figure N2.
Year
Exploitation indices (landings/spring biomass index) for ocean pout, 1970-2002.

Figure N3. Ocean pout stock status in 2001 and three sensitivity analyses in which NEFSC spring survey biomass was arbitrarily adjusted by $10 \%, 25 \%$ and 100%.

O. Windowpane Flounder (Gulf of Maine-Georges Bank) by Lisa Hendrickson

1.0 Background

No stock structure information is available for windowpane flounder. However, the assessment assumes two stock areas (Georges Bank and Southern New England) based on apparent differences in growth, sexual maturity, and abundance trends. Landings from the Gulf of Maine are low, so that area is combined with Georges Bank.

The northern windowpane flounder stock, which includes the Gulf of Maine and Georges Bank regions (GOM-GB), has never been formally assessed as part of the SAW/SARC process. The following index-based assessment is an update of the last report on stock status (NEFSC 2001) and a re-evaluation of the overfishing definition (NEFSC 2002).

2.0 Assessment Results

2.1 The Fishery

Windowpane landings were first recorded in 1975. During most years, the GOM-GB stock has comprised a higher proportion of the total landings than the SNE-MAB stock. Following a 1991 record high of 2,900 mt, landings declined sharply to 300 mt in 1994 (Table O1 and Figure O1). High landings during the early 1990s probably reflected an expansion of the fishery to offshore areas, as well as the targeting of windowpane flounder as an alternative to depleted groundfish stocks. Landings declined from 700 mt in 1996 to a record low of 44 mt in 2001.

Discarding of windowpane has not been quantified, so discards were not included in the calculation of exploitation indices.

2.2 Research Survey Indices

Biomass indices of GOM-GB windowpane flounder from the NEFSC autumn bottom trawl surveys (1963-2001) are presented in Table O1 and Figure O2. Survey biomass indices are highly variable, but indicate a declining trend following a time series peak in 1984 and an increasing trend after 1991. The large increase in the 1998 survey index is primarily attributable to a large catch of windowpane at one station.

2.3 Biological Reference Points

Biological reference points for GOM-GB windowpane flounder were derived from survey-based proxies of biomass and exploitation rates and are based on an ASPIC-based MSY estimate of $1,000 \mathrm{mt}$. The threshold F is defined as an $\mathrm{F}_{\text {MSY }}$ proxy ($=1.11$) when the NEFSC autumn survey index is greater than $0.94 \mathrm{~kg} /$ tow (equal to a $\mathrm{B}_{\text {MSY }}$ proxy) and declines linearly to zero at 50% of the $\mathrm{B}_{\text {MSY }}$ proxy $(=0.47 \mathrm{~kg} /$ tow $)$. The target exploitation index is defined as 60% of the $\mathrm{F}_{\text {MSY }}$ proxy ($=0.67$) when the autumn survey index is greater than $0.94 \mathrm{~kg} /$ tow and declines linearly to zero at $0.47 \mathrm{~kg} /$ tow.

2.4 Relative Exploitation Rates and Stock Status

Relative exploitation rates (landings/NEFSC autumn survey biomass index) have been declining since reaching a peak in 1991 (Table O1 and Figure O3) and were below the $\mathrm{F}_{\text {MSY }}$ proxy ($=1.11$) during 1997-2001. The 1999-2001 autumn survey mean biomass index equals $0.79 \mathrm{~kg} / \mathrm{tow}$ and the 1999-2001 mean exploitation index (landings/NEFSC autumn survey biomass index) equals 0.10 (Table O3 and Figure O2). Overfishing was not occurring and the stock was not overfished in 2001.

3.0 Sources of Uncertainty

* Stock structure is uncertain.
* Discarding is not quantified and may represent a sizable fraction of the multi-species catches given recent groundfish retention restrictions.
* Vessel trip reports have been used to prorate the landings since 1995, and a fraction of the landings from Southern New England may have been reported as Georges Bank landings or vice versa.

4.0 Literature Cited

NEFSC (Northeast Fisheries Science Center). 2002. Final report of the working group on reevaluation of biological reference points for New England groundfish. 231 p.

NEFSC (Northeast Fisheries Science Center). 2001. Assessment of 19 Northeast groundfish stocks through 2000; a report to the New England Fishery Management Council's Multi-species Monitoring Committee. Northern and Southern Demersal Working Groups, Northeast Stock Assessment Workshop. Northeast Fish. Sci. Cent. Ref. Doc. 01-20;
217 p.

Table O1. Landings (mt), NEFSC autumn survey biomass indices (stratified mean kg per tow, offshore strata 13-29 and 37-40), and exploitation indices (landings/autumn survey biomass index) for Gulf of Maine-Georges Bank windowpane flounder during 1963-2001. Landings include Statistical Areas beginning with 51 and 52 , with the exception of $526,530-539$ and 541.

Year	Landings ${ }^{1}$ (mt)	Biomass Indices $($ kg per tow $)$	Exploitation Indices (landings/biomass index)
1963		0.24	
1964		0.10	
1965		0.17	
1966		0.48	
1967		0.52	
1968		0.26	
1969		0.64	
1970		0.19	
1971		0.16	
1972		0.57	
1973	1,300	1.53	
1974	1,516	0.82	
1975	923	0.39	1.38
1976	856	1.17	0.71
1977	408	1.56	0.80
1978	413	1.15	1.18
1979	411	0.73	0.65
1980	460	0.63	0.52
1981	743	0.79	0.83
1982	2,141	0.49	0.84
1983	1,842	0.55	0.35
1984	1,396	2.14	2.29
1985	1,377	0.94	1.67
1986	1,577	1.11	2.16
1987	1,078	0.65	2.12
1988	2,862	0.65	3.81
1989	1,519	0.41	0.96
1990	1,212	1.13	16.74
1991	300	0.17	4.01
1992	700	0.38	1.96
1993	700	0.62	0.97
1994	418	0.81	0.87
1995	396	0.50	1.40
1996	46	0.43	0.96
1997	142	0.66	0.24
1998		0.73	0.06
1999		0.92	
2000			
2001		05	

[^5]

Figure O1. Commercial landings of Gulf of Maine-Georges Bank windowpane flounder during 1975-2001.

Figure O2. Relative biomass indices (stratified mean kg per tow) for Gulf of Maine-Georges Bank windowpane flounder from the NEFSC autumn bottom trawl surveys during 1963-2001.

Figure O3. Relative exploitation indices (landings/autumn survey biomass indices) and landings (mt) of Gulf of Maine-Georges Bank windowpane flounder during 1975-2001.

P. Windowpane Flounder (Southern New England-Mid-Atlantic Bight) by Lisa Hendrickson

1.0 Background

No stock structure information is available. Therefore, a provisional arrangement has been adopted that recognizes two stock areas based on apparent differences in growth, sexual maturity, and abundance trends between fish from Georges Bank and from Southern New England. The proportion of total landings contributed by the Mid-Atlantic area is low, so data from that area are combined with those from Southern New England.

The southern windowpane flounder stock, which includes the southern New England and MidAtlantic Bight regions (SNE-MAB), has never been formally assessed as part of the SAW/SARC process. The following index-based assessment is an update of the last report on stock status (NEFSC 2001) and a re-evaluation of the overfishing definition (NEFSC 2002).

2.0 Assessment Results

2.1 The Fishery

Windowpane landings were first recorded in 1975. During most years, the GOM-GB stock has comprised a higher proportion of the total landings than the SNE-MAB stock. However, SNEMAB landings exceeded those from the Gulf of Maine-Georges Bank stock during 1980-1984, 1999 and 2001 (Table P1 and Figure P1). Landings declined rapidly during 1985-1995, from a peak of $2,100 \mathrm{mt}$ to a record low of 100 mt , respectively. During 1996-2000, landings stabilized at the lowest levels observed in the time series, ranging between 100 mt and 200 mt . Landings in 2001 were 112 mt .

Discarding of windowpane has not been quantified, so discards were not included in the calculation of exploitation indices.

2.2 Research Survey Indices

Relative biomass indices, stratified mean weight (kg) per tow, of SNE-MAB windowpane flounder from the NEFSC autumn (1963-2001) bottom trawl surveys are presented in Table P1 and Figure P2. Biomass indices are highly variable, but indicate a declining trend during 19821993 followed by stable, but low biomass levels during 1994-2000 and a slight increase in 2001.

2.3 Biological Reference Points

Biological reference points for SNE-MAB windowpane flounder that were adopted in Amendment 9 were derived from survey-based proxies of biomass and exploitation and based on an ASPIC-based MSY estimate of 900 mt . The overfishing definition was subsequently revised based on a stock replacement ratio analysis, but target reference points were not revised (NEFSC 2002). The threshold F is defined as an $\mathrm{F}_{\text {MSY }}$ proxy $(=0.98)$ when the NEFSC autumn survey index is greater than $0.92 \mathrm{~kg} /$ tow (equal to a $\mathrm{B}_{\text {MSY }}$ proxy) and declines linearly to zero at 50% of the $\mathrm{B}_{\mathrm{MSY}}$ proxy $(=0.46 \mathrm{~kg} /$ tow $)$.

2.4 Relative Exploitation Rates and Stock Status

Relative exploitation rates (landings/NEFSC autumn survey biomass index) declined sharply after reaching a peak in 1993 (Table P1 and Figure P3) and were below the $\mathrm{F}_{\text {MSY }}$ proxy ($=0.98$) during 1994-2001. The 1999-2001 autumn survey mean biomass index equals $0.21 \mathrm{~kg} / \mathrm{tow}$ and the 1999-2001 mean exploitation index (landings/NEFSC autumn survey biomass index) equals 0.69. Based on the biological reference points, overfishing is not occurring, but the stock is overfished. However, exploitation rates are based only on landings, and if unaccounted discarding is substantial, then the 1999-2001 average exploitation rate is underestimated.

3.0 Sources of Uncertainty

3.1 Stock structure is uncertain.
3.2 Discarding is not quantified and may represent a sizable fraction of the multi-species and sea scallop catches.
3.3 Vessel trip reports have been used to prorate the landings, since 1995, and a fraction of the landings from Southern New England may have been reported as Georges Bank landings or visa versa.

4.0 Literature Cited

Northeast Fisheries Science Center. 2002. Final report of the working group on re-evaluation of biological reference points for New England groundfish. 231 p.

Northeast Fisheries Science Center. 2001. Assessment of 19 Northeast groundfish stocks through 2000; a report to the New England Fishery Management Council's Multi-species Monitoring Committee. Northern and Southern Demersal Working Groups, Northeast Stock Assessment Workshop. Northeast Fish. Sci. Cent. Ref. Doc. 01-20; 217 p.

Table P1. Landings (mt), NEFSC autumn survey biomass indices (stratified mean kg per tow, offshore strata 1-12 and 61-76), and exploitation indices (landings/autumn survey biomass index) for Southern New England-Mid-Atlantic Bight windowpane flounder during 1963-2001. Landings include Statistical Areas beginning with 6, 526, 530-539 and 541.

Year	Landings ${ }^{1}$ (mt)	Biomass Indices (kg per tow)	Exploitation Indices (landings/biomass index)
1963		1.99	
1964		0.87	
1965		0.78	
1966		1.11	
1967		0.81	
1968		0.90	
1969		0.37	
1970		0.31	
1971		0.40	
1972		0.57	
1973		0.58	
1974		0.26	
1975	681	0.14	4.76
1976	568	0.36	1.58
1977	647	0.54	1.21
1978	898	0.54	1.67
1979	633	0.76	0.83
1980	532	0.26	2.08
1981	883	0.52	1.70
1982	651	0.87	0.75
1983	798	0.37	2.17
1984	1,088	0.25	4.40
1985	2,065	0.62	3.34
1986	1,381	0.56	2.45
1987	887	0.44	2.02
1988	1,172	0.42	2.76
1989	1,121	0.09	12.18
1990	890	0.18	4.92
1991	817	0.41	2.02
1992	584	0.18	3.24
1993	469	0.03	15.14
1994	200	0.23	0.89
1995	100	0.20	0.50
1996	200	0.26	0.76
1997	7,107	0.13	0.84
1998	123	0.18	0.68
1999	116	0.12	1.00
2000	126	0.17	0.75
2001	112	0.34	0.33

[^6]

Figure P1. Landings of Southern New England-Mid-Atlantic Bight windowpane flounder during 1963-2001.

Figure P2. Relative biomass indices (stratified mean kg per tow) for Southern New England-Mid-Atlantic Bight windowpane flounder from the NEFSC autumn research vessel bottom trawl surveys (offshore strata 1-12 and 61-76) during 1963-2001.

Figure P3. Relative exploitation indices (landings/autumn survey biomass indices) and landings (mt) of Southern New England-Mid-Atlantic Bight windowpane flounder during 1975-2001.

Q. MID ATLANTIC YELLOWTAIL FLOUNDER by Steve Cadrin

1.0 Background

The stock has been at relatively low abundance in recent years (Overholtz and Cadrin 1999, Cadrin 2001). This report updates catch through 2001 and survey indices through 2002. In August 2002, the Southern Demersal Working Group concluded that southern New England and Mid Atlantic yellowtail flounder should be assessed and managed as a single unit stock, and is concurrently preparing an assessment of the southern New England- Mid Atlantic yellowtail resource (SAW36 WP A6). In September 2002, the Working Group reviewed input data, analyses and projections in this report.

2.02002 Assessment

2.1 2000-2001 Landings

Recent landings (1994-1999) were prorated as described in the Georges Bank assessment (Cadrin et al. 1998; Table Q1; Figure Q1). Landings from Mid Atlantic yellowtail in 2001 (230 mt) was similar to landings in 2000.

2.3 1999-2002 Survey Indices

Survey abundance and biomass indices are reported in Table Q1. Estimates are from valid tows in the Mid-Atlantic area (offshore strata 1, 2, 69, 70, 73, 74), standardized according to net, vessel, and door changes (Cadrin et al. 1998). All survey indices of total biomass remained low (Figure Q2).

3.0 Assessment Results

The average fall biomass index for the last three years (1999-2001 average $=0.21 \mathrm{~kg} / \mathrm{tow}$) is 2% of the $\mathrm{B}_{\text {MSY }}$ proxy ($12.91 \mathrm{~kg} /$ tow) and well below the biomass threshold $\left(\mathrm{B}_{\mathrm{MSY}} / 2=6.46 \mathrm{~kg} / \mathrm{tow}\right)$. The average exploitation index (landings/fall survey biomass index) for the last three years (2.17) is almost seven times greater than the $\mathrm{F}_{\text {MSY }}$ proxy (0.33).

Sensitivity to recent NEFSC survey observations was evaluated by increasing recent NEFSC survey observations by $10 \%, 25 \%$, and 100% (Figure Q3). Results are summarized in Section 5.2 (Summary of Assessment Advice).

4.0 Sources of Uncertainty

- Estimates of prorated landings and discard ratios are based on preliminary logbook data and are subject to change.
- The Mid Atlantic yellowtail resource may not be self-sustaining and may be an extension of the southern New England stock.

5.0 GARM Discussion

The GARM agreed that the stock appears to be more overfished than the Southern New England stock. Results from combining the two stocks gives the same impression as the two parts separately.

The GARM recommends that ichthyoplankton surveys be processed. This data could be used in meta-population analysis with movement of recruits among stocks.

6.0 References

Cadrin, S.X. 2001. Mid-Atlantic yellowtail flounder. In Assessment of 19 Northeast Groundfish Stocks through 2000. Northeast Fisheries Science Center Reference Document 01-20: 190-194.

Cadrin, S.X., W.J. Overholtz, J.D. Neilson, S. Gavaris, and S. Wigley. 1998. Stock assessment of Georges Bank yellowtail flounder for 1997. NEFSC Ref. Doc. 98-06.

Overholtz, W. and S. Cadrin. 1998. Yellowtail flounder. In Status of the Fishery Resources off the Northeastern United States for 1998, S.H. Clark, editor. NOAA Tech. Mem. NMFS-NE115: 70-74.

Table Q1. Survey indices, landings and exploitation indices of Mid-Atlantic yellowtail flounder.

	NEFSC fall		NEFSC spring		NEFSC winter	Landings	Exploitation
	\#/tow	kg/tow	\#tow	kg/tow	\#/towkg/tow	(k mt)	Index
1963*	35.17	11.45					
1964*	20.01	6.22				1.80	0.29
1965*	59.84	7.45				2.10	0.28
1966*	58.89	11.33				2.40	0.21
1967	67.81	11.93				5.30	0.44
1968	99.21	17.26	106.06	21.78		3.30	0.19
1969	55.33	12.61	83.69	17.67		4.60	0.36
1970	55.16	13.20	58.05	14.41		4.20	0.32
1971	32.91	4.84	44.54	10.10		7.90	1.63
1972	105.21	26.82	46.71	12.69		8.90	0.33
1973	10.05	2.40	39.16	11.76		5.10	2.13
1974	0.80	0.24	16.33	5.62		1.90	7.85
1975	1.06	0.21	2.20	0.90		0.70	3.41
1976	0.46	0.08	5.22	1.22		0.30	3.80
1977	1.75	0.23	8.91	2.26		0.60	2.58
1978	1.45	0.29	12.12	2.59		0.40	1.39
1979	1.27	0.26	2.94	0.77		0.50	1.95
1980	0.97	0.19	14.53	4.60		0.30	1.55
1981	22.81	3.04	34.13	8.16		0.70	0.23
1982	12.47	2.18	29.23	6.71		0.43	0.20
1983	2.31	0.47	16.56	4.27		0.59	1.26
1984	2.05	0.23	4.13	1.22		1.04	4.48
1985	1.71	0.19	5.06	1.37		0.15	0.79
1986	0.97	0.21	2.51	0.56		0.25	1.18
1987	0.15	0.01	0.65	0.23		0.17	11.52
1988	3.93	0.23	0.93	0.33		0.09	0.42
1989	7.16	1.16	10.18	1.65		0.40	0.34
1990	4.23	0.81	9.94	2.62		0.24	0.29
1991	0.37	0.13	6.90	2.08		0.21	1.67
1992	0.00	0.00	2.29	0.83	12.864 .96	0.24	---
1993	0.58	0.09	0.45	0.19	4.191 .87	0.17	1.90
1994	2.26	0.23	0.09	0.06	3.451.42	0.24	1.02
1995	0.08	0.03	1.30	0.28	13.502.73	0.02	0.71
1996	0.25	0.06	1.40	0.46	5.841 .74	0.15	2.77
1997	0.83	0.21	1.14	0.43	12.264 .52	0.54	2.59
1998	0.30	0.09	2.71	0.68	14.063.61	0.22	2.50
1999	2.03	0.50	1.39	0.59	1.753.74	0.47	0.95
2000	0.37	0.11	1.42	0.57	7.762 .53	0.22	1.94
2001	0.07	0.02	0.26	0.16	4.722 .08	0.23	14.64
Mean	17.24	3.51	16.86	4.11	8.042 .92	1.50	2.17
$3 y$ mean		0.21		0.44	2.78		5.84

* not all strata sampled.

Figure Q1. Landings and exploitation index of Mid Atlantic yellowtail flounder.

Figure Q2. Indices of Mid Atlantic yellowtail flounder biomass.

Figure Q3. Sensitivity of results to increasing NEFSC indices since 2000 by $10 \%, 25 \%$ and 100% (with 80% confidence intervals). Results accepted by the working group ("WG") are shown for comparison.

R. Gulf of Maine Haddock by Jon Brodziak and Michele Thompson

1.0 Background

The Gulf of Maine haddock stock was last assessed in 2001 by the Northern Demersal Working Group (NEFSC 2001). Research survey indices indicated that stock biomass was increasing. In this report, we update the Gulf of Maine haddock assessment using fishery data for 2001 and available survey data for 2001-2002. Updated survey biomass and exploitation rate indices are used for stock status determination.

2.0 Assessment for 2002

2.1 2001 Landings

US haddock landings were prorated into Georges Bank and Gulf of Maine stock components using a standard algorithm. US Gulf of Maine haddock commercial fishery landings totaled $1,190 \mathrm{mt}$ in 2001, a 72% increase over 2000 (Table R1, Figure R1) and over 2.5 times the 19922000 average (451 mt). Despite the substantial increase, commercial landings in 2001 were still less than half of average landings during 1982-1991 (2,564 mt).

Provisional US recreational landings of Gulf of Maine haddock were extracted from MRFSS databases in 2001 (Scott Steinback, NEFSC, personal communication). Recreational landings totaled 203 mt in 2001, a 7% increase over 2000 landings and over three times average recreational landings since 1992 (Figure R1).

2.2 Survey Indices

US spring survey indices were computed for 2001-2002 (Table B2, Figure B2) and US autumn survey indices were computed for 2001 (Table B2, Figure B2) using standardized data.

3.0 Assessment Results

3.1 Index-Based Results

An updated index-based assessment was conducted. The 3-year average of the NEFSC autumn survey biomass constituted the stock biomass index, except for 1963-1964 where one- and twoyear averages were used (Table R3). Commercial fishery landings were used as the catch (Table R3). Observed exploitation rate indices were computed as the catch divided by the observed survey biomass index in each year. Smoothed exploitation rate indices used for stock status determination were computed as the catch divided by the 3-year average stock biomass index (Table R3, Figure R3). The smoothed exploitation rate index in 2001 was 0.115 , an increase of roughly 20% over the 2000 index (0.095) and one-half of the $\mathrm{F}_{\text {MSY }}$ proxy (0.23).

3.2 Sensitivity to Potential Trawl Warp Inconsistencies during 2000-2002

Measurements of NEFSC survey trawl warps in autumn 2002 suggested that right and left warps may have been offset by up to several feet during winter 2000 through spring 2002 surveys. To evaluate the sensitivity of index-based results to potential undercapture of fish, NEFSC autumn survey indices were arbitrarily adjusted upwards by $10 \%, 25 \%$, and 100% for autumn 2000 and 2001. Results are summarized in Section 5.2 (Summary of Assessment Advice).

4.0 Sources of Uncertainty

- Recruitment dynamics of the Gulf of Maine and Georges Bank haddock stocks may be linked. The amount of interchange between stocks is a source of uncertainty.

5.0 Summary Stock Status

Biological Reference Points

For Gulf of Maine haddock, the stock biomass index $\left(\mathrm{B}_{\mathrm{MSY}}\right)$ and the proxy exploitation rate index ($\mathrm{F}_{\mathrm{MSY}}$) to produce MSY are $\mathrm{B}_{\mathrm{MSY}}=22.17 \mathrm{~kg} /$ tow and $\mathrm{F}_{\mathrm{MSY}}=0.23(\mathrm{NEFSC} 2002)$. The overfished threshold ($\mathrm{B}_{\text {THRESHOLD }}$) for Gulf of Maine haddock is $\mathrm{B}_{\text {THRESHOLD }}=1 / 2 \mathrm{~B}_{\text {MSY }}=11.08$ $\mathrm{kg} /$ tow. The overfishing threshold ($\mathrm{F}_{\text {THRESHoLD }}$) for Gulf of Maine haddock is $\mathrm{F}_{\text {THRESHOLD }}=\mathrm{F}_{\text {MSY }}=$ 0.23 .

Stock Status in 2001

In 2001, the stock biomass index was $10.31 \mathrm{~kg} /$ tow (93% of $\mathrm{B}_{\text {THRESHOLD }}$ and 47% of $\mathrm{B}_{\text {MSY }}$) with a standard error of $4.08 \mathrm{~kg} /$ tow. Based on the point estimate of the biomass index, the Gulf of Maine haddock stock was overfished in 2001. In 2001, the exploitation rate index was 0.115 (50% of $\mathrm{F}_{\text {Threshold }}$). Therefore, overfishing was not occurring on the Gulf of Maine haddock stock in 2001.

Projections

Projected catches to rebuild the Gulf of Maine stock were evaluated in spring 2002 (NEFSC 2002, Table 4.1.2). Projected catches for 2002-2009 were updated assuming a 10% annual increase in biomass from 2001 onwards with a constant exploitation rate index. Projected catches (rounded to the nearest 100 mt) were: $1,500 \mathrm{mt}$ in 2002 and 2003; $1,700 \mathrm{mt}$ in 2004; $1,800 \mathrm{mt}$ in 2005; 2,000 mt in 2006; 2,200 mt in 2007; 2,500 mt in 2008; and 2,700 mt in 2009.

6.0 References

Northeast Fisheries Science Center. 2001. Assessment of 19 Northeast groundfish stocks through 2000. NEFSC Reference Document 01-20, Woods Hole, MA, 02543.

Northeast Fisheries Science Center. 2002. Final Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. NEFSC Reference Document 02-04, Woods Hole, MA, 02543.

Table R1. Commercial landings (mt, live weight) of haddock from the Gulf of Maine (NAFO Division 5Y; U.S. statistical areas 511-515) from 1956-2001.

Year	United States	Canada	USSR	Other	Total
1956	7278	29	--	--	7307
1957	6141	25	--	--	6166
1958	7082	285	--	--	7367
1959	4497	163	--	--	4660
1960	4541	383	--	--	4924
1961	5297	112	--	--	5409
1962	5003	107	--	--	5110
1963	4742	3	44	--	4789
1964	5383	70	--	--	5453
1965	4204	159	--	--	4363
1966	4579	1125	--	--	5704
1967	4907	589	--	-	5496
1968	3437	120	--	--	3557
1969	2423	59	--	231	2713
1970	1457	38	--	67	1562
1971	1194	85	--	27	1306
1972	909	23	4	--	936
1973	509	49	--	--	558
1974	622	198	--	9	829
1975	1180	79	--	4	1263
1976	1865	91	--	--	1956
1977	3296	26	--	--	3322
1978	4538	641	--	--	5179
1979	4622	257	--	--	4879
1980	7270	203	--	--	7473
1981	5726	513	--	--	6239
1982	5645	1278	--	--	6923
1983	5594	2003	--	--	7597
1984	2793	1245	--	--	4038
1985	2234	781	--	--	3015
1986	1443	225	--	--	1668
1987	829	--	--	--	829
1988	436	--	--	--	436
1989	264	--	--	--	264
1990	433	--	--	--	433
1991	431	--	--	--	431
1992	312	--	--	--	312
1993	193	--	--	--	193
$1994{ }^{1}$	112	--	--	--	112
$1995{ }^{\text { }}$	192	--	--	--	192
$1996{ }^{\text {1 }}$	257	--	--	--	257
$1997{ }^{\text {1 }}$	616	--	--	--	616
$1998{ }^{1}$	1018	--	--	--	1018
$1999{ }^{1}$	668	--	--	--	668
$2000{ }^{1}$	691	-	-	-	691
$2001{ }^{1}$	1190	-	-	-	1190

${ }^{1}$ U.S. landings from 1994-2001 are provisional.

Table R2. \quad Stratified mean catch number and weight (kg) per tow for haddock in NEFSC offshore spring and autumn research vessel bottom trawl surveys in the Gulf of Maine (Strata 01260-01280, 01360-01400), 1963-2002.

Year	Spring Number per Tow	Spring Weight per Tow	Autumn Number per Tow	Autumn Weight per Tow
1963			69.549	50.697
1964			14.176	18.829
1965			17.434	17.644
1966			11.652	13.859
1967			12.186	16.853
1968	6.008	7.887	7.648	15.484
1969	3.783	7.376	5.451	12.854
1970	0.906	1.725	2.918	7.354
1971	0.878	2.523	2.879	8.137
1972	0.862	0.867	1.984	3.036
1973	1.204	1.578	4.165	8.583
1974	1.437	1.059	2.687	3.347
1975	2.770	3.482	5.533	8.616
1976	8.326	6.350	6.035	8.040
1977	6.799	6.725	8.296	8.752
1978	1.356	1.434	9.163	20.932
1979	3.330	4.633	5.528	13.723
1980	2.697	3.383	7.152	9.835
1981	4.405	4.488	3.869	9.344
1982	2.047	2.555	2.627	4.164
1983	3.678	3.567	2.598	5.219
1984	1.095	1.144	1.696	3.893
1985	1.773	1.882	4.079	6.149
1986	0.707	1.284	0.623	1.392
1987	0.092	0.062	1.035	2.645
1988	0.187	0.301	0.335	1.476
1989	0.083	0.124	0.283	0.631
1990	0.024	0.000	0.145	0.432
1991	0.074	0.066	0.142	0.120
1992	0.193	0.271	0.211	0.091
1993	0.450	0.200	0.866	0.472
1994	0.402	0.253	0.325	0.217
1995	0.806	0.350	0.977	1.099
1996	0.305	0.338	2.407	3.543
1997	1.935	1.222	2.688	2.424
1998	0.197	0.112	3.130	2.917
1999	4.267	1.108	6.730	4.910
2000	3.610	1.815	16.589	14.032
2001	2.364	3.215	9.960	11.983
2002	5.704	2.794		

Table R3. Exploitation rate index for Gulf of Maine haddock based on autumn NEFSC survey biomass index and (3-year average, except for 1963-1964) and annual commercial landings, 1963-2001.

Year	Landings	Survey Index	3-Year Average Survey Index	Annual Exploitation Rate Index Based on 3Year Survey Index
1963	4.789	50.697	50.697	0.094
1964	5.453	18.829	34.763	0.157
1965	4.363	17.644	29.057	0.150
1966	5.704	13.859	16.777	0.340
1967	5.496	16.853	16.119	0.341
1968	3.557	15.484	15.399	0.231
1969	2.713	12.854	15.064	0.180
1970	1.562	7.354	11.897	0.131
1971	1.306	8.137	9.448	0.138
1972	0.936	3.036	6.176	0.152
1973	0.558	8.583	6.585	0.085
1974	0.829	3.347	4.989	0.166
1975	1.263	8.616	6.849	0.184
1976	1.956	8.04	6.668	0.293
1977	3.322	8.752	8.469	0.392
1978	5.179	20.932	12.575	0.412
1979	4.879	13.723	14.469	0.337
1980	7.473	9.835	14.830	0.504
1981	6.239	9.344	10.967	0.569
1982	6.923	4.164	7.781	0.890
1983	7.597	5.219	6.242	1.217
1984	4.038	3.893	4.425	0.912
1985	3.025	6.149	5.087	0.595
1986	1.668	1.392	3.811	0.438
1987	0.829	2.645	3.395	0.244
1988	0.436	1.476	1.838	0.237
1989	0.264	0.631	1.584	0.167
1990	0.433	0.432	0.846	0.512
1991	0.431	0.12	0.394	1.093
1992	0.312	0.091	0.214	1.456
1993	0.193	0.472	0.228	0.848
1994	0.112	0.217	0.260	0.431
1995	0.192	1.099	0.596	0.322
1996	0.257	3.543	1.620	0.159
1997	0.616	2.424	2.355	0.262
1998	1.018	2.917	2.961	0.344
1999	0.668	4.910	3.417	0.195
2000	0.691	14.032	7.286	0.095
2001	1.190	11.983	10.308	0.115
$\begin{aligned} & \text { Average } \\ & \text { 1963-2001 } \end{aligned}$	2.525	8.301	9.140	0.395

Figure R1. Gulf of Maine haddock commercial landings during 1956-2001 and provisional recreational landings during 1982-2001.

Figure R2. Northeast Fisheries Science Center research standardized and stratified survey abundance (mean number per tow; top panel) and biomass (kg per tow; bottom panel) indices for Gulf of Maine haddock from 1963-2002. U.S. survey includes strata 01260-01280 and 01360-01400.

Figure R3. Observed and smoothed exploitation rate indices for Gulf of Maine haddock, 1963-2001.

S. Atlantic Halibut by Jon Brodziak

1.0 Background

The Atlantic halibut (Hippoglossus hippoglossus) is distributed from Labrador to southern New England in the northwest Atlantic (Bigelow and Schroeder 1953). The Atlantic halibut stock within Gulf of Maine-Georges Bank waters (NAFO Subarea 5) has been exploited since the 1830s. The Gulf of Maine-Georges Bank Atlantic halibut stock was last assessed in 2001 by the Northern Demersal Working Group (NEFSC 2001). The stock was overfished based on research survey indices and is not expected to rebuild in the near future. In this report, we update the Atlantic halibut assessment using fishery data for 2001 and available survey data for 2001-2002. Updated survey biomass indices are used for stock status determination.

2.0 Assessment for 2002

2.1 2001 Landings

Records of Atlantic halibut landings from the Gulf of Maine and Georges Bank begin in 1893 (Table S1, Figure S1). Substantial landings occurred prior to this, however, as the halibut fishery declined in the late 1800s (Hennemuth and Rockwell 1987). Landings have decreased since the 1890s as components of the resource have been sequentially depleted. Annual landings averaged 662 mt during 1893-1940 and declined to an average of 144 mt during 1941-1976. During 19772000, landings have averaged $89 \mathrm{mt} \cdot \mathrm{yr}^{-1}$. Reported landings in 2001 were 22 mt . Of these, 11 mt (50%) were landed by domestic fishermen with the remainder landed by Canadian fishermen (Division 5Zc).

2.2 Survey Indices

The Northeast Fisheries Science Center spring and autumn bottom trawl surveys provide measures of the relative abundance of Atlantic halibut within the Gulf of Maine and Georges Bank region (offshore survey strata 13-30 and 36-40, Table S2). Both indices have high interannual variability since relatively few halibut are captured during these surveys; in some years, no halibut are caught. The survey indices suggest that relative abundance increased during the 1970s to early 1980s and subsequently declined in the 1990s. It is unknown whether abundance trends in the Gulf of Maine and Georges Bank region have been influenced by changes in the seasonal distribution and availability of Atlantic halibut, however. US spring survey indices were computed for 2001-2002 (Table S2, Figure S2) and US autumn survey indices were computed for 2001 (Table S2, Figure S2) using standardized data.

3.0 Assessment Results

Based on updated spring and autumn survey data, Atlantic halibut biomass within the Gulf of Maine and Georges Bank region remains low. Swept-area biomass indices in spring 2001 and 2002 were 544 and 425 mt with a 5 -year average of 312 mt in 2001 (Figure S3). Autumn sweptarea biomass in 2000 was 123 mt with a 5 -year average of 232 mt in 2001 (Figure S3). Thus, stock biomass, as indexed by the 5 -year moving average of autumn swept-area biomass, was below the biomass threshold of $2,700 \mathrm{mt}$ (Figure S3). Although no estimates of fishing mortality are available, exploitation rate indices (annual landings/5-year moving average of survey index) suggest that exploitation rates have probably been stable since the 1970s, and may have declined during the 1990s (Figure 4). Thus, the Atlantic halibut stock in the Gulf of Maine and Georges Bank region remains depleted and exploitation rates do not appear to have increased since the 1970s.

4.0 Sources of Uncertainty

- Fishery-dependent information on the size and age composition of Atlantic halibut landings is limited, although an experimental fishery in the Gulf of Maine during 20002002 has provided some valuable fishery-dependent data (Sigourney 2002).
- Stock structure of Atlantic halibut within the Gulf of Maine and Georges Bank region is uncertain. Wise and Jensen (1959) documented movements of tagged Atlantic halibut between Georges Bank and Browns Bank, but it is difficult to draw any definite conclusions about movement rates from their study. Recently, one halibut released near Stonington, Maine in April 2000 during the Gulf of Maine experimental fishery was recaptured off Port au Basque, Newfoundland in May 2002 after growing from 32 to 40 inches in total length (Kohl Kanwit, Maine DMF, personal communication). To date, preliminary data indicate three recaptures of fish tagged in the experimental fishery during 2000-2002 within Canadian waters.
- The portion of the Atlantic halibut population within Gulf of Maine and Georges Bank region is a transboundary stock. Conservation measures for both USA and Canadian fisheries may be needed to rebuild this stock.

5.0 Summary Stock Status

Biological Reference Points

For Gulf of Maine-Georges Bank Atlantic halibut, the stock biomass index ($\mathrm{B}_{\mathrm{MSY}}$) and the proxy exploitation rate index ($\mathrm{F}_{\mathrm{MSY}}$) to produce MSY are $\mathrm{B}_{\text {MSY }}=5,400 \mathrm{mt}$ and $\mathrm{F}_{\text {MSY }}=0.06$ (NEFMC 1998, NEFSC 2002). The overfished threshold ($\mathrm{B}_{\text {THRESHOLD }}$) for Atlantic halibut is $\mathrm{B}_{\text {THRESHOLD }}=$ $1 / 2 \mathrm{~B}_{\text {MSY }}=2,700 \mathrm{mt}$. The overfishing threshold $\left(\mathrm{F}_{\text {THRESHOLD }}\right)$ for Atlantic halibut is $\mathrm{F}_{\text {THRESHOLD }}=$ $\mathrm{F}_{\mathrm{MSY}}=0.06$.

Stock Status in 2001

In 2001, the stock biomass index was $232 \mathrm{mt}\left(9 \%\right.$ of $\mathrm{B}_{\text {THRESHOLD }}$ and 4% of $\left.\mathrm{B}_{\text {MSY }}\right)$ with a standard error of 50 mt . Based on the point estimate of the biomass index, the Gulf of Maine-Georges Bank Atlantic halibut stock was overfished in 2001. In 2001, no estimate of fishing mortality was available and overfishing status was unknown.

6.0 References

Bigelow, H.B, and Schroeder, W.C. 1953. Fishes of the Gulf of Maine. Fishery Bulletin of the Fish and Wildlife Service, No. 74, 577 pp.

Hennemeth, R.C., and Rockwell, S. 1987. History of fisheries conservation and management. In Georges Bank. Edited by R. Backus, R. Price, and D. Bourne. MIT Press, Cambridge, MA. pp. 431-446.

New England Fishery Management Council. 1998. Evaluation of existing overfishing definitions and recommendations for new overfishing definitions to comply with the Sustainable Fisheries Act. NEFMC, 50 Water Street, Mill 2 Newburyport, MA 01950.

Northeast Fisheries Science Center. 2001. Assessment of 19 Northeast groundfish stocks through 2000. NEFSC Reference Document 01-20, Woods Hole, MA, 02543.

Northeast Fisheries Science Center. 2002. Final Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. NEFSC Reference Document 02-04, Woods Hole, MA 02543.

Sigourney, D. B. 2002. Biology of the Atlantic halibut (Hippoglossus hippoglossus) in the Gulf of Maine-Georges Bank region. M.Sc. Thesis, Univ. Mass. Amherst, Amherst, MA 01003.

Wise, J.P., and Jensen, A.C. 1959. Movement of tagged halibut off New England. Trans. Amer. Fish. Soc. 88:357-358.

Table S1. Reported landings (mt) of Atlantic halibut from the Gulf of Maine and Georges Bank, 1893-2001.

Year	USA	Canada	Other	Total	Year	USA	Canada	Other	Total
1893	634	0	0	634	1947	196	0	0	196
1894	843	0	0	843	1948	156	0	0	156
1895	4200	0	0	4200	1949	157	0	0	157
1896	4908	0	0	4908	1950	116	0	0	116
1897	733	0	0	733	1951	154	0	0	154
1898	564	0	0	564	1952	123	0	0	123
1899	407	0	0	407	1953	104	0	0	104
1900	311	0	0	311	1954	125	0	0	125
1901	287	0	0	287	1955	74	0	0	74
1902	367	0	0	367	1956	62	0	0	62
1903	502	0	0	502	1957	80	0	0	80
1904	332	0	0	332	1958	73	0	0	73
1905	580	0	0	580	1959	59	0	0	59
1906	542	0	0	542	1960	63	0	0	63
1907	447	0	0	447	1961	79	5	0	84
1908	891	0	0	891	1962	86	35	25	146
1909	193	0	0	193	1963	94	88	1	183
1910	329	0	0	329	1964	115	120	1	236
1911	389	0	0	389	1965	128	153	18	299
1912	460	0	0	460	1966	110	110	62	282
1913	402	0	0	402	1967	102	386	26	514
1914	329	0	0	329	1968	74	193	3	270
1915	336	0	0	336	1969	63	96	9	168
1916	478	0	0	478	1970	52	67	19	138
1917	293	0	0	293	1971	81	38	0	119
1918	375	0	0	375	1972	63	37	8	108
1919	496	0	0	496	1973	51	38	0	89
1920	896	0	0	896	1974	46	29	1	76
1921	689	0	0	689	1975	70	36	0	106
1922	694	0	0	694	1976	58	33	0	91
1923	508	0	0	508	1977	50	31	0	81
1924	616	0	0	616	1978	84	50	0	134
1925	843	0	0	843	1979	125	29	0	154
1926	944	0	0	944	1980	80	88	0	168
1927	831	0	0	831	1981	80	118	0	198
1928	781	0	0	781	1982	85	116	0	201
1929	570	0	0	570	1983	72	131	0	203
1930	716	0	0	716	1984	75	62	0	137
1931	511	0	0	511	1985	61	57	0	118
1932	443	0	0	443	1986	44	32	0	76
1933	279	0	0	279	1987	27	23	0	50
1934	192	0	0	192	1988	47	81	0	128
1935	292	0	0	292	1989	13	65	0	78
1936	374	0	0	374	1990	16	58	0	74
1937	187	0	0	187	1991	30	58	0	88
1938	146	0	0	146	1992	22	47	0	69
1939	124	0	0	124	1993	15	50	0	65
1940	497	0	0	497	1994	22	24	0	46
1941	145	0	0	145	1995	11	8	0	19
1942	250	0	0	250	1996	13	12	0	25
1943	76	0	0	76	1997	14	14	0	28
1944	77	0	0	77	1998	8	9	0	17
1945	55	0	0	55	1999	12	8	0	20
1946	124	0	0	124	2000	11	6	0	17
					2001	11	11	0	22

Table S2. Stratified mean weight (kg) per tow of Atlantic halibut from NEFSC spring ${ }^{1}$ and autumn surveys (offshore strata 13-30, 36-40) and exploitation rate indices calculated as annual landings divided by the 5-year moving average of swept-area biomass indices.

Figure S1. Atlantic halibut landings from the Gulf of MaineGeorges Bank region during 1893-2001.

Figure S2. Trends in swept-area biomass indices (mt) of Atlantic halibut

Figure S3. Trends in Atlantic halibut landings from the Gulf of Maine and Georges Bank in comparison to 5 -year moving averages of spring and autumn survey indices, 1967-2001.

Figure S4. Trends in exploitation rate indices for Atlantic halibut from the Gulf of Maine and Georges Bank based on 5-year moving averages of NEFSC spring and autumn survey indices, 1967-2001

T. Gulf of Maine (GM) winter flounder by Paul Nitschke

1.0 Background

The last assessment for Gulf of Maine winter flounder was an index-based assessment reviewed at SARC 21 (NEFSC 1996). Low indices and the absence of large fish in the survey led SARC 21 to conclude that the stock was overexploited in the mid 1990s. The ASMFC Winter Flounder Technical Committee has constructed a benchmark virtual population analysis (VPA) in September 2002 which will be reviewed at SARC 36 (December 2002). Since this is a new benchmark assessment, full VPA output is not included here, but will be available in draft form to the council.

2.0 Fishery

Commercial landings were near $1,000 \mathrm{mt}$ from 1964 to the mid 1970s. Thereafter commercial landings increased to a peak of $2,793 \mathrm{mt}$ in 1982, and then steadily declined to a record low of 253 mt in 1999. Landings have remained near 500 mt since 1999 (Table T1, Figure T1). Otter trawl was the primary gear used during 1964-1985 ($>95 \%$ of the landings). Since 1985 the proportion of landings coming from gill nets has increased, and has averaged 25% since 1990 .

Recreational landings reached a peak in 1981 ($2,554 \mathrm{mt}$) but declined substantially thereafter (Table T2, Figure T2). Landings have been less than 1000 mt since 1995, with the lowest estimated landings in $1998(30 \mathrm{mt})$. Landings in 2001 for Gulf of Maine winter flounder were 43 mt .

In the commercial fishery, annual sampling intensity varied during 1982-2001 from 4 to 310 mt landed per sample. Overall sampling intensity was adequate, however temporal and market category coverage in some years was poor (Table T3). Samples were pooled by halfyear when possible. Lengths of kept fish from observer data were used to supplement length data of unclassified fish. Lengths taken from gillnet trips in the observer data were used to characterize the gillnet proportion of the landings.

Discards were estimated for the large mesh trawl (1982-2001), gillnet (1986-2001), and northern shrimp fishery (1982-2001). The survey method was used in estimating both the discard and discard length composition for the large mesh trawl fishery from 1982-1993 (Mayo et al. 1992). VTR large mesh otter trawl discards to landings ratios were applied to corresponding commercial fishery landings to estimate discards in weight from 1994 to 2001. Fishery observer discard-to-landings ratios were used for estimating gillnet discard rates. Observer discard-todays fished ratios were used for the northern shrimp fishery since landing of winter flounder in the shrimp fishery is prohibited. The observer length frequency data for gillnet and the northern shrimp fishery were used to characterize the proportion discarded at length. The sample proportion at length, converted to weight, was used to convert the discard estimate in weight to numbers at length. As for the southern New England stock (NEFSC 1999), a 50\% mortality rate
was applied to all commercial discard data (Howell et al., 1992). Numbers at ages were determined using NEFSC/MDMF spring and NEFSC fall survey age-length keys (Table T5).

A discard mortality of 15% was assumed for recreational discards (B2 category from MRFSS data), as assumed in Howell et al. (1992). Discard losses peaked at 140,000 fish in 1982. Discards have since declined reaching a low of 7,000 fish in 1999. In 2001, 15,000 fish were estimated to have been discarded (Table T2, Figure T2). Since 1997, irregular sampling of recreational fisheries has indicated that discards are usually fish below the minimum landing size of 12 inches (30 cm). For 1982-2001, the recreational discard has been assumed to have the same length frequency as the catch in the MDMF survey below the legal size and above an assumed hookable fish size (13 cm). The recreational discard for 1982-2001 is aged using NEFSC/MDMF spring and NEFSC fall survey age-length keys.

3.0 Research Surveys

Mean number per tow indices for the NEFSC and the Massachusetts Division of Marine Fisheries (MDMF) spring and fall time series are presented in Table T4 and Figures T3 through T6. All of the indices generally show a decrease in the population in the late 1980s from a high in the early 1980s with low abundance remaining through the early 1990s. All of the indices show signs of increased abundance starting in 1998 and 1999.

The Seabrook Nuclear Power Plant in New Hampshire has conducted a monthly bottom trawl survey since 1985. This survey also shows an increase in the number of fish in the late 1990s (Figure T7).

4.0 2001 Assessment

The VPA for Gulf of Maine winter flounder will be reviewed at SARC 36 (December 2002), therefore, results are not presented here. Estimates of Bmsy and Fmsy are not currently available.

5.0 Sources of uncertainty

* Landings data for 1994 and later years are derived by proration and are considered provisional.
* The lack of survey coverage in inshore New Hampshire and Maine where winter flounder are abundant is a source of uncertainty. Low number of tows taken per strata in inshore Massachusetts strata in the NEFSC survey is a source of variability in the index.
* Length frequency sampling coverage of the commercial fishery has been poor in some years.
* Observer sampling intensity of the commercial large mesh fishery has been low. Shrimp fishery discard sampling has been dropped in recent years. Commercial fishery discard
estimates are based on rates provided by fishermen in the vessel trip reports, due to inadequate fishery observer sampling.

6.0 GARM comments

The benchmark VPA assessment for Gulf of Maine winter flounder was presented to the GARM. However the GARM did not comment on the VPA assessment since a review has not been made on this assessment and a formal review will be conducted in the upcoming SARC. VPA results will be verbally presented to the council. The GARM also noted that all the surveys showed similar trends.

7.0 Summary

Stock summary information will be finalized at SARC 36.

References

Howell, P., A. Howe, M. Gibson and S. Ayvasian. 1992. Fishery management plan for inshore stocks of winter flounder. Atlantic States Marine Fisheries Commission. Fisheries Management Report No. 21. May, 1992.

Mayo, R.K., L. O’Brien, and N. Buxton. 1992. Discard estimates of American plaice, Hippoglossoides platessoides, in the Gulf of Maine northern shrimp fishery and the Gulf of Maine-Georges Bank large-mesh otter trawl fishery. SAW 14 Res. Doc. 14/3. 40 pp.

NEFSC. 1996. Report of the $21^{\text {th }}$ Northeast Regional Stock Assessment Workshop (21st SAW): Stock Assessment Review Committee (SARC) consensus summary of assessments. [By Northeast Regional Stock Assessment Workshop No. 21.] June 1996.

Table T1. Winter flounder commercial landings (metric tons) for Gulf of Maine stock (U.S. statistical reporting areas 512 to 515).

Year	metric tons
1964	1,081
1965	665
1966	785
1967	803
1968	864
1969	975
1970	1,092
1971	1,113
1972	1,085
1973	1,080
1974	885
1975	1,181
1976	1,465
1977	2,161
1978	2,194
1979	2,021
1980	2,437
1981	2,406
1982	2,793
1983	2,096
1984	1,699
1985	1,582
1986	1,188
1987	1,140
1988	1,250
1989	1,253
1990	1,116
1991	1,008
1992	825
1993	611
1994	552
1995	796
1996	600
1997	618
1998	637
1999	253
2000	382
2001	571

Table T2. Estimated number (000 's) and weight (mt) of winter flounder caught, landed, and discarded in the recreational fishery, Gulf of Maine stock.

Number (000's)				Metric tons
Catch	Landed	Released	15% Release	Landed
A+B1+B2	A+B1	B2	Mortality	A+B1

1981	6,200	5,433	767	115	2,554
1982	8,207	7,274	933	140	1,876
1983	2,169	1,988	181	27	868
1984	2,477	2,285	191	29	1,300
1985	3,694	3,220	474	71	1,896
1986	946	691	255	38	523
1987	3,070	2,391	679	102	1,809
1988	953	841	111	17	345
1989	1,971	1,678	294	44	620
1990	786	652	134	20	370
1991	213	154	59	9	91
1992	186	137	48	7	90
1993	396	249	147	22	140
1994	232	145	87	13	83
1995	150	82	68	10	39
1996	184	98	86	13	56
1997	192	64	129	19	43
1998	109	65	44	7	30
1999	115	67	48	7	34
2000	177	75	102	15	42
2001	172	72	100	15	43

Table T3. Number of samples, lengths, ages, and sampling intensity for Gulf of Maine winter flounder. Number of samples and calculations of metric tons per sample is done on a halfyear basis and does not include observer data or gillnet landings from 1990-2001. Lengths in bold font are from observer trawl data.

		Number of lengths					Ages	Number of samples					$\mathrm{mt} /$ samples				
year	qtr	lg	sm	md	un	total	total	\lg	sm	md	un	total	lg	sm	md	un	total
1982	1	-	-	-	296			-	-	-	3						
	2	102	101	-	159			1	1	-	1		838	453	-	46	
	3	84	81	-	106			1	1	-	1						
	4	-	-	-	-	929	483	-	-	-	-	9	396	691	-	231	310
1983	1	80	-	99	-			1	-	1	-						
	2	300	100	-	407			3	1	-	4		120	510	-	53	
	3	108	388	-	-			1	3	-	-						
	4	107	956	-	106	2651	1182	1	8	-	1	24	125	44	64	95	87
1984	1	201	209	-	-			2	2	-	-						
	2	237	294	-	221			3	2	-	2		74	95	-	-	
	3	-	123	-	-			-	1	-	-						
	4	126	690	100	-	2201	908	1	5	1	-	19	189	67	114	124	89
1985	1	273	565	-	-			3	3	-	-						
	2	392	170	-	-			3	2	-	-		54	-	-	-	
	3	105	-	-	-			1	-	-	-						
	4	116	-	-	80	1701	318	1	-	-	1	14	87	-	182	176	113
1986	1	-	-	-	266			-	-	-	3						
	2	237	109	109	-			3	1	1	-		-	242	126	48	
	3	-	111	86	-			-	1	1	-						
	4	-	389	107	89	1503	344	-	5	1	1	17	113	37	31	56	70
1987	1			-	113			-	-	-	1						
	2	-	-	-	-			-	-	-	-		-	-	-	-	
	3	-	95	-	-			-	1	-	-						
	4	47	156	272	-	683	130	1	2	3	-	8	257	137	75	249	143
1988	1		258	311	-			-	3	3	-						
	2	102		395	-			1	-	4	-		-	108	23	-	
	3	-	-	-	-			-	-	-	-						
	4	-	169	107	-	1342	249	-	2	1	-	14	340	164	96	-	89
1989	1	-	-	-	100			-	-	-	1						
	2	113	-	91	134			1	-	1	-		-	-	168	-	
	3	-	95	120	32			-	1	1	-						
	4	-	-	100	-	785	148	-	-	1	-	6	313	435	42	254	209
1990	1	328	301	-	-			3	4	-	-						
	2	-	-		102			-	-	-	1		64	48	-	-	
	3	-			-			-	-	-	-						
	4	117	197	97	-	1142	241	1	2	1	-	12	83	90	138	118	75

Table T3. Continued.

		Number of lengths					Ages	Number of samples					$\mathrm{mt} / \mathrm{samples}$				
year	qtr	lg	sm	md	un	total	total	lg	sm	md	un	total	lg	sm	md	un	total
1991	1	100	51	105	101			1	1	1	1						
	2	88	203	100	42			1	2	1	-		92	72	-	-	
	3	-	95	-	-			-	1	-	-						
	4	236	254	-	-	1375	262	3	3	-	-	15	32	47	95	115	65
1992	1	110	-	-	107			1	-	-	-						
	2	136	100	93	-			2	1	1	-		47	119	84	-	
	3	-	-	-	-			-	-	-	-						
	4	57	74	253	-	930	270	1	1	3	-	10	75	134	19	-	67
1993	1	100	-	-	-			1	-	-	-						
	2	-	-	288	-			-	-	3	-		83	-	16	-	
	3	-	55	-	91			-	1	-	-						
	4	80	-	157	51	822	183	1	-	2	-	8	47	177	30	-	59
1994	1	-	-	-	-			-	-	-	-						
	2	-	71	92	102			-	1	1	1		-	-	75	-	
	3	-	-	-	-			-	-	-	-						
	4	94	-	235	-	594	139	1	-	3	-	7	112	143	15	60	62
1995	1	101	-	175	63			1	-	2	-						
	2	-	-	299	-			-	-	3	-		-	-	37	-	
	3	-	-	414	-			-	-	4	-						
	4	-	-	-	609	1661	248	-	-	-	-	10	134	-	42	-	55
1996	1	-	77	-	-			-	1	-	-						
	2	-	231	-	-			-	2	-	-		-	44	-	-	
	3	-	355	252	-			-	2	3	-						
	4	84	440	86	112	1637	246	1	5	1	-	15	80	16	18		29
1997	1	-	204	-	-			-	2	-	-						
	2	-	127	75	-			-	2	1	-		-	28	66	-	
	3	-	220	218	-			-	2	3	-						
	4	307	502	56	-	1709	295	4	8	1	-	23	25	11	14	-	19
1998	1	-	148	79	-			-	2	1	-						
	2	-	151	201	-			-	3	2	-		-	34	29	-	
	3	-	583	-	-			-	7		-						
	4	69	163	110	-	1504	341	1	2	1	-	19	65	14	30	-	25
1999	1	-	173	104	-			-	2	1	-						
	2	-		171	-			-	-	2	-		-	17	-	-	
	3	-	28	-	-			-	1	-	-						
	4	-	152	-	408	1036	149	-	3	-	-	9	-	5	10	-	19
2000	1	-	866	143	480			-	12	2	-						
	2	-	3441	51	554			-	45	1	-		-	1	-	-	
	3	-	102	-	50			-	2	-	-						
	4	-	114	-	26	5827	883	-	2	-	-	64	-	12	13	-	4
2001	1	-		187	172			-	-	2	-						
	2	99	157	189	630			1	2	3	-		-	37	10	-	
	3	-	100	52	399			-	1	1	-						
	4	-	154	198	1307	3644	246	-	2	2	-	14	26	21	24	-	32

Table T4. NEFSC and MA DMF survey indices of abundance for Gulf of Maine winter flounder. Indices are stratified mean number and mean weight (kg) per tow. NEFSC indices are for inshore strata $(58,59,60,61,65,66)$ and offshore strata $(26,27,38,39,40)$. NEFSC indices are calculated with trawl door conversion factors where appropriate. MA DMF uses strata 25-36.

year	NEFSC spring		NEFSC fall		MDMF spring		MDMF fall	
	number	weight	number	weight	number	weight	number	weight
1978					86.805	18.373	43.360	9.887
1979	9.063	3.218	6.003	2.602	64.952	14.407	119.506	28.978
1980	11.284	4.447	13.141	6.553	66.231	17.494	74.684	15.940
1981	13.051	3.946	4.179	3.029	100.569	28.370	47.342	13.228
1982	7.670	3.022	4.201	1.924	60.719	14.687	106.053	23.635
1983	12.367	5.653	10.304	3.519	108.508	27.233	88.143	15.772
1984	5.155	1.979	7.732	3.106	66.271	15.977	35.956	10.817
1985	3.469	1.418	7.638	2.324	48.651	13.594	44.564	7.381
1986	2.343	0.998	2.502	0.938	62.356	14.724	41.914	6.603
1987	5.609	1.503	1.605	0.488	83.171	17.648	50.426	7.227
1988	6.897	1.649	3.000	1.031	52.733	10.617	33.063	7.173
1989	3.717	1.316	6.402	2.013	63.595	13.317	33.983	7.462
1990	5.415	2.252	3.527	1.177	74.131	12.966	67.874	13.452
1991	4.517	1.436	7.035	1.467	49.265	11.587	88.777	15.473
1992	3.933	1.160	10.447	3.096	74.146	13.938	77.350	13.471
1993	1.556	0.353	7.559	1.859	80.133	12.390	92.476	14.996
1994	3.481	0.891	4.870	1.319	71.710	10.036	67.351	13.560
1995	12.185	3.149	4.765	1.446	87.848	14.560	84.768	17.250
1996	2.736	0.732	10.099	3.116	77.249	12.823	74.295	13.031
1997	2.806	0.664	10.008	2.950	95.918	14.796	74.347	14.316
1998	2.001	0.528	3.218	0.987	91.466	15.756	93.889	14.934
1999	6.510	1.982	10.921	3.269	77.941	14.198	117.648	22.672
2000	10.383	2.885	12.705	5.065	169.291	35.453	101.633	25.693
2001	5.242	1.666	8.845	3.143	90.153	23.891	80.978	18.367
2002	12.066	3.693			87.376	21.404		

Figure T1. Gulf of Maine winter flounder landings (mt) by gear.

Figure T2. Recreational landings in numbers and metric tons for Gulf of Maine winter flounder. B2 catch is fished released alive.

Figure T3. NEFSC Spring survey stratified mean numbers and mean weight (kg) per tow for Gulf of Maine winter flounder. Trawl door conversion factors are used where appropriate.

Figure T4. NEFSC Fall survey stratified mean numbers and mean weight (kg) per tow for Gulf of Maine winter flounder. Trawl door conversion factors are used where appropriate.

Figure T5. Massachusetts Division of Marine Fisheries (MA DMF) spring survey stratified mean numbers and mean weight (kg) per tow for Gulf of Maine winter flounder.

Figure T6. Massachusetts Division of Marine Fisheries (MA DMF) Fall survey stratified mean numbers and mean weight (kg) per tow for Gulf of Maine winter flounder.

Figure T7. Seabrook Nuclear Power Plant in (New Hampshire) spring and fall survey mean numbers per tow for Gulf of Maine winter flounder. No survey was done in 1993.

Section 3. Examination of Possible Effects of Trawl Survey Time-Series Interventions Beginning in 2000

3.1 Description of the Warp Offset Problem

The objectives of this section are to evaluate the potential effects of mismarked trawl cables on the catches of groundfish species in NEFSC R/V trawl surveys conducted since 2000. Eight surveys were affected (Spring 2000-2002, Winter 2000-2002, and Fall 20002001) but the magnitude of the potential changes is unknown. First principles suggest that the likely changes should be negative (i.e., lower catches in 2000-2002). Trawls are bilaterally symmetric and offset cables will induce asymmetry in the trawl's alignment. Departures from symmetry could upset the balance of dynamic forces that govern performance of the net. Catastrophic changes are relatively infrequent and readily detected in standard surveys. More subtle features such as vibrations, variability in bottom contact, reduced net width, and decreased height of the head rope are more difficult to detect. Moreover, the effects of such changes interact with contagiouslydistributed fish populations whose variations in abundance and catchability may overwhelm issues of gear performance.

While pilot studies to test the effects of offset trawl cables were conducted in fall 2002, comprehensive experiments have yet to be completed. Analysis of historical data from the NEFSC time series and comparisons with other data sets, are however, instructive for gauging the magnitude of likely effects. We have pursued three basic approaches to see if effects of the trawl warp offsets are evident in the data. The first approach is descriptive. We examined the basic properties of the catch data and performed various tests to determine if changes had occurred since 1999. These analyses rely primarily on the historical data serving as a temporal control. The second approach relies on comparisons between the NEFSC time series and contemporaneous samples from other surveys. We consider comparisons between the NEFSC trawl data and similar surveys conducted by Department of Fisheries and Ocean (DFO) Canada. In addition, vessel comparison studies (R/V Albatross IV versus R/V Delaware II) conducted before and after 2000 fortuitously allow for an estimate of the relative effect of warp offsets on catches.

Finally, we used models to evaluate the consequences of hypothesized levels of bias on the relative indices for assessment of resource status. Each potential level of bias has implications for relative efficiency of capture at depth. We used simple models to predict the reduction in capture efficiency that would have led to underestimation of abundance at the hypothesized levels.

Table 3.1.1. Measured differences in trawl warp lengths at varying fishing depths. Differences in Warp length between port and starboard marks.

Warp(m)	Depth(m)	Difference (inches)	Difference (m)	Difference (ft)
0	0	0	0.00	0.0
50	17	16	0.41	1.3
100	33	1	0.03	0.1
150	50	24	0.61	2.0
200	67	39	0.99	3.3
250	83	49	1.24	4.1
300	100	67	1.70	5.6
350	117	69	1.75	5.8
400	133	81	2.06	6.8
450	150	94	2.39	7.8
500	200	107	2.72	8.9
550	220	124	3.15	10.3
600	240	131	3.33	10.9
650	260	117	2.97	9.8
700	280	150	3.81	12.5
750	300	158	4.01	13.2
800	320	164	4.17	13.7
850	340	172	4.37	14.3
900	360	188	4.78	15.7
950	380	214	5.44	17.8
1000	400	200	5.08	16.7

3.1.1 Trawl Geometry and Its Potential Implications for Catch Rates

The measured differences between the port and starboard cables are listed in Table 3.1.1. The ratio of the wire deployed to water depth is defined as the scope ratio. NEFSC uses a 3:1 scope for tows conducted at depths less than 150 m . At depths greater than 150 m the scope is set at 2.5:1. The difference between the cable lengths increases with the length of cable such that the differences between cables increases with fishing depth. The relationship between the warp offset and depth is linear (Fig. 3.1.1).

Basic geometric principles can be used to evaluate the potential effects of the asymmetric warp lengths on the area swept by the trawl. When the cables are of equal length, the distance between the trawl doors can be considered as the base of an isosceles triangle. A line drawn between the doors will be tangential to the direction of the ship. This distance between the wings of the net defines the measure of area swept for species which do not actively avoid the moving net. For finfish species that avoid both the net and the silt plume generated by the trawl doors, the effective area swept can be considered as the distance between the trawl doors. The minimal estimate total area swept can thus be estimated as the distance towed times the distance between the wings.

As a first approximation, the effects of asymmetric doors can be addressed with respect to the implied decrease in the distance between doors. If the Euclidean distance between the doors remains constant, then the reduction in area swept can be estimated as the base of a right-angled triangle using the Pythagorean theorem.

Offset due to cable asymmetry Oc

When the cables are symmetric then $\mathrm{Wp}=\mathrm{D}$. When the cables are asymmetric, by a distance of approximately Oc, the projected width of the trawl tangential to the axis of the ship's direction is

$$
W_{p}=\sqrt{D^{2}-O c^{2}}
$$

The fractional reduction in area swept per unit of towing distance can then be expressed as $\left(\mathbf{D}-\mathbf{W}_{\mathbf{p}}\right) / \mathbf{D}$. This approximation relies on the rather strong assumption that the trawl behaves like a rigid body. In reality the conformation of the trawl will depend upon the balance of forces acting on it. Detailed description of changes in net configuration and performance await the results of physical model tests, numerical model simulations, and field experiments with video observations.

The simple geometry of this example however, suggests that the consequences for changes in area swept are very small (Fig 3.1.2). At fishing depths below 300 m the difference in the area swept between the wings will less than 2%. The differences in the width swept by the doors would be about 7%. More than 90% of the NEFSC survey stations are at depths less than 200 m ; at these depths, the reductions in either door width or net width would be less than 3%. Thus changes in catchability derived from considerations of simple geometry are likely to be small. Effects of the warp offset on catchability, if they exist, must manifest themselves as significant changes in net configuration or performance. Such changes could include reduced tendency to hold bottom, decreased headrope height, or excessive vibrations or pressure waves. Each of these factors should be subject to experimental confirmation through video studies and comparative fishing experiments.

The deductive conclusions from trawl geometry provide a basis for examination of existing data. If the reductions in trawl width are greater than predicted by the static rigid-body analysis, then all species analyzed should be affected by a similar magnitude. Other modifications of trawl performance, however, are likely to have differential effects
on the mix of species caught. If the warp offset causes the footrope to lose contact with the bottom, flatfish species should experience greater reductions in catches than other groundfish. Conversely, reductions in the height of the headrope should leave catch rates of flatfish unaffected but decrease catches of free-swimming species. Changes in net vibrations or increases in the net's pressure wave will tend to enhance the avoidance response of faster moving species and individuals within species. Under this hypothesis, the size composition of the catches should shift toward smaller individuals. In aggregate, these factors would be expected to increase the frequency of faulty trawl deployments, differentially reduce species-specific catch rates, and show an increasing effect with towing depth.

The following sections attempt to test these hypotheses in a variety of ways. Each section follows a general pattern of hypothesis formulation, description of the data, presentation of mathematical or statistical theory, and the results of the analyses. We attempt to inter-relate models with the observed data. In most instances, this is done in the conventional fashion of comparing statistical models with observations. In other instances, the models are used to illustrate the plausibility of hypotheses. The following table provides a guide to these hypotheses and test procedures.

Hypothesis	Test Procedure	Section
Warp offset effects should lead to an increase in frequency of gear problems during 2000- 2002 compared to pre 2000 surveys. Increases between treatment and control periods should be more pronounced with increasing depth.	Examined frequency of tows with gear problems by year for the spring (1985-2002), winter (1992- 2002) and fall (1985-2001) surveys for the period 1985-2002. Used generalized additive models to estimate year and depth effects.	3.2
Larger individuals should be less vulnerable to capture by an asymmetric trawl.	Compared size frequency distributions of cod, haddock, yellowtail flounder, and monkfish caught in Albatross surveys with Canadian DFO surveys, fishing power surveys on the R/V Delaware, and a special commercial survey for monkfish.	3.3
Warp offset should decrease efficiency of net leading to decreases in average abundance and higher variation in catch.	Computed variance and mean of each strata within year for fall (1963-2001), spring (1968- 2002), and winter (1992-2002) surveys for 22 species-stocks. Compared 90\% confidence ellipses for pre and post treatment period.	3.6
Reductions in capture efficiency at depth should shift the loci of species abundance to shallower	Computed catch (numbers/tow)-weighted and biomass (kg/tow)-weighted average depths for each year and survey type (as above) for 22 species-stocks. For selected species, compared	3.7

depths during the 2000- 2002 period.	the cumulative catch distributions vs. depth by year.	
Reductions in catch rates should be more pronounced with increases in depth.	Regressed standardized pre -post treatment differences in average catch (num/tow) vs. depth $(20$ m intervals) and biomass (kg/tow) vs. depth $(20$ m intervals) for spring (1997-1999 vs. 2000- 02), winter (1997-99 vs. 2000-02) and fall (1998- 99 vs. 2000-01). For statistically significant changes, estimated depth dependent function to describe loss of efficiency with depth. Computed expected magnitude of underestimation for 2000- 2002 indices.	3.7
Hypothesized increases in average number caught in 2000 to 2002 surveys have implication for the reductions in depth-related catch efficiency.	Estimated magnitude of depth-related decreases in efficiency for putative increases in abundance of 10\%, 25\% and 100\% for cod, haddock, and yellowtail stocks.	3.7
Trawl surveys conducted by Canada and NEFSC scallop surveys are unaffected by warp offset.	For annual composite abundance estimates, compared standardized log catch ratios for NEFSC trawl surveys with DFO trawl and	NEFSC scallop dredge surveys for 20 species. Comparisons of

Figure 3.1.1. Difference between port and starboard warp marks vs. fishing depth

Figure 3.1.2 Predicted effect of trawl offset on reduction in area swept for fishing depths from 0 to 400 m .

3.2 Frequency of Damaged Bottom Trawl Gear in NEFSC Surveys

Summary

1) Analysis of tow records for NEFSC spring, fall and winter bottom trawl surveys by the R/V Albatross IV using the Yankee No. 36 bottom trawl during 1982-2002 shows that the frequency of tows with damage to survey bottom trawls varied randomly during 1983-2002, with relatively little variation during recent years.
2) Of eight surveys during 2002-2002 with mis-marked warps, two surveys had more than average levels of any gear damage while six surveys had average or less than average levels of any gear damage.
3) Simple graphical analyses and GAM model results suggest that mis-marked warps had little or no effect on the probability of gear damage.
4) Frequency of gear damage increases with depth. However, the frequency of major damage (i.e. severe enough to preclude use of the tow in stock assessment calculations) is not appreciable at depths routinely surveyed and for tows used in most stock assessments.

Introduction

Gear damage may have increased or decreased during recent surveys if mis-marked warps affected operating characteristics of the NEFSC survey bottom trawls. Gear damage data provide evidence about possible changes in net operating characteristics. However, gear damage data probably provide no information about changes in the fishing efficiency of NEFSC bottom trawls. Gear damage and fishing power are not directly linked because their relationship is unknown (a net prone to damage may catch more or less fish than a net not prone to damage), and because survey tows with major damage are routinely excluded from NEFSC stock assessment calculations.

We examined trends in survey tow records to determine if mis-marked warps changed the frequency of survey tows with gear damage. The information used was qualitative gear condition data recorded by the watch chief or chief scientist routinely following all bottom trawl survey tows. Although the data are qualitative, they were collected and recorded based on consistently applied and specific criteria that are available to all watch chiefs and chief scientists.

Tows included in the analysis were from all randomly allocated survey tows (STATYPE=1) by the NOAA Research Vessel Albatross IV using the Yankee No. 36 trawl during spring, fall and winter survey cruises beginning in 1983 (Table 3.2.1). Spring and fall surveys cover the same grounds and the all tows since 1983 used the same type of net. Winter surveys have consistently used a different net (with roller gear in place of a ground cable) and cover a smaller area that excludes rocky grounds (mainly on the northern half of Georges Bank) where gear damage may be more likely to occur.

Data used in this analysis were for tows at depths $\leq 620 \mathrm{~m}$. The maximum depth of survey strata for tows used in stock assessments varies but is near 200 fathoms (366 m). Tows with STATYPE $=1$ at depths greater than 366 m were included ($\mathrm{n}=23,0.2 \%$ of the
total) because they provide useful information about gear damage at relatively extreme depths. However, tows deeper than 366 m are generally not used in stock assessment work because they are not "random" in the same way as tows randomly allocated to survey strata.

Gear damage was evaluated in in three main categories: i) "any" damage, including slight damage that does not prevent use of data from a survey tow in stock assessment work, ii) "major" damage that is severe enough to prevent use of stock assessment data from a tow, and iii) "minor" damage. The frequency of minor damage is of interest because most tows classified as minor for this analysis would also be used in stock assessments (the definitions of useful tows for stock assessment work and tows with minor damage for this assessment correspond approximately). Tows with minor damage were computed by subtraction (i.e. minor $=$ any-major).

Survey bottom trawl tows with gear damage were identified in the NEFSC survey database using the GEARCOND variable, which is part of the data collected by the survey watch chief at the end of each tow. GEARCOND records the physical condition of the trawl on deck at the end of the tow, as judged by the watch chief or chief scientist based on specific criteria. For this analysis, tows with any gear damage were defined as tows with GEARCOND $=2$ or larger. Tows with a major damage were defined as tows with GEARCOND=7 or larger.

GEARCOND $=6$ is used for tows that are obstructed by debris encountered during the tow. The probability of picking up debris is related to tow location and unlikely to be affected by mis-marked warps. Therefore, tows with GEARCOND $=6$ were excluded. Thus, the analysis dealt with the probability of gear damage in tows that were not significantly obstructed by debris.

A total of 11,402 tows were used in the analysis. In total, 1,102 tows (9.7%) had any gear damage (as defined above), 173 tows (1.5\%) had major gear damage and 1102$173=929$ tows (8.1%) had minor damage (Table 1 and Figures 3.2.1 to 3.2.3). Proportions for fall, spring and winter surveys were similar (see below).

	Proportion tows with "any" gear problems	Proportion tows with "major" gear problems	Proportion tows with "minor" gear problems	
(GEARCOND				
≥ 2)	(GEARCOND ≥ 7)	(GEARCOND ≥ 7)		
FALL	N Tows	4696	0.0945	0.0132

There is no evidence that mis-marked warps increased the probability of gear damage based on trends in frequencies of damaged gear (Table 3.2.1 and Figure 3.2.3). Frequencies of damaged bottom trawls in surveys during 2002-2003 with mis-marked warps were generally lower than average. In particular, six out of eight surveys (75\%) during 2000-2002 had lower than average levels of any gear damage. Four out of eight
surveys (50\%) during 2000-2002 had below average levels of major gear damage. Gear damage was more variable for the fall survey prior to 1988 and for the winter survey prior to 1996. Trends in gear damage for recent surveys with mis-marked warps were similar to trends in prior years.

Modeling

Generalized additive models (GAMs) were used to refine estimates of probability for gear damage during each cruise. Separate GAM models for major and minor gear damage were fit to tow-by-tow survey data by maximum likelihood assuming that the occurrence of gear damage followed a binomial distribution (i.e. as in logistic regression). Cruise id number, season (fall, spring or winter) and mis-marked warps were treated as categorical variables. Treating cruise id numbers as a categorical variable is, in effect, the same as including statistical interactions between all categorical variables that change from survey to survey (i.e. year, season, vessel and type of trawl) and makes season almost redundant. Average tow depth and swell height were included in models as covariates. The relationship between frequency of gear damage and covariates was modeled using loess scatter plot smoothers. The loess term for depth, for example, was a smooth line that allowed estimates of depth effects on gear damage to change continuously with depth.

Swell height was missing in 762 out of 11,402 tows (6.7% of the total) but was not significant in preliminary model runs using the subset of tow records that included swell height data. Therefore, swell height was omitted from further GAM modeling.

Final GAM models were identified using F-tests to measure goodness of fit. A stepwise procedure identified the best final model by eliminating variables with insignificant effect on model fit. However, mis-marked warp effects were always included in final models because they are of special interest. The best model for any damage included warps, cruise, and depth effects. The best model for major damage included only warp and depth effects.

Based on GAM model results, there was no evidence of increased probability of any or major gear damage in cruises with mis-marked warps. Warp effect estimates were very small and statistically insignificant in final models (Figure 3.2.4). Depth had a much stronger effect on the probability of gear damage than any other variable. The probability of any or major damage increases steadily with depth and loess terms for depth were highly significant ($\mathrm{p}<0.0000001$) in both models.

To describe the effects of depth in simple terms, predicted percent tows with any damage and with major damage were calculated from GAM models fit to data for years with and without potential warp effects. The probability of gear damage during cruises with mis-marked warps fell within the range for cruises without the potential problem (Figure 3.2.5). The probability of major gear damage during cruises with and without mismarked warps was similar at depths $<360 \mathrm{~m}$ (Figure 3.2.5). Results for major damage at depths greater than 360 m were erratic for mis-marked warps due to scarcity of tows in deep water during 2000-2002.

The probability of any gear damage averages about 10% at depths less than 220 m and increases to about 25% at 360 m . The probability of major gear damage increases with depth and is less than 6% at all depths less than 360 m . For data collected at depths <360 m and routinely used in stock assessments, almost all gear damage was minor.

Table 3.2.1. Gear damage and summary information for bottom trawl survey cruises by the R / V Albatross $I V$ during 1983-2002. The proportion tows with "any" gear damage is the proportion tows with GEARCOND ≥ 2. The proportion tows with "major" gear damage is the proportion tows with GEARCOND ≥ 7. Proportion tows with "minor" gear problems was computed by subtraction (any-major). Obstructed tows (GEARCOND=6) were excluded Eight surveys during 2000-2002 had mis-marked warps.

Cruise	Year	Season	N Tows	$\begin{aligned} & \text { Proportion tows } \\ & \text { with "any" gear } \\ & \text { problems } \\ & \text { (GEARCOND } \\ & \geq 2 \text {) } \\ & \hline \end{aligned}$	Proportion tows with "major" gear problems (GEARCOND ≥ 7)	Proportion tows with "minor" gear problems (GEARCOND ≥ 7)
198306	1983	Fall	410	0.059	0.010	0.049
198405	1984	Fall	347	0.115	0.009	0.107
198508	1985	Fall	148	0.122	0.027	0.095
198606	1986	Fall	251	0.187	0.012	0.175
198705	1987	Fall	319	0.053	0.016	0.038
198803	1988	Fall	305	0.079	0.013	0.066
199206	1992	Fall	332	0.123	0.018	0.105
199406	1994	Fall	332	0.120	0.018	0.102
199507	1995	Fall	329	0.067	0.006	0.061
199604	1996	Fall	315	0.137	0.022	0.114
199706	1997	Fall	318	0.072	0.006	0.066
199804	1998	Fall	322	0.084	0.012	0.071
199908	1999	Fall	326	0.077	0.015	0.061
200005	2000	Fall	317	0.060	0.003	0.057
200109	2001	Fall	325	0.105	0.018	0.086
198303	1983	Spring	410	0.132	0.015	0.117
198402	1984	Spring	400	0.098	0.013	0.085
198502	1985	Spring	371	0.078	0.016	0.062
198603	1986	Spring	362	0.088	0.006	0.083
198702	1987	Spring	281	0.121	0.007	0.114
198801	1988	Spring	315	0.067	0.010	0.057
199202	1992	Spring	316	0.095	0.013	0.082
199302	1993	Spring	319	0.103	0.013	0.091
199503	1995	Spring	325	0.055	0.012	0.043
199602	1996	Spring	344	0.142	0.026	0.116
199702	1997	Spring	326	0.077	0.012	0.064
199802	1998	Spring	360	0.097	0.017	0.081
199902	1999	Spring	317	0.066	0.016	0.050
200002	2000	Spring	325	0.095	0.015	0.080
200102	2001	Spring	315	0.095	0.016	0.079
200202	2002	Spring	316	0.101	0.016	0.085
199201	1992	Winter	62	0.048	0.032	0.016
199301	1993	Winter	116	0.043	0.000	0.043
199502	1995	Winter	151	0.179	0.040	0.139
199601	1996	Winter	134	0.112	0.037	0.075
199701	1997	Winter	124	0.121	0.032	0.089
199801	1998	Winter	133	0.128	0.023	0.105
199901	1999	Winter	139	0.122	0.036	0.086
200001	2000	Winter	124	0.105	0.032	0.073
200101	2001	Winter	167	0.114	0.018	0.096
200201	2002	Winter	154	0.091	0.026	0.065

Figure 3.2.1. Location of tows by the R / V Albatross $I V$ with "any" damage in NEFSC fall, spring and winter surveys during 1983-2002.

Figure 3.2.2. Location of tows by the R / V Albatross $I V$ with "major" damage in NEFSC fall, spring and winter surveys during 1983-2002.

Figure 3.2.3. Proportion of tows with any, minor and major damage in NEFSC fall, spring and winter surveys during 1983-2002. The vertical line in each plot separates tows with and without mis-marked warps. The horizontal line in each plot shows the average proportion of tows in each survey with any gear damage.

Figure 3.2.4. Estimated warp effects in the final GAM model for the frequency of any damage during NEFSC survey tows. The dotted lines are 95% confidence intervals for the parameter estimates. Results from models for major damage were similar.

Figure 3.2.5. Predicted frequency of tows with any (top) and major (bottom) gear damage as a function of tow depth, based on separate GAM models for surveys during 2000-2002 with mis-marked warps and surveys during 1983-2001 without mis-marked warps. The GAM model for any damage with warp effects includes depth only. The best GAM model for any damage included cruise effects and predictions for each cruise are plotted ".". In addition, "average" results for any damage from a simplified model with cruise effects omitted are also shown.

3.3 Evaluation of Fish Size in Relation to Offsets

Summary and Conclusions

There is no evidence that mis-marked warps affected length composition of cod, haddock or yellowtail flounder taken by the R / V Albatross $I V$. Mis-marked warps did not appear to reduce or increase, on a proportional basis, the catch of large or small fish.

Introduction

In this analysis, survey length composition data from NEFSC survey bottom trawls with mismarked warps were compared to length composition data from other bottom trawl surveys and from commercial bottom trawls. The purpose of the analysis was to test the hypothesis that mismarked warps affected the catch of small or large fish in NEFSC survey bottom trawls during 2000-2002. The analysis focused on three key species (cod, haddock and yellowtail flounder) and there were three groups of comparisons (see below).

The first group of analyses (Figures 3.3.1 to 3.3.3) used data from NEFSC and DFO (Department of Fisheries and Oceans Canada) spring surveys over the Canadian portion of Georges Bank during 1997-1999 ("pre-warps") and 2000-2002 ("post warps"). Both spring bottom trawl surveys cover the same area on Georges Bank at about the same time of year. The Canadian portion of Georges Bank (DFO bottom trawl strata 5Za-5Zb; NEFSC offshore survey strata 1618 and 21-22) was selected for analysis because fish abundance is relatively high on the Canadian side and intensity of DFO sampling is reduced in US portions of Georges Bank. Data were for depths less than 100 fathoms (183 m) because the DFO survey does not sample deeper water near Georges Bank.

The second group of analyses involved monkfish length composition data for the Georges Bank and Mid-Atlantic Bight areas from the 2001 NEFSC winter bottom trawl survey (with mismarked warps) and length composition data collected by commercial vessels (6 inch mesh codends with no liner) during the 2001 cooperative monkfish survey.

The third group of analyses involved length composition data for paired tows in a fishing power experiment during the 2001 NEFSC spring bottom trawl survey. For the fishing power experiment, the R / V Delaware II (no mis-marked warps) towed the same type of net beside the track towed by the R / V Albatross I (with mis-marked warps) at the same time or approximately the same time. The purpose of the experiment was to calibrate catches by the vessels. Problems with mis-marked warps on the R / V Albatross $I V$ were unknown at the time. Fishing power of the two vessels differs for some species but length composition data depend primarily on the type and configuration of the trawl. Thus, length composition data from the two vessels should differ if mis-marked warps affected the length composition of catches by the R / V Albatross $I V$.

Average length composition data for each time period were used in most comparisons. Averages were computed by expressing the length composition for each survey (or tow) as proportions and then averaging the proportions for each survey.

Results

Length composition data for cod and yellowtail flounder from the Canadian portion of Georges Bank were similar in the two spring surveys and in the pre-and post warp periods (Figures 3.3.1 to 3.3.3). The DFO survey took more large haddock and less small haddock, on a proportional basis, than the NEFSC survey during both periods. Length composition data for haddock in the NEFSC survey appear more variable than for the DFO survey, probably because the sample size (number of tows, see below) is lower in the NEFSC survey for the Canadian side of Georges Bank. Given the sample size for NEFSC surveys, the wide range of sizes, and natural variability in haddock, the differences in length composition data for haddock in the pre- and post-warp periods are best attributed to random variability in the data.

Survey	Number Pre- Warp Tows $(\mathbf{1 9 9 7 - 1 9 9 9})$	Number Post warp Tows $(\mathbf{2 0 0 0 - 2 0 0 2})$
NEFSC Spring	67	65
DFO	127	131

Length composition data from the 2001 NEFSC bottom trawl survey and commercial vessels in the Cooperative Monkfish Survey show that NEFSC survey bottom trawls took proportionally more small monkfish due to the small mesh liner in survey bottom trawls ($<25 \mathrm{~cm}$, Figure 3.3.4). However, length composition data for larger monkfish ($>25 \mathrm{~cm}$) were similar suggesting that mis-marked warps had little effect on size composition of monkfish in the NEFSC survey.

Length composition data from paired tows by the R/V Albatross IV (with mis-marked warps) and R/V Delaware II (without mis-marked warps) during the 2002 spring survey fishing power experiment were virtually identical for cod, haddock and yellowtail flounder (Figure 3.3.5).

Figure 3.3.5. Length composition data for cod, haddock and yellowtail flounder in paired tows for a fishing power experiment during the spring of 2002.

3.4 Evaluation of Gear Mensuration Data from the R/V Albatross IV Trawl Warp Offset Experiment

The effects of trawl warp length offsets on the gear performance of the R/V Albatross were assessed during a controlled experiment, conducted on September 25-26, 2002, at six stations ranging in depth from 46-91 m (Figure 3.4.1). During each tow, gear performance was assessed through videotaping and logging of gear mensuration data from Simrad sensors mounted on the doors and the trawl wing ends and headrope of a Yankee 36 net. In addition, several other variables logged by the Simrad ITI system, such as speed over ground, vessel location and water depth were evaluated.

During each tow, warp length offsets of 0 ft . (equal port and starboard warp lengths), 2 ft ., 4 ft ., 6 ft ., and 12 ft . were paid out from the starboard side of the vessel, followed by the port side of the vessel. An additional offset of 18 ft . was fished at the deepest station sampled (station 907). At each station, the trawl winches were locked and the trawl was allowed to reach the bottom and stabilize before beginning the experiment. During each tow, the trawl remained in the water throughout all offset changes, and after consistent sensor readings were observed, was allowed to fish for variable periods of time.

Changes in trawl geometry were evaluated graphically and statistically. Wing spread and headrope height readings from each station were graphed over time, between the winch lock and re-engage period, and each warp offset change was denoted. No headrope height readings were obtained at station 904. Door spread was not evaluated because the door sensors did not operate consistently. However, door spread is geometrically related to wing spread and wing spread data were evaluated.

In summary, graphs of headrope height and wingspread were similar across warp offset treatments (horizontal trend) and there was no indication of a change in this trend across stations (depths; Figure 3.4.2).

Headrope height and wingspread data, for port and starboard offsets were also evaluated statistically. At each station, the means and standard deviations of headrope height and wingspread were calculated separately, for port and starboard offsets, for each warp offset time interval (Figure 3.4.3). Headrope height and wingspread data collected at stations 904 and 905 represent single readings, so no statistical evaluation of these data was conducted. Means and standard deviations of headrope height and wingspread for the combined stations (stations 906, 907, 908 and 909) were also computed.

In summary, port and starboard wingspread means for each warp offset treatment were similar. The same was true for headrope height means. In addition, there was no significant difference detected between wingspread means for warp length offsets of $0-6 \mathrm{ft}$. at depths of $49-91 \mathrm{~m}$. The same was true for headrope height means. Differences between headrope height means for even warps and warp length offsets of 12 ft . varied in significance between stations. The same was true for wingspread means. There was no significant difference detected between wingspread means, for all stations combined, for warp length offsets of $0-12 \mathrm{ft}$. at depths of $49-91 \mathrm{~m}$. The
same was true for headrope height means for all stations combined (Figure 3.4.4). At the deepest station (91 m), there was no significant difference between headrope height means of warp length offsets of $0-18 \mathrm{ft}$. The same was true for wingspread means for the starboard side.

These data indicate that even at warp offsets greater than depths where groundfish stocks are typically found (Figure 3.7.31), the net remains spread and open, with mensuration readings very similar to the no-offset condition. While this does not prove that warp offsets on catch rates are negligible, had net dimensions changed dramatically, survey catches would most likely have been affected.

Figure 3.4.1. Locations of stations where video and trawl sensor data were collected to assess the effects of warp length offsets on the trawl performance (Yankee 36 net) of the R/V Albatross IV during 25-26 September, 2002.

Figure 3.4.2. Yankee 36 headrope height (ft.) and wing spread (ft.) measurements recorded by the Simrad ITI system of the R/V Albatross IV at stations sampled during a 25-26 September, 2002 warp length offset experiment. Dashed lines represent starboard (S) and port (P) trawl warp length offsets of $0 \mathrm{ft} ., 2 \mathrm{ft}$., 4 ft ., 6 ft ., 12 ft . and 18 ft .

Figure 3.4.4. Means and standard deviations of headrope height (ft.) and wing spread (ft.) measurements of the Yankee 36 net of the R/V Albatross IV, at starboard and port trawl warp length offsets of 0 ft ., 2 ft ., 4 ft ., 6 ft ., 12 ft ., for stations $906,907,908$ and 909 combined. Starboard warp offsets of $0-6 \mathrm{ft}$. do not include station 906 because these data were not obtained.

3.5 Models to Evaluate Changes in Relative Efficiency

The nature of the mismarked cables (i.e., discrepancies increasing with wire length) and the basic geometry of asymmetry suggest that the catchability bias should increase monotonically with depth. A variety of simple models were examined to explain potential effects of reduced catchability. A basic derivation of the alternative models is presented below.

Regression analysis of warp difference vs. fishing depth (Fig. 3.1.1) suggests a highly significant regression $\left(\mathrm{R}^{2}=0.98\right)$ in which the warp difference $\boldsymbol{d} \boldsymbol{W}$ is proportional to depth \boldsymbol{D}.

$d W=0.0134 D$

Since the NEFSC trawl surveys began in 1963, 99.9% of the tows have been conducted at depths of less than 390 m . This suggests that the maximum value of dW should be about 5.55 m . If the reduction in relative efficiency dE is proportional to the ratio of the $\boldsymbol{d W}$ to $\boldsymbol{d} \boldsymbol{W}_{\max }$ then one can write

$$
\begin{equation*}
d E=\left(\frac{d W}{d W_{\max }}\right) H_{e f f e c t} \tag{2}
\end{equation*}
$$

where $\boldsymbol{H}_{\text {effect }}$ is an assumed level of reduction in efficiency at the maximum depth. For example, if 99% of the fish would have been captured at shallower depths were not captured at depth $\boldsymbol{D}_{\max }$ then $\boldsymbol{H}_{\text {effect }}=0.99$. The revised estimate of catch can then be written as

$$
\begin{equation*}
C_{\text {rev }}=\frac{C_{o b s}}{1-d E}=\frac{C_{\text {obs }}}{1-\left(\frac{0.0134 D}{W_{\max }}\right) H_{e f f e c t}} \tag{3}
\end{equation*}
$$

Equation 3 can be used to explore the consequences of varying levels of reductions in catch efficiency. For example, the ability to the model to explain a 2 X increase in abundance (e.g., if the survey estimates in 2002 were actually 100% higher than estimated) can be tested by summing overall depths and catches in a survey.

$$
\begin{equation*}
\sum_{j} C_{j_{r e v}}=2 \sum_{j} C_{j, o b s}=\sum_{j}\left(\frac{C_{j, \text { oss }}}{1-\left(\frac{0.0134 D_{j}}{W_{\max }}\right) H_{e f f e c t}}\right) \tag{4}
\end{equation*}
$$

Initial tests with this model however, suggested that it was inadequate to explain increases in catch as high as 50%. This occurs because $H_{\text {effect }}$ must be less than 1.0. This simple model deduction suggested that the warp offset effect, if it exists, must be nonlinear. Another simple model that allows for more complicated behavior is to define $d E(D)$ as

$$
\begin{equation*}
d E=\left(\frac{d W}{d W_{\max }}\right)^{\theta}=\left(\frac{0.0134 D}{d W_{\max }}\right)^{\theta} \tag{5}
\end{equation*}
$$

where θ can vary from 0 to infinity. When θ exceeds 1 dE will become smaller. As dE approaches zero, dE will approach 1. Substituting Eq. 5 into Eq. 3 leads to Model 2, which is defined as:

$$
\begin{equation*}
C_{r e v}=\frac{C_{o b s}}{1-d E}=\frac{C_{o b s}}{1-\left(\frac{0.0134 D}{W_{\max }}\right)^{\theta}} \tag{6}
\end{equation*}
$$

Model 2 (Eq. 6) allows for changes in relative efficiency that are linear when θ is 1 , convex when $\theta<1$ concave when $\theta>1$. Note that the expression $\mathrm{dW} / \mathrm{dW}_{\max }$ will always be less than one. Model 2 assumes that the reduction in efficiency will approach 1 as depth approaches Dmax when θ is less than one. Under these conditions, the rescaled catch will be much higher than the observed, and the hypothesized effect of a small warp offset is large even at the most shallow depths. In contrast, the reduction in efficiency will stay near zero at nearly all depths when $\theta \gg 1$, and relatively little difference in catch rates should be evident. The basic premise of the model is that the effect of the warp offset on gear performance should be a monotonically increasing function of warp offset (Fig. 3.5.1). Since the magnitude of warp offset increases with fishing depth, reductions in catch should be more evident at deeper stations.

Fig. 3.5.1. Example behavior of Model 2 (Eq. 6) for varying levels of θ. Top panel shows predicted decline in relative efficiency. Bottom panel illustrates raising factor that would be applied to convert observed catch to predicted catch without the warp offset effect.

3.6. Variance vs. Mean Relationships

We hypothesized that potential reductions in gear efficiency owing to asymmetric trawl warps may lead to decreases in average catch rates and increases in variance of estimates. To test this hypothesis, we examined survey data from the NEFSC database for the fall, spring, and winter surveys for the period 1963 to 2002. A database of 28,734 tows for 22 species-stocks was used. Total catch in numbers and total weight per tow were the primary response variables; no age or length information was used. Survey catches were subsequently processed to compute statum means and variances (Section 3.6) as well as catch-weighted average depths (Section 3.7). Where appropriate, defined managementbased stocks were treated separately. The species (stocks) were-cod(GB,GOM), haddock(GB, GOM), yellowtail flounder(GB, SNE, CC), American plaice, witch flounder, redfish, pollock, halibut, white hake, winter flounder (GB, SNE), windowpane flounder (Northern, Southern), ocean pout, summer flounder, spiny dogfish, fourspot flounder, and longhorn sculpin. Several non-groundfish species were added to evaluate changes in stocks that are ubiquitous (spiny dogfish), lightly fished (fourspot flounder) or unfished (longhorn sculpin).

Coefficients of variation (CV) for catch in numbers and total weight for each stratum were computed as the ratio of the standard error of the mean divided by the stratum mean. It can be shown that this form of the CV has an upper bound of 1.0 for nonnegative random variables. The upper bound of 1.0 arises when all but one of the observations in a set is zero. The distribution of stratum specific CVs was characterized by a box plot which illustrate the median CV as a horizontal center line, and the interquartile range as lower and upper bounds of a box. Time series of the CVs were plotted for each species, stock and survey in Fig. 3.6.1-3.6.20. Halibut catches were considered too infrequent to permit meaningful estimates of stratum specific variances.

If the underlying pattern of catches in the trawls were adversely affected by the trawl offset one would expect to see an increase in the relative variation of catches in the affected survey years (2000-2002). Visual inspection of the 60 time-series plots revealed no apparent change in the magnitude of the CV during the affected period. The interquartile range of CVs since 2000 agreed well (i.e., overlapped) with the trendless pattern of CVs for each species and survey prior to 2000 . The absence of change in either the median CV or the interquartile range of the CVs reaffirms the general principle that variation in catches increases with the mean, that this property holds across all of the species examined, and that the potential effects of the trawl warp offset, if any, are small relative to the usual variation in catches. These properties appear to apply to exploited as well as unexploited stocks.

Fig. 3.6.1. Box plots of stratum-specific coefficients of catch (numbers/tow) for Georges Bank stock of cod for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.2. Box plots of stratum-specific coefficients of catch (numbers/tow) for Gulf of Maine stock of cod for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.3. Box plots of stratum-specific coefficients of catch (numbers/tow) for Georges Bank stock of haddock for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.4. Box plots of stratum-specific coefficients of catch (numbers/tow) for Gulf of Maine stock of haddock for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.5. Box plots of stratum-specific coefficients of catch (numbers/tow) for Georges Bank stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.6. Box plots of stratum-specific coefficients of catch (numbers/tow) for Southern New England stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.7. Box plots of stratum-specific coefficients of catch (numbers/tow) for Cape Cod stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.8. Box plots of stratum-specific coefficients of catch (numbers/tow) for American plaice for fall, spring , and winter NEFSC trawl surveys.

Fig. 3.6.9. Box plots of stratum-specific coefficients of catch (numbers/tow) for Georges Bank stock of winter flounder for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.10. Box plots of stratum-specific coefficients of catch (numbers/tow) for Southern New England stock of winter flounder for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.11. Box plots of stratum-specific coefficients of catch (numbers/tow) for Acadian redfish for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.12. Box plots of stratum-specific coefficients of catch (numbers/tow) for white hake for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.13. Box plots of stratum-specific coefficients of catch (numbers/tow) for pollock for fall, spring, and winter NEFSC trawl surveys.

Windowpane Flounder, Northern Stock, CV Numbers per Tow vs Year

Fig. 3.6.14. Box plots of stratum-specific coefficients of catch (numbers/tow) for northern stock of windowpane flounder for fall, spring, and winter NEFSC trawl surveys.

Windowpane Flounder, Southern Stock, CV Numbers per Tow vs Year

Fig. 3.6.15. Box plots of stratum-specific coefficients of catch (numbers/tow) for southern stock of windowpane flounder for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.16. Box plots of stratum-specific coefficients of catch (numbers/tow) for ocean pout for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.17. Box plots of stratum-specific coefficients of catch (numbers/tow) for spiny dogfish for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.18. Box plots of stratum-specific coefficients of catch (numbers/tow) for summer flounder for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.19. Box plots of stratum-specific coefficients of catch (numbers/tow) for longhorn sculpins for fall, spring, and winter NEFSC trawl surveys.

Fig. 3.6.20. Box plots of stratum-specific coefficients of catch (numbers/tow) for fourspot flounders for fall, spring, and winter NEFSC trawl surveys.

3.7. Changes in Observed Depth Distribution

The geometric arguments in Section 3.1 suggest that the efficiency of the trawl should decrease with increasing depth. Under this hypothesis, one would expect a greater fraction of the population to be caught at shallower depths. The loci of population abundance, as measured by a catch-weighted average depth, should be lower in the affected years (2000-2002) than in the base period. The long-term time series of trawl survey data allows the characterization of the seasonal and annual shifts in abundance for each species. Many species have distinct seasonal changes in average depth, coinciding with temperature changes, spawning events, feeding migrations and so forth. The timing of these events is likely to change with environmental conditions and to a lesser extent, with variations in the timing of the NEFSC surveys. The historical pattern of catches can thus serve as a sampling distribution of the catch-weighted average depth. If the warp offset factor caused a severe decline in capture rates at depth, one would expect the mean depth at capture to lie outside the range of historical values.

3.7.1. Catch-Weighted Average Depth

The time series of depth distribution patterns was examined in several different ways. At the aggregate level, the mean and variance of catch-weighted average depths were computed for each species, stock, survey, and year. Both numbers per tow and weight (kg) per tow were used to weight the depth at capture. The stratum area information associated with the survey tows was not incorporated into the estimates. The following estimators were used:

$$
\begin{equation*}
\bar{D}_{c t}=\frac{\sum_{k t}^{n} D_{k, k} C_{k t}}{\sum_{k=1}^{n} C_{k, t}} \tag{7}
\end{equation*}
$$

where $D_{k, t}$ is the depth of tow k, n_{t} is the total number of tows in year t, and $C_{k, t}$ is the catch in either numbers or weight in tow k and year t. The variance of the catch-weighted depth was estimated as

$$
\begin{equation*}
V\left(\bar{C}_{C, t}\right)=\frac{\sum_{k=1}^{n} D_{k, t}^{2} C_{k, t}-\left(\sum_{k=1}^{n} D_{k, t} C_{k, t}\right)^{2}}{\sum_{k=1}^{n} C_{k, t}\left(\sum_{k=1}^{n} C_{k, t}-1\right)} \tag{8}
\end{equation*}
$$

The standard error of the $\mathrm{D}_{\mathrm{C}, \mathrm{t}}$ was estimated as

$$
\begin{equation*}
S E\left(\bar{D}_{C, t}\right)=\frac{\sqrt{V\left(\overline{\bar{D}}_{c, t}\right)}}{n_{t}} \tag{9}
\end{equation*}
$$

The time series of these values are plotted in Fig. 3.7.1 to 3.7.22 for each species. Lowess smooths were used to identify any apparent trends in average depth. These plots show that in nearly every instance, the average depths in 2000-2002 were within the range of historical variation.

The distribution of average depths before and after 2000 were compared using both parametric and nonparametric statistical tests (Table 3.7.1). Parametric t-tests were used to test whether the mean of the average or mean of the standard deviation of catchweighted depths during the 2000-2002 period were significantly different from the earlier values. T-tests were computed in two way-with a pooled estimate of a common variance, and with separate variances for each group. Of the 88 tests conducted with each method, $10(11 \%)$ were significant at the 5% level. If the Bonferroni adjustment factor for multiple tests is applied, the Type 1 error rate becomes $0.05 /(2 * 88)$. At this level of statistical significance, only one of the tests was significant.

The t-test was applied to a pooled set of observations of annual means for all survey types combined. To look at finer scale patterns with respect to each survey (i.e. fall,winter, spring) we used a Kruskall-Wallis test. Under this partitioning of the data, a reliable estimate of the variance for the treatment group was not possible (2-3 observations). Of the 232 tests conducted, 15 (6.5%) were significant at the 5% level. The Bonferroni criterion is quite stringent $(0.05 /(2 * 232))$ and none of the tests suggested that the catchweighted average depth during the post treatment period was significantly different from the pre-treatment means.

In summary, there is no compelling evidence of statistically significant changes in the average depth distribution of the 22 stocks examined. Significant tests, when they arose, were usually associated with a difference in the mean of the standard errors of the catch weighted average depth. The low number of statistically significant tests, and the absence of any apparent pattern in the tests suggest that the effects of warp offset factors, if any, are minor.

Analysis of the cumulative frequency distribution of catches with respect to depth may be found in Appendix 2.

3.7.2 Comparisons of Catch Rates at Depth: 1997-1999 vs. 2000-2002

The analyses of gear problem rate, mean-variance relationships and catch weighted average depth all fail to provide evidence of a significant effect of the mismarked cables on trawl performance. No consistent pattern emerges with respect to species groupings (e.g., round groundfish vs. flatfish) or geographical region, especially in the Gulf of Maine. Given its greater average depth one would expect a greater frequency of gear problems since 1999, a tendency to catch less fish in deeper strata, or more variation among tows. None of these features is readily discernible.

In an attempt to conduct more direct tests of potential depth effects on gear performance, it was hypothesized that average catch rates would decline with depth. Moreover, differences in catch rates between a baseline period and the 2000-2002 period should increase with depth. We tested this hypothesis by comparing average catch rates between the pre and post-treatment periods. Average catch rates in both number and weight per tow, were computed for each species, stock and season over 20 m depth intervals. Twenty m depth intervals were used to ensure that sufficient numbers of observations were available to obtain a reliable estimate of the mean. For the spring and winter surveys, we compared catch rates at depth in 2000-2002 with similar quantities for 19971999. For the fall survey, we compared 1998-1999 with 2000-2001. This approach ensured that the numbers of observations contributing to each mean would be roughly equal. The general equation for computing these quantities can be expressed as:

$$
\bar{C}_{D_{k}, \tau}=\sum_{D_{j} \in D_{k}} \frac{C_{j, \tau}}{n\left\{D_{j} \in D_{k}\right\}} \quad \forall_{j}
$$

Where $\mathrm{C}_{\mathrm{j}, \tau}=$ tow j within period τ whose average depth D_{j} is with the interval of depths defined by D_{k}. The expression $\mathrm{n}\{$.$\} denotes a counting operator that counts the number$ of tows within the set. Differences between the "control" and "treatment" periods this experiment were computed on the arithmetic scale, and standardized by the estimated standard deviation of the differences for a given comparison. The standardized difference can be written as

$$
Z_{k}=\frac{\bar{C}_{D_{k}, \tau=1}-\bar{C}_{D_{k}, \tau=2}}{\hat{\sigma}}
$$

where $\tau=1$ is the control period and $\tau=2$ denotes the years in the treatment period. A simple regression model of the form

$$
\begin{equation*}
Z_{k}=\alpha+\beta D_{k} \tag{12}
\end{equation*}
$$

was used to test for effects of depth. When $\beta \sim 0, \alpha$ should equal \sim zero. If $\beta>0$ it implies that the average catch rate in the control period exceeded that in the treatment period and would imply some influence of the warp offset on the catch rates. Conversely, $\beta<0$ implies that catches in the treatment period exceeded those in the control period.

Equation 12 provides a useful test for trend in catch rates with depth but it is not sufficient to isolate the influence decreasing efficiency with depth. This arises because Eq. 12 is linear and allows for changes in efficiency at shallow depths as well. These post hoc analyses cannot distinguish between true changes in abundance (which would lead to $+/-$ variations) and effects induced by the trawl warp. However, the use of 3 surveys should help to distinguish changes that are real (e.g., all three indices increase with depth) versus artifacts of random variation. Two separate analyses of the standardized difference were conducted. First, plots of Z_{k} versus depth were constructed for all combinations of 21 species-stock combinations and 3 surveys (Fall, Spring, Winter). For each combination, two response variables (average numbers/tow, average weight/tow) were examined. A linear regression was computed for each combination and response variable to test for statistically significant values of α and β.

Results of the statistical tests are summarized in Table 3.7.1. Of the 112 individual tests conducted, 8 had probability levels less than 0.05 . Of these, six had positive and two had negative slopes. The slope was positive for Gulf of Maine cod numbers per tow for both the spring and fall surveys. Similarly, longhorn sculpins had positive slopes for the spring survey regressions. The total number of significant tests is about that expected due to chance alone, but the association of significant tests for Gulf of Maine cod in both the spring and fall surveys merits some attention. The positive trend in the slope of the standardized difference with respect to depth is induced by a few large tows in shallow depth strata during the 2000-2002 interval rather than any general trend toward decreasing average catch rates in deeper strata.

None of the other Gulf of Maine species, notably haddock, pollock, and white hake demonstrated any trend with depth. Moreover, deeper water species, such as redfish and witch flounder did not demonstrate any significant trends of differences with depth. Had the reduced capture rate at depth been a general function of decreasing efficiency, one would have expected some of these comparisons to be significant.

A set of omnibus tests (Table 3.7.3) in which all species were pooled, suggested no significant slopes for the differences of average numbers or weights per tow or for standardized log ratios of numbers or weights. For the fall survey, the standardized log ratio of numbers and weight in the fall survey was significantly correlated with depththe slope however, was negative, suggesting higher overall catch rates in the post treatment period.

The second analysis considered the effects of depth on catch differences as a statistical control process. The standardization approach (Eq. 12) ensures that most differences will be between ± 3.5 standard deviations units. Moreover, 80% of the values should lie between ± 1.28 SD, and 95% between ± 1.96 SD units. Standardization of the differences also allows for pooling across species to permit testing of more general hypotheses. In particular, we examined general tests for gadoid species, flatfish species, species with median depths less than 100 m and those greater than 100 m . If general reductions in catch rates were evident with increasing depth, one would expect a general increase in positive residuals in deeper strata.

Figure 3.7.23 to 3.7.27 suggested no patterns associated with decreased relative efficiency with depth. On the contrary, the plots suggested less than expected variation in the standardized differences as depth increased. This pattern held for gadoid species, flatfish species, shallow versus deep-water species, as well as for all species combined.

A comparison of the observed and expected number of standardized differences suggested that the distribution was leptokurtotic (more peaked) compared to the expected normal distribution with mean zero and unary variance (Table 3.7.4).

In summary, the comparative tests of differences in catch rates versus depth interval did not suggest any significant trend in catch differences with depth. Increases in overall abundance during the 2000-2002 period would potentially cancel out the effects of depth related changes, but one has to postulate an awkward assumption that the increases at depth would have been greater in the deeper waters for 21 species-stocks x 3 surveys. Moreover, the likelihood that such increases would be exactly sufficient to offset the depth related decreases in efficiency, for all of these tests, seems implausible.

3.7.3 Implications of VPA Sensitivity Analyses for Relative Efficiency

Stock assessment models for the GARM investigated the implications of arbitrary increases in the 2000 to 2002 survey indices by factors of 10,25 and 100%. These potential increases cannot be divorced from their implications for depth relative to efficiency. For example, one cannot simply postulate that the net was 25% less efficient at all fishing depths unless one also postulates that any amount of asymmetry in cable lengths leads to equal degrees of reduced efficiency. This not only denies the fact that increases in asymmetry can reduce efficiency but also asserts that unrealized differences in cable length (i.e., cable still on the winch) influence catch rates at shallower depths.

The 10, 25 and 100% raising factors also do not address the differences in depth distributions among species. By applying the same factors to both deep-water species (eg. Redfish) and shallow-water species (e.g., yellowtail flounder), one implies that the reduction in capture efficiency varies significantly among species.

These implications of these assertions were investigated by substituting Eq. 6 into Eq. 4. to obtain:

$$
\begin{equation*}
\sum_{j} C_{j_{\text {rev }}}=(1+\delta) \sum_{j} C_{j, \text { obs }}=\sum_{j}\left(\frac{C_{j, \text { obs }}}{1-\left(\frac{0.0134 D_{j}}{W_{\max }}\right)^{\theta}}\right) \tag{13}
\end{equation*}
$$

Eq. 13 can now be used to find the value of θ necessary to obtain an increase of magnitude δ when integrating over the entire depth range of a species. To illustrate this property, Eq. 13 was solved for hypothetical increases of $10 \%, 25 \%$ and 100% for cod, haddock, and yellowtail flounder for the 2000-2002 spring surveys, and 2000-2001 fall surveys. Model results, summarized in Fig. 3.7.28 to 3.7.30, suggest that efficiency reductions of about 50% would occur at depths of 100 m for cod and haddock if a 100% increase in the survey indices were true. For yellowtail flounder, an increase of 100% in the indices implies a rapid drop in trawl efficiency with decreases of 50% at 50 m . An important aspect of each of the analyses is that the reduction in efficiency is a concave function (i.e., $\theta>1$). This model suggest that sharp declines in efficiency are necessary even when the asymmetry of the trawl is relatively minor.

Eq. 13 predicts the necessary decline in relative efficiency if the δ value is true. Using the data sets described in Section 3.7.2 (Eq. 10), one can also estimate the magnitude of the expected decline supported by comparison of data in pre and post-warp offset periods. In other words, it is possible to evaluate the potential magnitude of the relative efficiency reduction if the pre- and post -periods are not unduly compromised by large changes in abundance. Results in Fig. 3.7.28-30, labeled as "Actual Data" suggest no reductions for yellowtail flounder or cod at depths less than 300 m . For haddock, (Fig. 3.7.29) the model suggests a reduction of up to 10% at 200 m in the fall survey. It is important to note however, that even this magnitude of effect is insufficient to achieve even a 10% increase in the average abundance estimate. These results have important implications for the ascertaining the feasibility of certain raising factors. On the basis of these analyses, there is no support for even the 10% level of hypothesized increase in survey abundances for cod, haddock or yellowtail flounder.

3.7.4 Comparisons of Catch-Weighted Depth at Capture

Differences in catch-weighted depth at capture are summarized in Figures 3.7.31 and 3.7.32. Data are organized by species average depths at capture, and are divided for each into pre- and post-warp offset periods. The entire (1963-1999) pre-warp period is included in Figure 3.7.31, and, because of potential time trends of depth at capture, only the period 1997-1999 is included as the pre warp period in Figure 3.7.32. These analyses clearly demonstrate that the average depths of capture are not significantly different preand post-warp offset, and that there are no progressive differences between depths at capture among the periods as a function of species depth ranges. Virtually all of the catches of groundfish species included in the GARM updates are made in depths where the offsets were about 9 feet or less.

Table 3.7.1. Summary of statistical tests to evaluate the likelihood that the catch-weighted average depth and
\square variance of catch-weighted depth had changed in response to warp offset factors in 2000 to 2002

	Catch weighted average depths are based on either numbers/tow [N] or weight (kg)/tow [W].
	Numbers of samples for the tests depends on the number of years and seasons considered.

The number of pre- and post-intervention cases for spring only comparisons is 32 vs 3,
for fall only, 37 vs 2 and for winter only, 8 vs 3 .
When all seasons are combined the number of cases for the pre- and post intervention period is 77 vs 8.

species							
		season			Significance levels for t-test comparisons using alternative variance estimators		Significance levels for Nonparametric p: Kruskal Wallis test
	stock		Response Variable	Weighting Factor: $\mathrm{N}=$ num/tow, W=kg/tow	p: sep var t-test	p : pooled var $\mathrm{t}-$ test	
Haddock	Georges Bank	all	SD	W	0.289862	0.433023	
Haddock	Georges Bank	all	SD	W	0.14826	0.163566	
Haddock	Georges Bank	all	SD	W	0.052296	0.266823	
Haddock	Georges Bank	all	SD	W	0.105207	0.139573	
Haddock	Georges Bank	fall	SD	W			0.798966
Haddock	Georges Bank	fall	SD	W			0.524311
Haddock	Georges Bank	fall	SD	W			0.339541
Haddock	Georges Bank	fall	SD	W			0.279068
Haddock	Georges Bank	spring	SD	W			0.859684
Haddock	Georges Bank	spring	SD	W			0.859684
Haddock	Georges Bank	spring	SD	W			0.723674
Haddock	Georges Bank	spring	SD	W			0.679988
Haddock	Georges Bank	winter	SD	W			0.794003
Haddock	Georges Bank	winter	SD	W			0.29627
Haddock	Georges Bank	winter	SD	W			0.601508
Haddock	Georges Bank	winter	SD	W			0.794003
Cod	Georges Bank	all	SD	W	0.904804	0.90178	
cod	Georges Bank	all	SD	W	0.640815	0.684401	
cod	Georges Bank	all	SD	W	0.906653	0.908996	
cod	Georges Bank	all	SD	W	0.64553	0.706991	
cod	Georges Bank	fall	SD	W			0.610492
cod	Georges Bank	fall	SD	W			0.949232
cod	Georges Bank	fall	SD	W			0.444833
cod	Georges Bank	fall	SD	W			0.949232
cod	Georges Bank	spring	SD	W			0.953011
cod	Georges Bank	spring	SD	W			0.637352
cod	Georges Bank	spring	SD	W			0.637352
cod	Georges Bank	spring	SD	W			0.288844
cod	Georges Bank	winter	SD	W			0.245278
cod	Georges Bank	winter	SD	W			0.121335
cod	Georges Bank	winter	SD	W			0.698535
cod	Georges Bank	winter	SD	W			0.438578
Yellowtail	Georges Bank	all	SD	W	0.996997	0.995838	
Yellowtail	Georges Bank	all	SD	W	0.000071	0.02002	
Yellowtail	Georges Bank	all	SD	W	0.784343	0.709294	
Yellowtail	Georges Bank	all	SD	W	0.00437	0.019447	
Yellowtail	Georges Bank	fall	SD	W			0.048403
Yellowtail	Georges Bank	fall	SD	W			0.226372
Yellowtail	Georges Bank	fall	SD	W			0.085591
Yellowtail	Georges Bank	fall	SD	W			0.074619
Yellowtail	Georges Bank	spring	SD	W			0.813664
Yellowtail	Georges Bank	spring	SD	W			0.025145
Yellowtail	Georges Bank	spring	SD	W			0.595883
Yellowtail	Georges Bank	spring	SD	W			0.015694
Yellowtail	Georges Bank	winter	SD	W			0.414216
Yellowtail	Georges Bank	winter	SD	W			0.153042
Yellowtail	Georges Bank	winter	SD	W			0.540291
Yellowtail	Georges Bank	winter	SD	W			0.414216

Table 3.7.1 (continued).

American Plaice	Georges Bank	all	SD	W	0.437437	0.325598	
American Plaice	Georges Bank	all	SD	W	0.062179	0.000586	
American Plaice	Georges Bank	all	SD	W	0.322863	0.194199	
American Plaice	Georges Bank	all	SD	W	0.06563	0.000953	
American Plaice	Georges Bank	fall	SD	W			0.566616
American Plaice	Georges Bank	fall	SD	W			0.70244
American Plaice	Georges Bank	fall	SD	W			0.70244
American Plaice	Georges Bank	fall	SD	W			0.898669
American Plaice	Georges Bank	spring	SD	W			0.443657
American Plaice	Georges Bank	spring	SD	W			0.0771
American Plaice	Georges Bank	spring	SD	W			0.238593
American Plaice	Georges Bank	spring	SD	W			0.013328
American Plaice	Georges Bank	winter	SD	W			0.305059
American Plaice	Georges Bank	winter	SD	W			0.030368
American Plaice	Georges Bank	winter	SD	W			0.21
American Plaice	Georges Bank	winter	SD	W			0.052705
Witch Flounder	Georges Bank	all	SD	W	0.124172	0.200626	
Witch Flounder	Georges Bank	all	SD	W	0.543153	0.617123	
Witch Flounder	Georges Bank	all	SD	W	0.351447	0.269114	
Witch Flounder	Georges Bank	all	SD	W	0.923525	0.930964	
Witch Flounder	Georges Bank	fall	SD	W			0.444833
Witch Flounder	Georges Bank	fall	SD	W			0.524311
Witch Flounder	Georges Bank	fall	SD	W			0.655814
Witch Flounder	Georges Bank	fall	SD	W			0.566616
Witch Flounder	Georges Bank	spring	SD	W			0.443657
Witch Flounder	Georges Bank	spring	SD	W			0.859684
Witch Flounder	Georges Bank	spring	SD	W			0.215925
Witch Flounder	Georges Bank	spring	SD	W			0.4795
Acadian Redfish	Georges Bank	all	SD	W	0.573568	0.76492	
Acadian Redfish	Georges Bank	all	SD	W	0.010728	0.001963	
Acadian Redfish	Georges Bank	all	SD	W	0.174974	0.584986	
Acadian Redfish	Georges Bank	all	SD	W	0.034491	0.023123	
Acadian Redfish	Georges Bank	fall	SD	W			0.798966
Acadian Redfish	Georges Bank	fall	SD	W			0.111433
Acadian Redfish	Georges Bank	fall	SD	W			0.655814
Acadian Redfish	Georges Bank	fall	SD	W			0.444833
Acadian Redfish	Georges Bank	spring	SD	W			0.516868
Acadian Redfish	Georges Bank	spring	SD	W			0.006717
Acadian Redfish	Georges Bank	spring	SD	W			0.443657
Acadian Redfish	Georges Bank	spring	SD	W			0.015694
White Hake	Georges Bank	all	SD	W	0.172133	0.093167	
White Hake	Georges Bank	all	SD	W	0.658388	0.724624	
White Hake	Georges Bank	all	SD	W	0.333881	0.263352	
White Hake	Georges Bank	all	SD	W	0.001484	0.155635	
White Hake	Georges Bank	fall	SD	W			0.126484
White Hake	Georges Bank	fall	SD	W			0.111433
White Hake	Georges Bank	fall	SD	W			0.444833
White Hake	Georges Bank	fall	SD	W			0.202866
White Hake	Georges Bank	spring	SD	W			0.238593
White Hake	Georges Bank	spring	SD	W			0.637352
White Hake	Georges Bank	spring	SD	W			0.316472
White Hake	Georges Bank	spring	SD	W			0.288844
Pollock	Georges Bank	all	SD	W	0.956284	0.94036	
Pollock	Georges Bank	all	SD	W	0.235266	0.183857	
Pollock	Georges Bank	all	SD	W	0.232096	0.085014	
Pollock	Georges Bank	all	SD	W	0.897456	0.906902	
Pollock	Georges Bank	fall	SD	W			0.848514
Pollock	Georges Bank	fall	SD	W			0.566616
Pollock	Georges Bank	fall	SD	W			0.339541
Pollock	Georges Bank	fall	SD	W			0.750214
Pollock	Georges Bank	spring	SD	W			0.768278
Pollock	Georges Bank	spring	SD	W			0.029239
Pollock	Georges Bank	spring	SD	W			0.03917
Pollock	Georges Bank	spring	SD	W			0.723674

Table 3.7.1 (continued).

Ocean Pout	Georges Bank	all	SD	W	0.67499	0.58049	
Ocean Pout	Georges Bank	all	SD	W	0.987109	0.987866	
Ocean Pout	Georges Bank	all	SD	W	0.80934	0.758454	
Ocean Pout	Georges Bank	all	SD	W	0.838922	0.872914	
Ocean Pout	Georges Bank	fall	SD	W			0.048403
Ocean Pout	Georges Bank	fall	SD	W			0.161282
Ocean Pout	Georges Bank	fall	SD	W			0.041601
Ocean Pout	Georges Bank	fall	SD	W			0.407824
Ocean Pout	Georges Bank	spring	SD	W			0.140714
Ocean Pout	Georges Bank	spring	SD	W			0.111612
Ocean Pout	Georges Bank	spring	SD	W			0.175326
Ocean Pout	Georges Bank	spring	SD	W			0.08748
Ocean Pout	Georges Bank	winter	SD	W			0.683091
Ocean Pout	Georges Bank	winter	SD	W			0.540291
Ocean Pout	Georges Bank	winter	SD	W			0.307434
Ocean Pout	Georges Bank	winter	SD	W			0.683091
Windowpane	Northern	all	SD	W	0.673309	0.634325	
Windowpane	Northern	all	SD	W	0.114477	0.219954	
Windowpane	Northern	all	SD	W	0.537566	0.437876	
Windowpane	Northern	all	SD	W	0.08611	0.195187	
Windowpane	Northern	fall	SD	W			0.339541
Windowpane	Northern	fall	SD	W			0.339541
Windowpane	Northern	fall	SD	W			0.655814
Windowpane	Northern	fall	SD	W			0.202866
Windowpane	Northern	spring	SD	W			0.194851
Windowpane	Northern	spring	SD	W			0.316472
Windowpane	Northern	spring	SD	W			0.26289
Windowpane	Northern	spring	SD	W			0.859684
Windowpane	Northern	winter	SD	W			0.838256
Windowpane	Northern	winter	SD	W			0.414216
Windowpane	Northern	winter	SD	W			0.683091
Windowpane	Northern	winter	SD	W			0.220671
Halibut	Georges Bank	all	SD	W	0.777323	0.648636	
Halibut	Georges Bank	all	SD	W	0.296723	0.356407	
Halibut	Georges Bank	all	SD	W	0.734529	0.67077	
Halibut	Georges Bank	all	SD	W	0.116645	0.081905	
Halibut	Georges Bank	fall	SD	W			0.898664
Halibut	Georges Bank	fall	SD	W			0.898669
Halibut	Georges Bank	fall	SD	W			1
Halibut	Georges Bank	fall	SD	W			0.949232
Halibut	Georges Bank	spring	SD	W			0.634226
Halibut	Georges Bank	spring	SD	W			0.078983
Halibut	Georges Bank	spring	SD	W			0.906186
Halibut	Georges Bank	spring	SD	W			0.021556
Dogfish	Georges Bank	all	SD	W	0.657296	0.766204	
Dogfish	Georges Bank	all	SD	W	0.268458	0.221025	
Dogfish	Georges Bank	all	SD	W	0.725488	0.800442	
Dogfish	Georges Bank	all	SD	W	0.311377	0.247918	
Dogfish	Georges Bank	fall	SD	W			0.308325
Dogfish	Georges Bank	fall	SD	W			0.161282
Dogfish	Georges Bank	fall	SD	W			0.226372
Dogfish	Georges Bank	fall	SD	W			0.226372
Dogfish	Georges Bank	spring	SD	W			0.175326
Dogfish	Georges Bank	spring	SD	W			0.345779
Dogfish	Georges Bank	spring	SD	W			0.516868
Dogfish	Georges Bank	spring	SD	W			0.376759
Dogfish	Georges Bank	winter	SD	W			0.414216
Dogfish	Georges Bank	winter	SD	W			0.307434
Dogfish	Georges Bank	winter	SD	W			0.307434
Dogfish	Georges Bank	winter	SD	W			0.414216

Table 3.7.1 (continued).

Fourspot Flounder	Georges Bank	all	SD	W	0.468537	0.520394	
Fourspot Flounder	Georges Bank	all	SD	W	0.782591	0.818612	
Fourspot Flounder	Georges Bank	all	SD	W	0.674166	0.73479	
Fourspot Flounder	Georges Bank	all	SD	W	0.636316	0.732836	
Fourspot Flounder	Georges Bank	fall	SD	W			0.610492
Fourspot Flounder	Georges Bank	fall	SD	W			0.111433
Fourspot Flounder	Georges Bank	fall	SD	W			0.750214
Fourspot Flounder	Georges Bank	fall	SD	W			0.70244
Fourspot Flounder	Georges Bank	spring	SD	W			0.03917
Fourspot Flounder	Georges Bank	spring	SD	W			0.09896
Fourspot Flounder	Georges Bank	spring	SD	W			0.033895
Fourspot Flounder	Georges Bank	spring	SD	W			0.09896
Fourspot Flounder	Georges Bank	winter	SD	W			0.066193
Fourspot Flounder	Georges Bank	winter	SD	W			0.066193
Fourspot Flounder	Georges Bank	winter	SD	W			0.066193
Fourspot Flounder	Georges Bank	winter	SD	W			0.066193
Longhorn Sculpin	Georges Bank	all	SD	W	0.180463	0.110084	
Longhorn Sculpin	Georges Bank	all	SD	W	0.353837	0.205575	
Longhorn Sculpin	Georges Bank	all	SD	W	0.140948	0.107944	
Longhorn Sculpin	Georges Bank	all	SD	W	0.209937	0.107135	
Longhorn Sculpin	Georges Bank	fall	SD	W			0.407824
Longhorn Sculpin	Georges Bank	fall	SD	W			0.655814
Longhorn Sculpin	Georges Bank	fall	SD	W			0.483686
Longhorn Sculpin	Georges Bank	fall	SD	W			0.610492
Longhorn Sculpin	Georges Bank	spring	SD	W			0.316472
Longhorn Sculpin	Georges Bank	spring	SD	W			0.4795
Longhorn Sculpin	Georges Bank	spring	SD	W			0.288844
Longhorn Sculpin	Georges Bank	spring	SD	W			0.316472
Longhorn Sculpin	Georges Bank	winter	SD	W			0.220671
Longhorn Sculpin	Georges Bank	winter	SD	W			0.414216
Longhorn Sculpin	Georges Bank	winter	SD	W			0.307434
Longhorn Sculpin	Georges Bank	winter	SD	W			0.414216
Winter Flounder	Georges Bank	all	SD	W	0.483801	0.440467	
Winter Flounder	Georges Bank	all	SD	W	0.363302	0.4133	
Winter Flounder	Georges Bank	all	SD	W	0.468608	0.411567	
Winter Flounder	Georges Bank	all	SD	W	0.302825	0.352209	
Winter Flounder	Georges Bank	fall	SD	W			0.135682
Winter Flounder	Georges Bank	fall	SD	W			0.193759
Winter Flounder	Georges Bank	fall	SD	W			0.135682
Winter Flounder	Georges Bank	fall	SD	W			0.193759
Winter Flounder	Georges Bank	spring	SD	W			0.143235
Winter Flounder	Georges Bank	spring	SD	W			0.305507
Winter Flounder	Georges Bank	spring	SD	W			0.124283
Winter Flounder	Georges Bank	spring	SD	W			0.213399
Winter Flounder	Georges Bank	winter	SD	W			0.10247
Winter Flounder	Georges Bank	winter	SD	W			0.414216
Winter Flounder	Georges Bank	winter	SD	W			0.10247
Winter Flounder	Georges Bank	winter	SD	W			0.414216
Summer Flounder	Georges Bank	all	SD	W	0.605129	0.699592	
Summer Flounder	Georges Bank	all	SD	W	0.820766	0.879866	
Summer Flounder	Georges Bank	all	SD	W	0.699944	0.751436	
Summer Flounder	Georges Bank	all	SD	W	0.473265	0.653004	
Summer Flounder	Georges Bank	fall	SD	W			0.150382
Summer Flounder	Georges Bank	fall	SD	W			0.3268
Summer Flounder	Georges Bank	fall	SD	W			0.191063
Summer Flounder	Georges Bank	fall	SD	W			0.214211
Summer Flounder	Georges Bank	spring	SD	W			0.906186
Summer Flounder	Georges Bank	spring	SD	W			0.4795
Summer Flounder	Georges Bank	spring	SD	W			0.813664
Summer Flounder	Georges Bank	spring	SD	W			0.443657
Summer Flounder	Georges Bank	winter	SD	W			0.21
Summer Flounder	Georges Bank	winter	SD	W			0.73244
Summer Flounder	Georges Bank	winter	SD	W			0.21
Summer Flounder	Georges Bank	winter	SD	W			0.305059

Table 3.7.1 (continued).

Haddock	Gulf of Maine	all	SD	W	0.870036	0.905378	
Haddock	Gulf of Maine	all	SD	W	0.031405	0.058599	
Haddock	Gulf of Maine	all	SD	W	0.132005	0.270298	
Haddock	Gulf of Maine	all	SD	W	0.106911	0.178393	
Haddock	Gulf of Maine	fall	SD	W			1
Haddock	Gulf of Maine	fall	SD	W			0.097832
Haddock	Gulf of Maine	fall	SD	W			0.143073
Haddock	Gulf of Maine	fall	SD	W			0.202866
Haddock	Gulf of Maine	spring	SD	W			0.859684
Haddock	Gulf of Maine	spring	SD	W			0.157299
Haddock	Gulf of Maine	spring	SD	W			0.927432
Haddock	Gulf of Maine	spring	SD	W			0.236415
cod	Gulf of Maine	all	SD	W	0.530754	0.584534	
cod	Gulf of Maine	all	SD	W	0.393274	0.450724	
cod	Gulf of Maine	all	SD	W	0.183749	0.398397	
cod	Gulf of Maine	all	SD	W	0.047991	0.094618	
cod	Gulf of Maine	fall	SD	W			1
cod	Gulf of Maine	fall	SD	W			0.111433
cod	Gulf of Maine	fall	SD	W			0.524311
cod	Gulf of Maine	fall	SD	W			0.161282
cod	Gulf of Maine	spring	SD	W			0.316472
cod	Gulf of Maine	spring	SD	W			0.953011
cod	Gulf of Maine	spring	SD	W			0.345779
cod	Gulf of Maine	spring	SD	W			0.288844
Yellowtail	S. New England	all	SD	W	0.702098	0.801407	
Yellowtail	S. New England	all	SD	W	0.046119	0.031408	
Yellowtail	S. New England	all	SD	W	0.949283	0.957267	
Yellowtail	S. New England	all	SD	W	0.04699	0.045465	
Yellowtail	S. New England	fall	SD	W			0.566616
Yellowtail	S. New England	fall	SD	W			0.226372
Yellowtail	S. New England	fall	SD	W			0.251759
Yellowtail	S. New England	fall	SD	W			0.251759
Yellowtail	S. New England	spring	SD	W			0.859684
Yellowtail	S. New England	spring	SD	W			0.345779
Yellowtail	S. New England	spring	SD	W			0.768278
Yellowtail	S. New England	spring	SD	W			0.26289
Yellowtail	S. New England	winter	SD	W			0.683091
Yellowtail	S. New England	winter	SD	W			0.10247
Yellowtail	S. New England	winter	SD	W			1
Yellowtail	S. New England	winter	SD	W			0.041227
Windowpane	Southern	all	SD	W	0.673705	0.664883	
Windowpane	Southern	all	SD	W	0.769474	0.791003	
Windowpane	Southern	all	SD	W	0.715402	0.71455	
Windowpane	Southern	all	SD	W	0.59928	0.632188	
Windowpane	Southern	fall	SD	W			0.226372
Windowpane	Southern	fall	SD	W			0.566616
Windowpane	Southern	fall	SD	W			0.279068
Windowpane	Southern	fall	SD	W			0.898669
Windowpane	Southern	spring	SD	W			0.953011
Windowpane	Southern	spring	SD	W			0.4795
Windowpane	Southern	spring	SD	W			0.813664
Windowpane	Southern	spring	SD	W			0.637352
Windowpane	Southern	winter	SD	W			0.838256
Windowpane	Southern	winter	SD	W			0.540291
Windowpane	Southern	winter	SD	W			0.838256
Windowpane	Southern	winter	SD	W			0.414216

Table 3.7.1 (continued).

Winter Flounder	S. New England	all	SD	W	0.032823	0.003262	
Winter Flounder	S. New England	all	SD	W	0.125266	0.135732	
Winter Flounder	S. New England	all	SD	W	0.054484	0.009231	
Winter Flounder	S. New England	all	SD	W	0.138046	0.123636	
Winter Flounder	S. New England	fall	SD	W			0.143073
Winter Flounder	S. New England	fall	SD	W			0.339541
Winter Flounder	S. New England	fall	SD	W			0.161282
Winter Flounder	S. New England	fall	SD	W			0.483686
Winter Flounder	S. New England	spring	SD	W			0.26289
Winter Flounder	S. New England	spring	SD	W			0.768278
Winter Flounder	S. New England	spring	SD	W			0.345779
Winter Flounder	S. New England	spring	SD	W			0.516868
Winter Flounder	S. New England	winter	SD	W			0.220671
Winter Flounder	S. New England	winter	SD	W			0.307434
Winter Flounder	S. New England	winter	SD	W			0.10247
Winter Flounder	S. New England	winter	SD	W			0.307434
Yellowtail	Cape Cod	all	SD	W	0.348209	0.247442	
Yellowtail	Cape Cod	all	SD	W	0.499274	0.654831	
Yellowtail	Cape Cod	all	SD	W	0.347324	0.253839	
Yellowtail	Cape Cod	all	SD	W	0.368072	0.562796	
Yellowtail	Cape Cod	fall	SD	W			0.898669
Yellowtail	Cape Cod	fall	SD	W			0.949232
Yellowtail	Cape Cod	fall	SD	W			0.949232
Yellowtail	Cape cod	fall	SD	W			1
Yellowtail	Cape Cod	spring	SD	W			0.194819
Yellowtail	Cape Cod	spring	SD	W			0.443657
Yellowtail	Cape Cod	spring	SD	W			0.236415
Yellowtail	Cape Cod	spring	SD	W			0.378639
				1 Tests	88	88	232
	Num P levels less than 0.05				0	0	0
	Fraction pf tests with less than 0.05				0.000	0.000	0.000
	Bonferroni P level for multiple tests, each with 5\% Type I errors				0.000284091	0.000284091	0.000107759
	Number of tests that with probability levels less than Bonferroni limit				0	0	0

Table 3.7.2. Summary of statistical test of regression model for standardized difference of pre-post treatment catch rates versus depth for numbers per tow, and biomass (kg) per tow.
Model type refers to response variable: num/tow $=$ Nd_stan, weight per tow=Wd_stan.

model type	Species	Stock	Season	Effect: Constant	Effect: DepthMid	Adj R ${ }^{2}$	p-value	
Nd_stan	Acadian Redfish	all	fall	0.473255	-0.002754	0	0.573	
Wd_stan	Acadian Redfish	1	fall	0.699839	-0.004073	0	0.399	
Nd_stan	Acadian Redfish	all	spring	0.203443	-0.001017	0	0.772	
Wd_stan	Acadian Redfish	all	spring	0.005724	-0.000029	0	0.994	
Nd_stan	American Plaice	all	fall	0.707636	-0.00467	0.063654	0.205	
Wd_stan	American Plaice	all	fall	0.709069	-0.004679	0.06428	0.204	
Nd _stan	American Plaice	all	spring	-0.379685	0.002109	0	0.456	
Wd_stan	American Plaice	all	spring	-0.336627	0.00187	0	0.509	
Nd_stan	American Plaice	all	winter	2.350554	-0.019588	0.421454	0.097	
Wd_stan	American Plaice	all	winter	2.748405	-0.022903	0.667988	0.029	
Nd_stan	cod	GB	fall	-0.113871	0.000949	0	0.875	
Wd_stan	Cod	GB	fall	-0.400822	0.00334	0	0.575	
Nd_stan	cod	GB	spring	0.00633	-0.000053	0	0.993	
Wd_stan	cod	GB	spring	-0.055814	0.000465	0	0.938	
Nd_stan	cod	GB	winter	0.270265	-0.002252	0	0.874	
Wd_stan	cod	GB	winter	-0.739223	0.00616	0	0.660	
Nd_stan	cod	GM	fall	-1.586011	0.009231	0.346768	0.033	
Wd_stan	cod	GM	fall	-1.368388	0.007964	0.229734	0.077	
Nd_stan	cod	GM	spring	-1.774249	0.008871	0.513467	0.002	
Wd_stan	Cod	GM	spring	-0.646247	0.003231	0	0.350	
Nd_stan	Dogfish	all	fall	-0.236035	0.001475	0	0.674	
Wd_stan	Dogfish	all	fall	-0.018783	0.000117	0	0.973	
Nd_stan	Dogfish	all	spring	0.333086	-0.00185	0	0.514	
Wd_stan	Dogfish	all	spring	0.348654	-0.001937	0	0.494	
Nd_stan	Dogfish	all	winter	0.511442	-0.003086	0.005047	0.322	
Wd_stan	Dogfish	all	winter	0.773519	-0.004668	0.118831	0.123	
Nd_stan	Fluke	all	fall	-0.22145	0.001845	0	0.680	
Wd_stan	Fluke	all	fall	-0.290864	0.002424	0	0.587	
Nd_stan	Fluke	all	spring	-0.880215	0.007335	0.207759	0.077	
Wd_stan	Fluke	all	spring	-0.960853	0.008007	0.266731	0.049	
Nd_stan	Fluke	all	winter	-0.783761	0.009797	0	0.475	
Wd_stan	Fluke	all	winter	-0.10594	0.001324	0	0.926	
Nd_stan	Fourspot Flounder	all	fall	-0.595604	0.004803	0	0.367	
Wd_stan	Fourspot Flounder	all	fall	-0.517414	0.004173	0	0.436	
Nd_stan	Fourspot Flounder	all	spring	-0.807506	0.005383	0.10089	0.154	
Wd_stan	Fourspot Flounder	all	spring	-0.878435	0.005856	0.136065	0.117	
Nd_stan	Fourspot Flounder	all	winter	-0.26492	0.001599	0	0.614	
Wd_stan	Fourspot Flounder	all	winter	-0.355459	0.002145	0	0.496	
Nd_stan	haddock	GB	fall	-0.084348	0.000588	0	0.887	
Wd_stan	Haddock	GB	fall	-0.19594	0.001367	0	0.741	
Nd_stan	haddock	GB	spring	-0.41692	0.002396	0	0.413	
Wd_stan	Haddock	GB	spring	-0.070542	0.000405	0	0.891	
Nd_stan	haddock	GB	winter	-1.413863	0.011782	0	0.382	
Wd_stan	Haddock	GB	winter	-1.154848	0.009624	0	0.483	
Nd_stan	haddock	GOM	fall	-0.197185	0.001232	0	0.838	
Wd_stan	Haddock	GOM	fall	-0.537264	0.003358	0	0.573	
Nd_stan	haddock	GOM	spring	-0.115982	0.000725	0	0.904	
Wd_stan	Haddock	GOM	spring	-0.513181	0.003207	0	0.591	
Nd_stan	Longhorn Sculpin	all	fall	0.568906	-0.004741	0	0.421	
Wd_stan	Longhorn Sculpin	all	fall	0.687844	-0.005732	0.010532	0.326	
Nd_stan	Longhorn Sculpin	all	spring	-1.668872	0.013907	0.672825	0.002	
Wd_stan	Longhorn Sculpin	all	spring	-1.580484	0.013171	0.590553	0.006	
Nd_stan	Longhorn Sculpin	all	winter	-1.382063	0.017276	0.272292	0.165	
Wd_stan	Longhorn Sculpin	all	winter	-1.354093	0.016926	0.251366	0.177	
Nd_stan	Ocean Pout	all	fall	0.629009	-0.004839	0.003345	0.336	
Wd_stan	Ocean Pout	all	fall	0.587859	-0.004522	0	0.370	
Nd_stan	Ocean Pout	all	spring	-0.288995	0.002223	0	0.665	
Wd_stan	Ocean Pout	all	spring	-0.217109	0.00167	0	0.746	
Nd_stan	Ocean Pout	all	winter	0.080832	-0.000652	0	0.905	
Wd_stan	Ocean Pout	all	winter	0.3447	-0.00278	0	0.608	

Table 3.7.2 (continued).

Nd_stan	Pollock	all	fall	0.665613	-0.004392	0.045841	0.235	
Wd_stan	Pollock	all	fall	0.49967	-0.003297	0	0.380	
Nd_stan	Pollock	all	spring	0.165327	-0.000918	0	0.747	
Wd_stan	Pollock	all	spring	0.704614	-0.003915	0.077428	0.155	
Nd_stan	White Hake	all	fall	0.74412	-0.00491	0.080002	0.181	
Wd_stan	White Hake	all	fall	0.973632	-0.006425	0.201691	0.070	
Nd_stan	White Hake	all	spring	1.250393	-0.006947	0.39734	0.005	
Wd_stan	White Hake	all	spring	1.299752	-0.007221	0.43508	0.003	
Nd_stan	Windowpane	North	fall	0.811478	-0.005796	0.092174	0.176	
Wd_stan	Windowpane	North	fall	0.972239	-0.006945	0.175858	0.097	
Nd_stan	Windowpane	North	spring	-1.1458	0.007161	0.305566	0.024	
Wd_stan	Windowpane	North	spring	-1.178886	0.007368	0.32835	0.019	
Nd_stan	Windowpane	North	winter	-2.544398	0.021203	0.536766	0.060	
Wd_stan	Windowpane	North	winter	-2.444078	0.020367	0.475948	0.078	
Nd_stan	Windowpane	South	fall	-0.472428	0.004395	0	0.502	
Wd_stan	Windowpane	South	fall	-0.652119	0.006066	0.007209	0.345	
Nd_stan	Windowpane	South	spring	-0.411368	0.002904	0	0.496	
Wd_stan	Windowpane	South	spring	-0.134864	0.000952	0	0.825	
Nd_stan	Windowpane	South	winter	-0.340323	0.002054	0	0.515	
Wd_stan	Windowpane	South	winter	-0.509875	0.003077	0.004506	0.324	
Nd_stan	Winter Flounder	GB	fall	1.414214	-0.070711	n/a	n/a	
Wd_stan	Winter Flounder	GB	fall	1.414214	-0.070711	n / a	n/a	
Nd_stan	Winter Flounder	GB	spring	-1.358549	0.045285	0.640582	0.279	
Wd_stan	Winter Flounder	GB	spring	-1.424703	0.04749	0.804248	0.203	
Nd_stan	Winter Flounder	GB	winter	0.829594	-0.007392	0.072265	0.243	
Wd_stan	Winter Flounder	GB	winter	0.874185	-0.00779	0.096012	0.216	
Nd_stan	Winter Flounder	SNE	fall	-0.387029	0.002908	0	0.423	
Wd_stan	Winter Flounder	SNE	fall	-0.375643	0.002823	0	0.438	
Nd_stan	Winter Flounder	SNE	spring	0.386662	-0.002379	0	0.378	
Wd_stan	Winter Flounder	SNE	spring	0.487718	-0.003001	0.023735	0.262	
Nd_stan	Winter Flounder	SNE	winter	-0.533972	0.006675	0	0.456	
Wd_stan	Winter Flounder	SNE	winter	-1.248604	0.015608	0.241034	0.060	
Nd_stan	Witch Flouder	all	fall	0.197154	-0.001301	0	0.733	
Wd_stan	Witch Flouder	all	fall	-0.084724	0.000559	0	0.884	
Nd_stan	Witch Flouder	all	spring	0.229952	-0.001278	0	0.654	
Wd_stan	Witch Flouder	all	spring	0.663112	-0.003684	0.060409	0.183	
Nd_stan	Yellowtail	GB	fall	-0.525323	0.005837	0	0.585	
Wd_stan	Yellowtail	GB	fall	-0.524222	0.005825	0	0.586	
Nd_stan	Yellowtail	GB	spring	-0.266372	0.00333	0	0.814	
Wd_stan	Yellowtail	GB	spring	-0.280611	0.003508	0	0.804	
Nd_stan	Yellowtail	GB	winter	-2.389447	0.019912	0.443857	0.089	
Wd_stan	Yellowtail	GB	winter	-2.266207	0.018885	0.37413	0.116	
Nd_stan	Yellowtail	SNE	fall	-0.622878	0.010381	0	0.732	
Wd_stan	Yellowtail	SNE	fall	-2.005485	0.033425	0.617214	0.137	
Nd_stan	Yellowtail	SNE	spring	-0.787223	0.011246	0	0.557	
Wd_stan	Yellowtail	SNE	spring	-1.35803	0.0194	0.168502	0.271	
Nd_stan	Yellowtail	SNE	winter	0.387471	-0.005535	0	0.778	
Wd_stan	Yellowtail	SNE	winter	-0.132346	0.001891	0	0.924	
Nd_stan	Yellowtail	CC	fall	0.694145	-0.013883	0	0.460	
Wd_stan	Yellowtail	CC	fall	0.67586	-0.013517	0	0.473	
Nd_stan	Yellowtail	CC	spring	0.313874	-0.005231	0	0.710	
Wd_stan	Yellowtail	CC	spring	0.228901	-0.003815	0	0.787	

Table 3.7.3. Summary of statistical tests of regression model for standardized difference of pre-post treatment catch rates versus deoth for numbers per tow, and biomass (kg) per tow. Model type refers to response variable: num/tow= Nd_stan, weight per tow=Wd_stan. For these analyses, all species are pooled; the depth effect coefficient represents the change in the standardized difference. Positive values imply that the pre-treatment catch rates exceeded the post-treatment catch rates.

Model Type	Difference	Season	Constant	Depthmid	Adj. R^2	p-value
Wd stan	Weight	spring	-0.018886	0.000121	0	0.8621
Nd_stan	Number	spring	-0.142906	0.000914	0.002964	0.1879
InWd_stan	In W	spring	0.023038	-0.000147	0	0.8322
InNd_stan	In N	spring	0.081126	-0.000519	0	0.4553
Wd stan	Weight	fall	0.066983	-0.000492	0	0.5780
Nd_stan	Number	fall	0.075799	-0.000556	0	0.5289
InWd_stan	In W	fall	0.358677	-0.002632	0.037413	0.0026
InNd_stan	In N	fall	0.416881	-0.003059	0.052196	0.0004
Wd stan	Weight	winter	-0.065415	0.000521	0	0.6700
Nd_stan	Number	winter	-0.064781	0.000515	0	0.6730
InWd_stan	In W	winter	-0.085622	0.000681	0	0.5769
InNd_stan	In N	winter	0.002906	-0.000023	0	0

Table 3.7.4. Summary of frequencies of standardized residuals of average catch (number/tow) vs Depth for all species combined.

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.1. Temporal trends in catch weighted average depth for Georges Bank Cod stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panelnumbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

SEASON
FALL

- SPRING

SEASON

- FALL
- SPRING

Fig. 3.7.2. Temporal trends in catch weighted average depth for Gulf of Maine Cod stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panelnumbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Haddock, Georges Bank Stock

Fig. 3.7.3. Temporal trends in catch weighted average depth for Georges Bank Haddock stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Haddock, Gulf of Maine Stock

Fig. 3.7.4. Temporal trends in catch weighted average depth for Gulf of Maine Haddock stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Yellowtail FI., Georges Bank Stock

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.5. Temporal trends in catch weighted average depth for Georges Bank Yellowtail stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Yellowtail FI. , SNE Stock

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.6. Temporal trends in catch weighted average depth for Southern New England Yellowtail stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Yellowtail FI., Cape Cod Stock

SEASON

- FALL
- SPRING

SEASON

- FALL
- SPRING

Fig. 3.7.7. Temporal trends in catch weighted average depth for Cape Cod Yellowtail Flounder stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Witch Flounder, Stock

Fig. 3.7.8. Temporal trends in catch weighted average depth for Witch Flounder stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panelnumbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

American Plaice, Stock

Fig. 3.7.9. Temporal trends in catch weighted average depth for American Plaice stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panelnumbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Acadian Redfish, Stock

Fig. 3.7.10. Temporal trends in catch weighted average depth for Acadian Redfish stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panelnumbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

White Hake, Stock

SEASON

- FALL
- SPRING

SEASON

- FALL
- SPRING

Fig. 3.7.11. Temporal trends in catch weighted average depth for White Hake stock for fall, winter and spring surveys. Top panelbiomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Pollock, Stock

SEASON

- FALL
- SPRING

SEASON

- FALL
- SPRING

Fig. 3.7.12. Temporal trends in catch weighted average depth for Pollock stock for fall, winter and spring surveys. Top panelbiomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Winter FI., Georges Bank Stock

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.13. Temporal trends in catch weighted average depth for Georges Bank Winter Flounder stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Winter Flounder, SNE Stock

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.14. Temporal trends in catch weighted average depth for Southern New England Winter Flounder stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Windowpane FI., Northern Stock

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING
- WINTER

Fig. 3.7.15. Temporal trends in catch weighted average depth for Northern Windowpane Flounder stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Windowpane FI., Southern Stock

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.16. Temporal trends in catch weighted average depth for Windowpane Flounder stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING

WINTER

Fig. 3.7.17. Temporal trends in catch weighted average depth for Ocean Pout stock for fall, winter and spring surveys. Top panelbiomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Spiny Dogfish, Stock

SEASON

- FALL
- SPRING WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.18. Temporal trends in catch weighted average depth for Spiny Dogfish stock for fall, winter and spring surveys. Top panelbiomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Summer Flounder, Stock

SEASON

- FALL
- SPRING WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.19. Temporal trends in catch weighted average depth for Summer Flounder stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panelnumbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Fourspot Fl., Stock

SEASON

- FALL
- SPRING
\square WINTER

SEASON

- FALL
- SPRING
\square WINTER

Fig. 3.7.20. Temporal trends in catch weighted average depth for Fourspot Flounder stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panelnumbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

Fig. 3.7.21. Temporal trends in catch weighted average depth for Longhorn Sculpin stock for fall, winter and spring surveys. Top panel- biomass (kg/tow) weighted average depth; bottom panelnumbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

SEASON
FALL

- SPRING

SEASON
FALL

- SPRING

Fig. 3.7.22. Temporal trends in catch weighted average depth for Halibut stock for fall, winter and spring surveys. Top panelbiomass (kg/tow) weighted average depth; bottom panel- numbers (\#/tow) weighted average depth. Error bars represent ± 1 SD. Lines are Lowess smooths with tension=0.5.

All Species Combined

Fig. 3.7.23. Distribution of standardized difference in catch rates(numbers/tow) vs depth interval for all species combined. Each point represents a separate species, stock and survey combination for difference in number per tow in the 2 year period (1998-99) vs 2000-2001 for the fall survey, and 3 yr period (1997-99) vs 2000-02 for the spring and winter surveys. Approximate confidence intervals for the standardized differences are denoted by dashed lines. The 50, 75 and 95% confidence regions are approximated by an Epanechnikov kernel. Marginal kernel distribution of the distribution of differences are described by the right-hand border. The top border is the kernel of differences by depth category.

Gadoid Species Combined

Fig. 3.7.24. Distribution of standardized difference in catch rates(numbers/tow) vs depth interval for gadoid species (GB cod, GOM cod, GB haddock, GOM haddock, white hake, and pollock. Each point represents a separate species, stock and survey combination for difference in number per tow in the 2 year period (1998-99) vs 2000-2001 for the fall survey, and 3 yr period (1997-99) vs 2000-02 for the spring and winter surveys. Approximate confidence intervals for the standardized differences are denoted by dashed lines. The 50, 75 and 95% confidence regions are approximated by an Epanechnikov kernel. Marginal kernel distribution of the distribution of differences are described by the right-hand border. The top border is the kernel of differences by depth category.

Flatfish Species Combined

Fig. 3.7.25. Distribution of standardized difference in catch rates(numbers/tow) vs depth interval for flatfish species (GB yellowtail, SNE yellowtail, Cape Cod yellowtail, American plaice, witch flounder, windowpane (Northern and Southern), GB winter flounder SNE winter flounder, summer flounder, and fourspot flounder. Each point represents a separate species, stock and survey combination for difference in number per tow in the 2 year period (1998-99) vs 2000-2001 for the fall survey, and 3 yr period (1997-99) vs 2000-02 for the spring and winter surveys. Approximate confidence intervals for the standardized differences are denoted by dashed lines.
The 50, 75 and 95% confidence regions are approximated by an Epanechnikov kernel. Marginal kernel distribution of the distribution of differences are described by the right-hand border. The top border is the kernel of differences by depth category.

Species with Median Depths <100 M

Fig. 3.7.26. Distribution of standardized difference in catch rates(numbers/tow) vs depth interval for flatfish species (GB yellowtail, SNE yellowtail, Cape Cod yellowtail, windowpane flounder (Northern and Southern), GB winter flounder, GB cod, GOM cod, SNE winter flounder, summer flounder, fourspot flounder, ocean pout, longhorn sculpin, spiny dogfish. Each point represents a separate species, stock and survey combination for difference in number per tow in the 2 year period (1998-99) vs 2000-2001 for the fall survey, and 3 yr period (1997-99) vs 2000-02 for the spring and winter surveys. Approximate confidence intervals for the standardized differences are denoted by dashed lines.
The 50, 75 and 95% confidence regions are approximated by an Epanechnikov kernel. Marginal kernel distribution of the distribution of differences are described by the right-hand border. The top border is the kernel of differences by depth category.

Species with Median Depths >100 M

Fig. 3.7.27. Distribution of standardized difference in catch rates(numbers/tow) vs depth interval for flatfish species (GB haddock, GOM haddock, white hake, pollock, American plaice, witch flounder, and Acadian redfish. Each point represents a separate species, stock and survey combination for difference in number per tow in the 2 year period (1998-99) vs 2000-2001 for the fall survey, and 3 yr period (1997-99) vs 2000-02 for the spring and winter surveys. Approximate confidence intervals for the standardized differences are denoted by dashed lines.
The 50, 75 and 95% confidence regions are approximated by an Epanechnikov kernel. Marginal kernel distribution of the distribution of differences are described by the right-hand border. The top border is the kernel of differences by depth category.

Cod, Fall Survey: Reduction in Efficiency with Depth Necessary to Achieve Total Catch Increases of 10, 25 and 100\%

Cod, Spring Survey: Reduction in Efficiency with Depth Necessary to Achieve Total Catch Increases of 10, 25 and 100\%

Fig. 3.7.28. Predicted reductions in relative efficiency of capture for cod in fall and spring surveys given hypothesized increases in overall abundance of 10,25 , and 100%. Relative efficiency predictions are based on fit of Eq. 13 to observed survey catches at depth for the 2000-2002 spring survey data and 2000-01 fall survey data. "Actual data" plots refer to nonlinear least squares estimates based on comparisons of between pre and post-trawl warp asymmetry periods.

Haddock, Fall Survey: Reduction in Efficiency with Depth Necessary to Achieve Total Catch Increases of 10, 25 and 100\%

Haddock, Spring Survey: Reduction in Efficiency with Depth Necessary to Achieve Total Catch Increases of 10, 25 and 100\%

\square	Haddock+10\%
$=-\quad-$	Haddock+25\%
\square	Haddock+100\%
\square	Actual Data

Fig. 3.7.29. Predicted reductions in relative efficiency of capture for haddock in fall and spring surveys given hypothesized increases in overall abundance of 10,25 , and 100%. Relative efficiency predictions are based on fit of Eq. 13 to observed survey catches at depth for the 2000-2002 spring survey data and 2000-01 fall survey data. "Actual data" plots refer to nonlinear least squares estimates based on comparisons of between pre and post-trawl warp asymmetry periods.

Yellowtail FI., Spring Survey: Reduction in Efficiency with Depth Necessary to Achieve Total Catch Increases of 10, 25 and 100\%

Fig. 3.7.30. Predicted reductions in relative efficiency of capture for yellowtail flounder in fall and spring surveys given hypothesized increases in overall abundance of 10,25 , and 100%. Relative efficiency predictions are based on fit of Eq. 13 to observed survey catches at depth for the 2000-2002 spring survey data and 2000-01 fall survey data. "Actual data" plots refer to nonlinear least squares estimates based on comparisons of between pre and posttrawl warp asymmetry periods.

Median Catch-Weighted Average Depths: '63-99 v '00-02

Figure 3.7.31. Catch weighted average depths at capture for 16 species of groundfish taken in NEFSC bottom trawl surveys. Data are presented for pre- and post trawl warp offset periods. The pre-warp period includes all data from 1963 onward until 1999.

Median Catch-Weighted Average Depths:'97-99 v '00-02

Figure 3.7.32. Catch weighted average depths at capture for 16 species of groundfish taken in NEFSC bottom trawl surveys. Data are presented for pre- and post trawl warp offset periods. The pre-warp period includes all data from 1997-1999.

3.8 Changes in Abundance Indices Pre- and Post Warp Intervention

Various abundance indices using the Albatross $I V$ survey vessel are available for all 20 of the stocks assessed in section 2 of this document. Surveys potentially influenced by the warp offsets include the winter, spring and autumn bottom trawl time series. Overall there are 39 trawl survey series that are used in the assessments of the 20 stocks (Table 3.8). This analysis considers patterns in the directional change (positive, negative or the same) for each stock and survey series in pairs of adjacent years (e.g., 1998 to 1999, 1999 to 2000, etc.) to determine whether there are patterns in proportions of stocks increasing, decreasing or remaining the same associated with the warp offset intervention. The absolute abundance change from one year to the next is confounded by the underlying abundance changes in the stocks under consideration. The directional analysis, however, is likely more robust to the confounding influences of stock size changes in looking for potential interventions in the data series.

The directional changes for each stock and survey series (+ , - or no change) are compiled in Table 3.8. Overall there were 25 series showing positive changes in stock abundance indices from 1998 to 1999, and 14 stocks showing stock declines. The potential intervention due to trawl warp offsets would have been manifested in the directional changes between 1999 and 2000. In that pair of years, the proportion of stocks showing positive changes was nearly identical to that in the previous year (23 of 39 stocks), with 15 showing a decline and one unchanged (Figure 3.8). For the years 2000-2001 and 2001-2002 the intervention would have been included in both years, so there would be no expected decline in the proportion of increasing/declining stocks due to the potential effects of the warp offsets. Interestingly, in 2000/2001, the proportion of declining versus increasing stocks reversed from the previous years, suggesting a year effect in these data. In 2001-2002 (winter and spring indices only), increasing stocks again dominated the total (12/17).

The overall patterns of increasing/declining stocks in the "intervention" year was thus very similar to the year previous, suggesting no systematic pattern of reduced catch efficiency that would be great enough to be discerned in such analyses. Based on the degree of warp offset by fishing depth, if such an intervention were to influence abundance indices, the effect would likely be most pronounced for the deepest dwelling species (i.e., where the warp offset was greatest). The deepest-dwelling of the groundfish stocks considered (based on catch-weighted median depths at capture, section 3.7) are American plaice, pollock, witch flounder, white hake, and redfish. There are nine survey series used in the assessments of these five stocks (Table 3.8). Data from the intervention year (i.e., 1999-2000) indicate that in 8 of these 9 series, the direction of change in abundance indices was actually positive (pollock in the autumn survey was the only negative change for the five stocks). Thus, analysis does not suggest a strong year effect coincident with a trawl warp offset intervention.

Table 3.8. Directional change in abundance (numbers per tow) of various species/stocks for pairs of years. For each stock all tuning indices used in the assessment that were influenced by the warp offsets in 2000-2002 are included. Positive $(+)$ changes between years indicates the index increased. The warp change on Albatross occurred between 1999 and 2000.

Stock/Species	Surveys Series	1998-1999	1999-2000	2000-2001	2001-2002
GB Cod	Spring	-	+	-	+
	Fall	-	+	-	
GB Haddock	Spring	+	-	+	+
	Fall	+	-	+	
GB Yellowtail	Spring	+	-	-	+
	Fall	+	-	+	
SNE Yellowtail	Spring	+	-	-	+
	Fall	-	+	-	
	Winter	+	-	+	-
CC Yellowtail	Spring	+	+	-	+
	Fall	+	-	-	
GM Cod	Spring	+	+	-	+
	Fall	+	+	-	
Witch	Spring	-	+	+	+
	Fall	+	+	+	
Plaice	Spring	-	+	+	-
	Fall	+	+	-	
GB Winter Flounder	Spring	+	+	-	+
	Fall	-	+	+	
SNE Winter Flounder	Spring	+	-	-	+
	Fall	-	+	-	
	Winter	+	-	-	-
White hake	Spring	+	+	-	+
	Fall	+	+	-	
Pollock	Spring	-	+	+	
	Fall	+	-	+	
Redfish	Fall	-	+	-	
Ocean Pout	Spring	+	-	+	-
N Windowpane	Fall	-	o	+	
S Windowpane	Fall	-	+	+	
MAB Yellowtail	Spring	+	-	-	
	Fall	-	+	-	
	Winter	-	+	-	
GM Haddock	Spring	+	-	-	+
	Fall	+	+	-	
Atlantic Halibut	Spring	+	-	+	-
	Fall	-	-	-	
GM Winter Flounder	Spring	+	+	-	+
	Fall	+	+	-	
Sum Increases $(+)$ Sum Decreases $(-)$ Sum No Change (0)		25	23	14	12
		14	15	25	5
		0	1	0	0

Direction of Change in
 Survey Numbers per tow

Figure 3.8. Directional change in abundance (numbers per tow) of various species/stocks for pairs of years. For each stock all tuning indices used in the assessment that were influenced by the warp offsets in 2000-2002 are included. Positive changes between years indicates the index increased. The warp change on Albatross occurred between 1999 and 2000.

3.9 Trends in Relative Fishing Power for NEFSC Bottom Trawl Surveys during 20002002

Summary and Conclusions

1) Trends in relative fishing power of bottom trawls used in NEFSC surveys were characterized using an index calculated from NEFSC bottom trawl, DFO bottom trawl and NEFSC sea scallop survey data. Index trends were examined to determine if relative fishing power of NEFSC bottom trawls declined during 2000-2002 while mis-marked warps were used.
2) Twenty species were included in the analysis: American plaice, Atlantic mackerel, cod, spiny dogfish, fourspot flounder, goosefish, haddock, herring, little skate, ocean pout, Pollock, red hake, redfish, sea scallop, silver hake, white hake, windowpane flounder, winter flounder, witch flounder, and yellowtail flounder.
3) Catch rates for NEFSC bottom trawl and other surveys had similar trends.
4) There were a total of 323 index values in 22 comparisons. Of these, 63 (20%) were for years when NEFSC bottom trawls had mis-marked warps.
5) Results suggest that relative fishing power varies to some extent over time in all species and surveys. For all species as a group, relative fishing power in NEFSC bottom trawl surveys was somewhat above average during 2000-2002 while warps were mis-marked.
6) Based on these data, there is no evidence that mis-marked warps systematically reduced the fishing power of NEFSC bottom trawls during 2000-2002 for all species.

Introduction

Indices of relative fishing power were computed using survey data (number caught per standard tow) from NEFSC bottom trawl, DFO (Department of Fisheries and Oceans Canada) ${ }^{1}$ bottom trawl, and NEFSC sea scallop surveys. Indices of relative fishing power for each species were examined qualitatively and statistically to determine if relative fishing power of NEFSC bottom trawls declined during 2000-2002 with mis-marked warps. Most of the comparisons involved NEFSC and DFO spring bottom trawl surveys but NEFSC winter bottom trawl, fall bottom trawl and scallop surveys were used as well. Species examined include American plaice, Atlantic mackerel, cod, spiny dogfish, fourspot flounder, goosefish, haddock, herring, little skate, ocean pout, pollock, red hake, redfish, sea scallop, silver hake, white hake, windowpane flounder, winter flounder, witch flounder, and yellowtail flounder. The data used in comparisons were similar in terms of area surveyed and survey timing.

As many species-survey comparisons as possible were included in the analysis and the statistical approaches used to analyze index trends accommodated all comparisons simultaneously because it would be difficult to detect a small or moderate size change in fishing power for any single species.

[^7]
Materials and Methods

NEFSC bottom trawl survey data were either spring, fall or winter survey catch rates (mean number per standard tow) in "successful" tows (database SHG values ≤ 136) in NEFSC offshore survey strata. Bottom trawl survey and scallop survey data were tabulated by combining strata that made the area covered by both surveys as similar as possible. In particular, DFO spring survey data used in comparisons for Georges Bank (GBK) were for DFO bottom trawl strata 5Za-5Zh. NEFSC bottom trawl survey data used in comparisons with DFO or scallop survey data for GBK were from NEFSC offshore bottom trawl survey strata 9-11, 13-14, 16-17 and 1925. NEFSC offshore strata for GBK exclude the deepest NEFSC strata that are not sampled in the DFO survey. NEFSC bottom trawl survey data used in comparisons with scallop survey data for the Mid-Atlantic Bight (MAB) area were from NEFSC offshore bottom trawl survey strata 1, $2,65-66,69-70$, and 73-74 and were chosen to maximize overlap with the MAB area assumed in sea scallop assessments. Scallop survey data used in comparisons were for NEFSC shellfish strata 46-47, 49-55, 58-63, 65-66, 71-72 and 74 (the GBK stock area used in sea scallop stock assessments) or 6-7, 10-11, 14-15, 18-19, 22-31 and 33-35 (the MAB stock area used in sea scallop assessments).

During the years included in this analysis (beginning in either 1979, 1982 or 1987, depending on the species and surveys), NEFSC spring and fall surveys used two vessels (R / V Albatross $I V$ and R / V Delaware II), two types of bottom trawls (Yankee No. 41 in the spring survey during 19791981; Yankee No. 36 otherwise and in all years for the fall survey), and two types of trawl doors (BMV doors prior to 1985, polyvalent doors afterwards). The NEFSC winter survey began in 1992 and used both vessels with the standard 60-80 bottom trawl. Based on standard NEFSC procedures, vessel, trawl and door correction factors were applied where available to make catch rates on all surveys comparable to the Yankee No. 41 trawl with polyvalent doors fished by the R / V Albatross $I V$. Correction factors are probably imprecise but, fortunately, the majority of comparisons involved the NEFSC and DFO bottom trawl surveys beginning in 1987. Different vessels were used in the spring survey after 1986 in some years. However, only one type of bottom trawl and one type of trawl door was used after that date.

DFO spring bottom trawl data were compared to NEFSC spring bottom trawl survey data for GBK (see below). DFO data were survey catch rates (mean number per standard tow, adjusted for distance towed based on standard DFO procedures) for "good, random survey tows" in DFO ground fish strata 5Za-5Zh (at depths < 100 fathoms) during 1987-1992 and 1995-2002. There was no DFO survey over Georges Bank during 1993 and coverage was incomplete during 1994. Therefore, catch rates during 1993-1994 were excluded from comparisons. DFO survey data for Georges Bank used in this analysis were collected by a single vessel (R / V Alfred Needler) and one type of bottom trawl gear (Western 2A bottom trawl). Sea scallop was excluded from comparisons for GBK because trawls are relatively inefficient for sea scallop on rough grounds found across much of GBK.

Georges Bank Species	Years Comparing NEFSC and DFO Spring Surveys
American plaice	14
Atlantic mackerel	12
Cod	14
Spiny dogfish	14
Fourspot	14
Haddock	14
Herring	14
Little skate	14
Ocean pout	14
Pollock	14
Red hake	13
Redfish	14
Silver hake	14
White hake	14
Windowpane flounder	14
Winter flounder	14
Witch flounder	14
Yellowtail flounder	14
Total	249

Catch rates for fish and sea scallops in annual NEFSC sea scallop surveys were compared to NEFSC survey bottom trawl catch rates (see below). The scallop survey during 2000-2002 was not affected by mis-marked warps on the R / V Albatross $I V$ because the survey scallop dredge is towed by a single wire. Comparisons with scallop survey catches are potentially important because the scallop survey takes species on the bottom that might be missed by the bottom trawl if mis-marked warps reduced trawl bottom contact during 2000-2002. The scallop survey is conducted annually in the summer using a standard 8 ' New Bedford style scallop dredge with 2 " rings and a 1.75 " plastic liner. However, in accord with standard procedures for scallop assessments, empty strata in some years were filled by borrowing catches from the same strata in the preceding and following year.

Scallop survey catch data used in this analysis were limited to sea scallops, goosefish and yellowtail flounder per standard tow because scallop survey catches have not been fully computerized for most fish species. Scallop survey data (mean number per standard tow) for the GBK and MAB regions were compared to the average of spring and fall NEFSC survey data during the same year because the scallop survey is carried out in the summer after the spring survey and before the fall survey. Comparisons involving average spring and fall survey data excluded 2002 because only the spring survey had mis-marked warps during 2002. In addition, catch rates for goosefish in MAB from the scallop survey were compared to NEFSC winter bottom trawl catch rate, because the winter survey takes substantial numbers of goosefish.

Goosefish were the only case of a comparison involving NEFSC winter survey and scallop survey data.

Catch rates used in species-comparisons were for all sizes with several exceptions. Data for GBK yellowtail $<20 \mathrm{~cm}$ TL in the scallop survey were excluded because survey bottom trawls are not efficient for yellowtail $<20 \mathrm{~cm}$ TL. Goosefish data for MAB from the scallop survey were for individuals $20-59 \mathrm{~cm}$ TL because survey bottom trawls are not efficient for goosefish smaller than 20 cm and scallop dredges are not efficient for goosefish larger than 60 cm . Comparisons of scallop catch rates were for scallops with shell heights of $9-13.9 \mathrm{~cm}$ because bottom trawls and scallop dredges both catch considerable numbers of scallops in this size range and because scallop dredges and commercial bottom trawls sample large ($9-13.9 \mathrm{~cm}$) and small ($<9 \mathrm{~cm}$) scallops with different efficiency. Goosefish and yellowtail flounder comparisons began in 1982 because the scallop survey did not cover all of the Georges Bank strata in earlier years and because goosefish catches had not been recorded earlier.

MAB yellowtail and GBK goosefish were not used for comparisons because catch rates in NEFSC scallop, spring and fall surveys were too low and variable. The winter NEFSC winter survey takes substantial numbers of goosefish but does not cover the entire GBK region.

Mid-Atlantic Bight Species	Years Comparing GBK Scallop and Average NEFSC Spring \& Fall	Years Comparing MAB Scallop and Average NEFSC Spring \& Fall	Years Comparing MAB Scallop and NEFSC Winter	Total
Goosefish	--	20	11	31
Sea scallop	--	23	--	23
Yellowtail flounder	20	--	--	20
Total	20	43	11	74

Catch rates for NEFSC bottom trawl and other surveys followed similar trends in most cases (Figure 3.9-1). Correspondence in trends for scallops in the scallop, spring and fall surveys was surprisingly strong.

Standardized log catch rate ratios

The ratio of mean catch rates in two surveys during the same year is a measure of the relative fishing power of the two surveys. For each species in the analysis, we computed annual values of \log survey catch ratios:

$$
X_{y}=\ln \left(\frac{I_{y}}{K_{y}}\right)
$$

where I_{y} is the catch rate (number per standard tow) during year y for the NEFSC bottom trawl survey, and K_{y} is the catch rate for the same species in the DFO or scallop survey. Log catch ratios have better statistical properties (i.e. symmetrical statistical distributions and constant variance) than the original values.

For ease in analysis and plotting, standardized log survey catch ratios for each species were standardized (Tables 3.9.1 and Figure 3.9.2):

$$
\chi_{y}=\frac{\left(X_{y}-\bar{X}\right)}{\sigma}
$$

where χ_{y} is the standardized log survey catch rate SLSCR index of relative fishing power, \bar{X} is the average of X_{y} values prior to 2000 and σ is the standard deviation of X_{y} values prior to 2000 . Means and standard deviations used in standardization calculations were for years prior to 2000 so that the mean SLSCR for years prior to 2000 would average zero and the standard deviation for years prior to 2000 would be one. This convention facilitated analyses but had no effect on results.

NEFSC spring, fall or winter catch rates were always in the numerator of ratios used to compute SLSCR index values. This is important because increases in ratios indicate possible increases in relative fishing power for bottom trawls used in NEFSC spring fall or winter surveys, and viceversa. If mis-marked warps reduced the fishing power of bottom trawls used in the NEFSC spring survey relative to the DFO spring survey, for example, then SLSCR values for 20002002 in the comparison should tend to be small or negative. In addition, an abrupt change in index values may be evident in the index values for 1999-2000.

There were 22 species comparisons in the final data set with a total of 323 SLSCR index values. Of the total, 63 (20\%) were for surveys with mis-marked warps during 2000-2002.

Interpretation of SLSCR index values

In theory, both the direction and magnitude of SLSCR index values have meaning. An index value of zero means no apparent change in relative fishing power, positive indices indicate above average relative fishing power, negative values indicate below average relative fishing power, and larger changes in index values suggest larger changes in relative fishing power. However, theory aside, there are a number of important issues to keep in mind while interpreting SLSCR index values (see below). In view of these issues, it is prudent to focus on results for groups of species and groups of years. In comparing index values for a single or few species over a short period of time, it is prudent to focus on the sign (positive or negative) of SLSCR values.

Changes in relative fishing power of both surveys in a comparison are confounded in SLSCR values. For example, increases in SLSCR could be due to values and increased relative fishing power in NEFSC bottom trawl surveys could be due to changes in either the numerator (NEFSC bottom trawl catch rates) or the denominator (DFO or scallop survey catch rates). This is an important because, in theory, variation in SLSCR values in a particular comparison could be due entirely to variability in fishing power of either the NEFSC bottom trawl (in the numerator) or the survey (DFO or scallop) used for comparison in the denominator.

Environmental factors likely influence both surveys in a comparison so that there is a covariance between catch rates and fishing power for both surveys. Further, trends in abundance will affect
catch rates in both surveys so that catch rates are correlated. SLSCR was calculated using ratios, however, so that environmental "year effects" and "abundance" effects should cancel out.

SLSCR index values measure relative fishing power but can not be interpreted as percentage or proportional changes. For example, if the SLSCR for a species was 0.0 for 1997, 0.1 for 1998, and -0.5 in 1999, one could conclude that relative fishing power was near average in 1997, apparently increased slightly in 1998 and apparently declined substantially in 1999. However, it would be incorrect to conclude that relative fishing power increased by 10% of the average value in 1998 and then declined by 60% of the average value during 1999 .

The variance of SLSCR index values has not been measured and both the direction and magnitude of changes in the index may be largely random. Variance and statistical properties were not calculated in this analysis due to lack of time. Variance is likely considerable and the possibility of bias or autocorrelation in index values has not been fully explored. Survey catch rate data are intrinsically variable and there may be covariances between catches in two different surveys during the same year that do not cancel. Covariances may exist between SLSCR values for one species in adjacent years (autocorrelation) and among species in the same year. These types of correlations almost certainly increase uncertainty in SLSCR index values by reducing information about relative fishing power in the survey data. Therefore, patterns in these indices were evaluated for overall trends rather than for individual species/stocks in specific surveys.

Results

SLSCR index values indicate that relative fishing power for all species taken together was slightly above average (0.06) during 1999 and increased a small amount to 0.09 in 2000, the first year with mis-marked warps (Table 3.9.1). The average SLSCR value for all species taken together during 2000-2002 was 0.14 , indicating that average fishing power for NEFSC bottom trawls was above average during 2000-2002 while warps were mis-marked. There was no obvious relationship between mean depth for each species and SLSCR values during 2000-2001 (Table 3.9.1). Depth is of interest because of hypotheses that effects of mis-marked warps increased with depth.

The sign of SLSCR values (i.e. positive for increased fishing power, negative for decreased fishing power; Table 3.9.2) also indicate about average overall fishing power for NEFSC bottom trawls with mis-marked warps during 2000-2002. SLSCR values were positive in 11 out of 22 (50%) comparisons for 1999 and 12 out of 22 (55%) comparisons for 2000. Considering all comparisons during 2000-2002, SLSCR values were positive in 34 out of $63(54 \%)$ of cases, compared to 33 out of 66 (50\%) during 1997-1999. Thus, the number of species for which fishing power of NEFSC survey bottom trawls was above average was about 50% before and after the introduction of mis-marked warps. There was no obvious relationship between species mean depth and the sign of SLSCR values during 2000-2001 (Table 3.9.2). There are a number of other such comparisons (e.g. between NMFS fall surveys and Canadian surveys) that could be pursued. However, results presented in section 3.8 indicate similar conclusions regarding the lack of a detectable intervention due to the warp offset issue.

Table 3.9.1. Standardized SLSCR indices of relative fishing power for NEFSC bottom trawls during 1991-2002. Positive values mean that the NEFSC bottom trawl survey had above average relative fishing power, and vice versa. Index values do not measure percentage or proportional changes in relative fishing power. For example, a value 0 f 0.1 does not imply a 10% increase. Species are sorted roughly in order of average depth in spring NEFSC survey catches during 1968-2002 (shallow depths at the top). Few indices are available for 1993-1994 because DFO surveys were not carried out or were incomplete on Georges Bank.

Species	Surveys	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	$\begin{gathered} \hline 1997- \\ 1999 \end{gathered}$	$\begin{aligned} & \hline 2000- \\ & 2002 \end{aligned}$
Little Skate	Spring-DFO	0.93	2.16			-0.71	0.56	-1.31	-0.26	0.02	-0.59	0.31	0.92	-0.51	0.21
Windowpane	Spring-DFO	1.23	-0.23			-0.86	-0.96	-0.44	-1.09	-0.67	0.62	0.57	-0.17	-0.73	0.34
Winter Flounder	Spring-DFO	0.90	-0.28			-0.29	-0.26	-0.71	-0.18	2.41	1.69	0.29	1.30	0.51	1.09
Yellowtail	Spring-DFO	0.62	-0.66			0.67	-0.24	-0.89	0.66	-0.22	-0.47	-1.58	0.16	-0.15	-0.63
Yellowtail	Spr\&Fall-Scallop	-1.04	0.37	-1.76	-0.55	-0.94	-1.23	-0.73	-0.64	0.29	-0.16	1.25		-0.36	0.55
Ocean Pout	Spring-DFO	0.63	-1.60			0.71	0.16	0.73	0.15	0.84	1.93	1.87	3.92	0.57	2.57
Mackerel	Spring-DFO	-1.60	-0.33			-0.14	0.24	0.84	-1.42	0.49	0.92	-0.69	-0.47	-0.03	-0.08
Herring	Spring-DFO	-0.84	0.66			0.03	0.08	-0.54	1.47	-0.86	-0.88	-0.89	0.94	0.02	-0.28
Scallop	Spr\&Fall-Scallop	0.17	0.70	-0.08	0.75	-0.02	-1.32	0.31	0.96	0.63	0.70	-0.37		0.63	0.17
Cod	Spring-DFO	0.07	-1.26			0.73	-1.73	-0.31	2.05	-0.37	-0.96	-0.30	-0.88	0.46	-0.71
Haddock	Spring-DFO	-0.32	-1.97			0.13	1.34	1.27	-0.69	-0.68	-1.83	-0.54	-0.10	-0.03	-0.82
Red Hake	Spring-DFO	1.17				0.70	-2.01	-0.01	1.45	-0.03	0.53	-0.18	0.84	0.47	0.40
Fourspot	Spring-DFO	-0.35	-0.83			0.41	1.86	-0.32	0.29	-1.96	1.32	-0.81	0.45	-0.67	0.32
Dogfish	Spring-DFO	0.04	-1.59			-1.09	0.06	0.62	1.69	1.41	0.05	0.14	0.91	1.24	0.37
Goosefish	Spr\&Fall-Scallop	0.88	-0.91	-0.33	-0.06	-0.47	-0.94	-0.50	-0.26	-0.15	0.69	-0.25		-0.31	0.22
Goosefish	Winter-Scallop		-0.31	0.88	-0.96	0.05	1.83	-0.50	0.26	-1.25	0.16	1.27	1.75	-0.49	1.06
Plaice	Spring-DFO	0.14	-2.25			0.56	0.63	-0.73	0.74	-0.79	0.49	0.14	-0.11	-0.26	0.17
Pollock	Spring-DFO	0.44	-1.58			1.86	-0.21	0.26	0.82	0.45	-0.39	0.16	-3.05	0.51	-1.09
Silver hake	Spring-DFO	-0.33	-1.32			-0.66	-1.19	-0.13	1.31	0.10	-1.44	-0.24	1.31	0.43	-0.12
Witch Flounder	Spring-DFO	0.29	-0.66			-0.29	0.22	-2.16	1.88	-0.35	-1.14	-0.79	0.01	-0.21	-0.64
Redfish	Spring-DFO	-1.54	1.76			-0.37	0.18	0.50	0.68	0.51	1.50	1.28	-0.29	0.57	0.83
White hake	Spring-DFO	-0.21	-1.13			-0.63	-0.10	-0.85	0.87	1.41	-0.66	-1.59	0.06	0.48	-0.73
Count All		21	21	4	4	22	22	22	22	22	22	22	19	66	63
Average All		0.06	-0.54			-0.03	-0.14	-0.25	0.49	0.06	0.09	-0.04	0.39	0.10	0.14

Table 3.9.2. The sign ("+" for above and "-" for below average) of SLSCR relative fishing power indices during 1991-2002. Species are sorted roughly in order of average depth in spring NEFSC survey catches during 1968-2002 (shallow depths at the top). Few indices are available for 1993-1994 because DFO surveys were not carried out or were incomplete on Georges Bank.

Species	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	$\begin{gathered} 1997- \\ 1999 \end{gathered}$	$\begin{aligned} & \hline 2000- \\ & 2002 \end{aligned}$
Little Skate	+	+			-	+	-	-	+	-	+	+	0.33	67\%
Windowpane	+	-			-	-	-	-	-	+	+	-	0.00	67\%
Winter Flounder	+	-			-	-	-	-	+	+	+	+	0.33	100\%
Yellowtail	+	-			+	-	-	+	-	-	-	+	0.33	33\%
Yellowtail	-	+	-	-	-	-	-	-	+	-	+		0.33	50\%
Ocean Pout	+	-			+	+	+	+	+	+	+	+	1.00	100\%
Mackerel	-	-			-	+	+	-	+	+	-	-	0.67	33\%
Herring	-	+			+	+	-	+	-	-	-	+	0.33	33\%
Scallop	+	+	-	+	-	-	+	+	+	+	-		1.00	50\%
Cod	+	-			+	-	-	+	-	-	-	-	0.33	0\%
Haddock	-	-			+	+	+	-	-	-	-	-	0.33	0\%
Red Hake	+				+	-	-	$+$	-	$+$	-	$+$	0.33	67\%
Fourspot	-	-			+	+	-	$+$	-	+	-	+	0.33	67\%
Dogfish	+	-			-	+	+	+	+	+	+	+	1.00	100\%
Goosefish	+	-	-	-	-	-	-	-	-	+	-		0.00	50\%
Goosefish		-	+	-	+	+	-	+	-	+	+	+	0.33	100\%
Plaice	+	-			+	+	-	+	-	+	+	-	0.33	67\%
Pollock	+	-			+	-	+	+	+	-	+	-	1.00	33\%
Silver hake	-	-			-	-	-	$+$	+	-	-	+	0.67	33\%
Witch Flounder	+	-			-	+	-	+	-	-	-	+	0.33	33\%
Redfish	-	+			-	+	+	+	+	+	+	-	1.00	67\%
White hake	-	-			-	-	-	+	+	-	-	+	0.67	33\%
Count All	21	21	4	4	22	22	22	22	22	22	22	19	66	63
Count (+) All	13	5	1	1	10	11	7	15	11	12	10	12	33	34
Percent (+) All	62\%	24\%			45\%	50\%	32\%	68\%	50\%	55\%	45\%	63\%	50\%	54\%

Figure 3.9.1. Time series of survey catch rates for all species comparisons in this analysis. Original catch rates were rescaled for ease in plotting to a mean value of zero and a standard deviation of one.

Figure 3.9.1. (cont.)

Figure 3.9-1. (cont.)
19801985199019952000

Figure 3.9.1. (cont.)
19801985199019952000

Figure 3.9.2. Time series of SLSCR indices of relative fishing power for all species comparisons in this analysis.

Figure 3.9.2. (cont.)

Figure 3.9.2. (cont.)

19801985199019952000

Figure 3.9-2. (cont.)

19801985199019952000

3.10 VPA Performance

The virtual population analysis results under the sensitivity runs (increasing the warp-impacted surveys by arbitrary levels of $10 \%, 25 \%$ and 100%) were examined for signs of improved fit relative to the base run. If in fact the warp-impacted surveys were catching fewer fish than expected, an improved fit and decrease of residuals would be expected under the sensitivity runs. However, of eight stocks examined, five decreased in fit, one remain unchanged, and two improved (Table 3.10.1). On average, the fit remain unchanged for the 10% run, decreased by 1% for the 25% run, and decreased by 4% for the 100% run. The overall fits of the virtual population analyses do not indicate a loss of fish in the warp impacted surveys.

The VPA performance was further examined by comparing the survey and year specific residuals from the sensitivity runs with the base case for each stock. These changes in residual were plotted so that positive values denote an improvement in fit while negative values denote a decrease in fit. Note that due to the backward convergence of VPA these changes will decrease for earlier years. If in fact the warp impacted surveys catch fewer fish than expected, trends in the residuals should be seen, viz., more positive changes than negative ones, especially for the impacted surveys. However, examination of these changes in residuals resulted in either random patterns or sets of decreased fits that were not balanced by associated increased fits. As the warp impacted surveys were increased, the magnitude of change in the residuals increased, as expected, but did not produce more positive changes than negative ones for either all indices or the warp-impacted survey indices taken alone. The changes in residuals from the sensitivity VPA runs do not indicate a loss of fish in the impacted surveys.

Retrospective patterns are common in VPA results and were seen for many of these stocks. If the warp impacted surveys were catching fewer fish than expected, a decrease in retrospective pattern would be expected under the sensitivity runs. However, the sensitivity runs had similar retrospective patterns to the base case for those stocks examined. The changes in retrospective patterns do not indicate a loss of fish in the impacted surveys.

Table 3.10.1 Mean square residual and change in mean square residual relative to the base run (positive values denote an improved fit) from eight stocks assessed with VPA. The three sensitivity analyses correspond to increasing the warp impacted surveys by $10 \%, 25 \%$ and 100%.

	Mean Square Residual			
	base	x 1.10	x 1.25	x 2.00
GBCod	0.58880	0.58822	0.58839	0.59875
GBHaddock	0.69544	0.69435	0.69402	0.70135
GBYTF	0.71389	0.71046	0.70664	0.70068
SNEYTF	1.07064	1.07141	1.07089	1.07124
CCYTF	0.82761	0.83632	0.84960	0.90921
GOMCod	0.44121	0.44242	0.44498	0.46370
Witch	0.76730	0.76576	0.76248	0.75622
Plaice	0.38929	0.39456	0.40283	0.44496

	Relative Change in Mean Square Residual		
	$\times 1.10$	x1.25	x2.00
GBCod	0%	0%	-2%
GBHaddock	0%	0%	-1%
GBYTF	0%	1%	2%
SNEYTF	0%	0%	0%
CCYTF	-1%	-3%	-10%
GOMCod	0%	-1%	-5%
Witch	0%	1%	1%
Plaice	-1%	-3%	-14%
average	0%	-1%	-4%

3.11 Results from Comparative Fishing Power Studies Between Albatross IV and Delaware II

Fishing power studies (calibration experiments) are necessary if significant changes are made to elements of the trawl survey system over the time series. Such studies have been conducted in the past for the NEFSC bottom trawl surveys when elements such as survey ships and trawl doors have been changed (Sissenwine and Bowman, 1978; Byrne and Forrester, 1991; Forrester unpublished ms). These studies rely on side-by-side or repeat towing, with tows taken by one vessel serving as control, and the element of change (e.g., doors or ships) as the primary factor under investigation. Other variables such as the order of tows in repeat towing or the orientation of side-by-side towing (port vs. starboard) are usually randomized.

A one-time change in the trawl gear that affected the catching efficiency and, hence, the survey series was made in the 1980s as the doors were upgraded from a BMV wood and metal door to an all-metal oval polyvalent door (Byrne and Forrester 1991). To appropriately adjust the time series, conversion factors were estimated from replicated towing experiments to maintain the integrity of the time series, as the new doors generally improved the catch efficiency of the survey tows. Similarly, while the Albatross IV has been the primary survey vessel used in the bottom trawl time series, because of various scheduled and unscheduled maintenance and repair issues, the Delaware II has periodically been substituted as the survey ship. Therefore, a series of side-by-side comparison tows have been made since the early 1980s to estimate the relative efficiency of the two ships, by species, for use in calibration (Byrne and Forrester 1991). Following calibration, data from the two vessels are comparable. Since the Albatross will enter the shipyard for extensive repairs in late 2002, it was anticipated that the Delaware II would be used as the bottom trawl survey ship for the winter 2003 and spring 2003 surveys. Therefore, additional side-by-side tows were conducted in conjunction with the spring 2002 bottom trawl survey.

Unbeknownst to the NEFSC at the time, the spring 2002 side-by-side towing between Albatross and Delaware essentially compared one vessel with systematic and progressive trawl warps offset (Albatross) against a ship with small but non-biased warp measurement differences (Delaware warp offsets averaged 18 ", varying randomly between port and starboard sides). Since there are differences in fishing power by ship (Byrne and Forrester 1991), the side-by-side towing results in 2002 cannot be compared directly to measure effects of the warp offset on Albatross. However, the results of the hundreds of side-by-side tows made between 1982 and 1988 can be compared to 2002 results to see if the ratio of Albatross to Delaware catches (by species) have changed (catch rates cannot be compared directly between the two time periods since underlying abundances have changed). Thus, the Delaware effectively serves as control, because its operating procedure was constant before and after the warp offset on Albatross.

If the warp offsets on Albatross had a significant impact on trawl catch efficiency then this would be manifested as a difference in the ratio of Albatross to Delaware catches between time periods. Information on the mean ratio of catches (A/D) and their 95% confidence intervals are presented for the two time periods in Table 3.11 and Figure 3.11.1, for 10 species where there
were sufficient pairs of data to provide meaningful and reliable information for analysis. Sample sizes were 484 pairs of tows in the 1980s and 132 pairs in 2002. Over the 10 stocks considered, the mean ratio of Albatross to Delaware catch in the 1980s was 0.88 , and in 2002 was 0.91 . For the 10 species investigated, five had higher mean ratios in 2002 versus the 1980 s, and 5 the opposite trend. Of the 10 species investigated, there were no statistically significant changes in the ratio of Albatross to Delaware catches in nine; the one significant difference was for yellowtail flounder, which indicated an apparent increase in fishing power of the Albatross relative to the Delaware in 2002. Because the experimental units are the trawl hauls, the results for the 10 species are not independent, and thus the most robust measure of change is based on the composite of species. The apparent increase in catching efficiency for yellowtail flounder could be spurious (one false positive out of ten is not unlikely; on average this occurs in one out of 20 times in tests at the 5% significance level).

In order to discern the ability of this test to detect differences in relative fishing power between ships and time periods, the 2002 data were subjected to a power analysis. Information presented is the percent difference in the ratio of Albatross to Delaware catches, by species, that can be detected at the 5% significance level in a two-sided test. For all species the average difference in catch ratios that could be detected was 21.4%, varying from 12.2% (haddock) to 34.6% (winter flounder; Table 3.11; Figure 3.11.2).

Estimates of fishing power coefficients (ratio of Albatross to Delaware catches) were thus similar between vessels in experiments before and after the warp change on Albatross $I V$. There was only one statistically significant change in this ratio after the warp change in the 10 species examined (and this result could be spurious). These paired comparison tests (although not intended for the purpose when they were conducted) provide robust data to test the warp effects (and include any other systematic changes in the fishing system since 1988 such as the new method for lashing the net to the traveler wire). Based on information from 2002, the catch ratio test can detect differences of between 12% and 35%, with 95% probability, depending on species. Therefore, large (greater than $40 \%-50 \%$) reductions in catchability of the Albatross survey during the period of the warp offset are highly unlikely as they should have been detected.

References

Byrne, C.J., and J.R.S. Forrester. 1991. Relative fishing power of NOAA R/Vs Albatross IV and Delaware II. National Marine Fisheries Service, Stock Assessment Workshop Working Paper SAW/12/P1. 8 pp (mimeo).

Forrester, J.R.S. (m.s.). A trawl survey conversion coefficient suitable for lognormal data. National Marine Fisheries Service, Woods Hole laboratory 17 pp (mimeo)

Sissenwine, M.P. and E.W. Bowman. 1978. An analysis of some factors affecting the catchability of fish by bottom trawls. ICNAF Research Bulletin 13: 81-87.

Table 3.11. Estimated relative fishing power coefficients (ratio of Albatross to Delaware) for side-by-side trawling studies done between 1982 and 1988 and in spring 2002. Data are given for 10 species for which sufficient numbers of catch pairs (Albatross and Delaware) are available to support the analysis. The percent of difference in fishing power that is detectable at the 0.05 level of significance (two-tailed test), based on 2002 data is also presented. Means over species and experiments are given.

Species	$1982-1988$ Ratio	$1982-1988$ SE	$1982-1988$ L-95\% CI	$1982-1988$ U-95\% CI	2002 Ratio	2002 SE	2002 L-95\% CI	2002 U-95\% CI	2002 \% Detectable Difference
Yellowtail Flounder	0.7390	0.0512	0.6386	0.8394	1.1087	0.1118	0.8896	1.3278	19.8
Winter Skate	0.8450	0.1036	0.6419	1.0481	0.7750	0.0874	0.6037	0.9463	22.1
Winter Flounder	0.9745	0.0892	0.7997	1.1493	0.8781	0.1548	0.5747	1.1815	34.6
Four Spot Flounder	0.8396	0.0405	0.7602	0.9190	1.0530	0.1019	0.8533	1.2527	19.0
Cod	0.7190	0.1007	0.5216	0.9164	0.8780	0.1520	0.5801	1.1759	33.9
Haddock	1.1056	0.2069	0.7001	1.5111	0.8096	0.0506	0.7104	0.9088	12.2
Red Hake	0.8965	0.1073	0.6863	1.0167	0.8096	0.0507	0.7102	0.9090	12.3
Silver Hake	1.1040	0.2740	0.5670	1.6410	0.8620	0.0740	0.7170	1.0070	16.8
American Plaice	0.7802	0.0670	0.6489	0.9115	0.8975	0.0851	0.7307	1.0643	18.6
White Hake	0.7818	0.0949	0.5958	0.9678	1.0620	0.1320	0.8033	1.3207	24.4
Mean	0.8785	0.1135	0.6560	1.1010	0.9134	0.1000	0.7173	1.1094	21.4

Paired Tow Experiments

Figure 3.11.1. Results of fishing power calibration studies for NOAA R/Vs Albatross IV and Delaware II during two time periods. Data are the mean ratio of catch by species (A/D) and the 95% confidence intervals

Figure 3.11.2. Calculated ratios of Albatross to Delaware surveys that can be detected at the 0.05 level of significance, using a twotailed test. Analyses are based on 2002 side-by-side trawling experiments

Section 4 GARM Summary Comments on Evidence for Interventions in Trawl Survey Data Beginning in 2000

This section summarizes a variety of investigations on the potential effects of mismarked cables on the Northeast Fisheries Science Center trawl survey abundance indices for 2000 to 2002. There were eight affected surveys (winter 2000, 2001 and 2002; spring 2000, 2001 and 2002; and fall 2000 and 2001). Information collected from dockside warp measurements indicated that the warp mis-calibration was related to the initial biased marking of the 50 meter intervals on one warp and was not due to progressive wire stretch. Therefore, the degree of intervention was thought to be approximately equal in all surveys since winter 2000.

These indices serve as fishery-independent measures of relative population size and are integral components of mathematical models used to estimate absolute population size. The indices of average numbers and weight per tow are derived from a stratified random survey design and the precision of the estimates can be derived using well-known statistical methods. Every method of sampling has limitations that introduce bias into the estimates. If the various factors that introduce bias are constant over time, the ability to detect population trends is not compromised. However, if bias factors change over time, true changes in abundance are confounded with unestimated bias. The relative precision of the survey estimates has important implications for the ability to detect bias changes. In the case of potential bias induced by asymmetric trawl cables, the effect (or signal) must exceed the normal range of variability (or noise) in the survey estimates.

The potential effects of warp offset can be addressed with a combination of deductive and inductive approaches. The magnitude of the difference of marks between the port and starboard cables increases with the amount of cable deployed. Geometric principles suggest that the maximum difference in the area swept per tow at 250 m would be less than 5%; over 96% of the stations sampled in a typical survey occur at depths less than 250 m . If significantly greater reductions in catchability are postulated, they must be attributable to major changes in the performance of the doors such that a) the net does not open as wide, b) the net loses contact with the bottom, c) the headrope height decreases, or d) mechanical vibrations or changes in pressure waves enhance the avoidance behavior of fish. If a) is true, then all species should experience a common rate of decline. If b) is true, bottom tending fish, especially flounders should show greater reductions than round groundfish. Factor c) would reduce the volume of water filtered, and have a similar effect to reduction in area swept. Finally if d) is true, then abundance faster-swimming species and larger-sized individuals would have show greater reductions in abundance than their more sluggish counterparts. These deductions can be used in the interpretation of comparisons across species and can also guide the analysis of trawl mensuration data.

The GARM reviewed the results of a series of 10 different studies to evaluate evidence for an intervention in the NMFS trawl survey data associated with the use of miscalibrated trawl warps (the wire ropes attaching the trawl doors to the vessel).

Information on the potential effects of the warp offset on trawl survey performance evaluated by the GARM included studies of rates of gear damage over time, calculations of trawl geometry as a function of the warp offsets, by depth, patterns in mean/variance relationships in trawl survey catch data by stock, and depth-at-capture information from pre- and post-warp misaligned cruises. Additionally, the GARM evaluated trends (directional changes from year-to-year) in abundance measures before and after the warp mis-marking. The results from side-by-side trawling experiments conducted by the Albatross and Delaware vessels to estimate their relative fishing power, conducted before and after the warp mis-marking on the Albatross were also considered. Standardized catch-rates from surveys conducted with mis-matched warps were compared to survey CPUEs from surveys with comparable spatial and temporal coverage, and unaffected by the problem (e.g., Canadian trawl surveys and USA sea scallop surveys). The GARM also examined evidence for differences in length distributions from survey catches preand post warp offset by evaluating the relative size composition in Canadian and USA spring surveys in overlapping survey areas (e.g. Eastern Georges Bank). Monkfish size composition data collected on industry-based surveys and the winter 2001 Albatross survey were also compared, as were length compositions obtained in side-by-side trawling between Albatross and Delaware in spring 2002.

The GARM examined information on wing-spread and headrope height measurements from experimental warp offsets as presented at the Trawl Warp Workshop conducted during October 2-3, 2002. Using data collected during the September 25-27 warp experiment. Additionally, The GARM examined video information collected in the same warp-offset experiments.

It was postulated by gear experts at the Trawl Warp Workshop that the warp offset would induce changes in gear efficiency resulting from the "long" trawl wing being more prone to damage (as it would be potentially more susceptible to hang-ups). The GARM found no significant change in the frequency of trawl tows experiencing minor or major damage associated with the warp offset as compared to previous surveys with correct warp markings.

It was postulated at the Trawl Warp Workshop that one effect of misaligned warps might be the differential loss of large fish in survey catches. Based on examinations of size distributions of cod and haddock, not only was there little difference in the proportions of large fish but there was little apparent difference in the entire size frequency, by survey series, of these stocks pre- and post warp offset time period in both USA and Canadian series in areas of overlap (northeast Georges Bank). The small relative differences in USA mean length distributions of cod and haddock for the three years before and three years after the warp offset were similar to the differences in the Canadian series in preand post warp periods. Differences in the size composition of large monkfish between industry and Albatross winter surveys were minimal. Size compositions from AlbatrossDelaware paired towing experiments in spring 2002 also indicated no loss of large fish due to the Albatross warp mis-marking.

Trawl mensuration data indicate that wing spread and head rope height did not vary appreciably with offsets that occurred in depths where groundfish typically occur (e.g. warp offset up to about 9 feet), and the net remained open with warp offsets up to 18 feet. Consistent trawl performance within this range of warp offsets is supported by the absence of detectible effects as indicated by the other information reported herein. The GARM noted that catching efficiency might be related to other factors such as bottom contact by the foot rope and vibrations associated with the offset gear. Video information on the former was equivocal (as concluded at the Trawl Warp Workshop where some participants thought the foot rope contact changed with offsets while others did not). Measurements on vibrations and pressure waves in relation to warp offsets were not made.

Calculations based on geometry of the trawl in the offset condition (a worst-case scenario) and the postulated increase in the potential problem in relation to species catches-at-depth indicate that reductions on the order of 50% or larger in trawl survey catches are implausible.

It was postulated by the GARM that if there was a trawl warp effect, more variable catches might result from a misaligned net, influencing the relationship between the variance and the mean. Empirical plots of catch data indicated no apparent differences in the variance compared to mean relationships for the species examined, and plots of the coefficient of variation (standard deviation divided by the mean) of catches in numbers by survey stratum over time showed no obvious differences pre- and post warp offsets.

Since the warp offset increased proportionally with depth, it was postulated that if the catch efficiency of the trawl decreased accordingly, a shallower apparent depth of capture for the deeper-dwelling species in the post-offset period as compared with the pre-offset surveys would be observed. There were no detectable differences in the catch-weighted depth of capture of any species examined relative to the warp offset.

There was no evidence for a trend in the direction of abundance index changes associated with the warp offset, when comparing pairs of adjacent years. For each pair of years (e.g., 1998 versus 1999, 1999 versus 2000, etc.), the direction of the abundance index change was evaluated. While the evaluation of the changes in abundance indices are potentially confounded by underlying changes in resource abundance, the number of stock/index combinations showing positive increases in abundance was virtually identical between 1998-1999 and 1999-2000 (when the intervention was made). The abundance indices for the deepest dwelling stocks did not show differential reductions between years pre and post-warp offsets.

Albatross trawl survey data were compared to independent surveys conducted by other vessels (e.g. Canadian trawl survey and sea scallop dredge surveys aboard Albatross but using a single warp). The frequency of species showing positive relative changes in abundance in Albatross surveys was nearly the same in the three years before (50\%) and the three years after (54\%) the warp change. For all species, the relative fishing power of

Albatross post warp change was slightly but not statistically greater than the comparison vessels.

In examining the various stock assessments, there was no obvious improvement in VPA residual patterns (e.g., reduced serial correlation) or tightness of the fit when trawl survey catches were arbitrarily increased by $10 \%, 25 \%$ and 100%. In fact, VPA model fits showed, on average, a 4\% decrease in model fit when survey indices in 2000-2002 were arbitrarily increased by 100%. Similarly, retrospective patterns that occur in some VPA models persisted even with the arbitrarily increased survey catches. The stock assessment models integrate catch-at-age information and the full time series from the surveys, thereby damping the influence of variation in recent survey indices.

Fishing power studies were conducted between Albatross IV and Delaware II in 2002 (after the warp change on the Albatross) and in 1982, 1983, and 1988. Estimates of fishing power coefficients (ratio of Albatross to Delaware catches) were similar between vessels in experiments before and after the warp change on Albatross $I V$. There was only one statistically significant change in this ratio after the warp change in 10 species examined. In this one case, the ratio of Albatross to Delaware catch of yellowtail flounder increased between the 1980s and 2002. These paired comparison tests (although not intended for that purpose at the time) provide robust data to test the warp effects (and include any other systematic changes in the fishing system since 1988). Specifically, because these paired trawl studies were conducted simultaneously before and after the warp offset they are not confounded by underlying changes in the abundance of the groundfish stocks. Based on information from 2002, the catch ratio test can detect differences of between 12 and 35%, depending on species. Therefore large (greater than 40-50\%) reductions in catchability of the Albatross survey during the period of the warp offset are highly unlikely. For all species combined, the ratio of Albatross-Delaware catches was 0.88 before the warp offset and 0.91 after, suggesting negligible change.

Based on the evidence cited above, there is no indication of a systematic reduction in trawl survey fish catch efficiency due to the trawl warp offsets.

Section 5 Summary of Assessment Advice and Management Implications

5.1 Summary of Assessments

The 20 assessment updates indicate improved biomass and landings and generally lower fishing mortality rates since the mid-1990s (Table 5.1; Figures 5.1.1-5.1.3). The biomass of eight of the stocks was at or above $1 / 2$ B-MSY in 2001, while 12 stocks were below the threshold. Stock biomasses have improved in 19 of the 20 stocks since 1995 (Figure 5.1.2; the exception being Mid-Atlantic yellowtail), with a median percent increase in biomass for all stocks of 177% (range: -33 to 2430 percent). Fishing mortality (F) rates declined for 15 of 19 stocks between 1994 and 2001 (Figure 5.1.3). In the case of Georges Bank yellowtail flounder, F has declined by about 90% since the mid-1990s. Numerous other stocks have experienced reductions in F of 20-50\%, including Georges Bank and Gulf of Maine cod, Georges Bank haddock, witch flounder and American plaice. For several of the stocks where harvest rates are measured by landings to survey biomass ratios (exploitation index methods), relative Fs have been reduced by 50% or more (e.g., Gulf of Maine haddock, pollock and windowpane flounder). The four stocks showing increases in F since 1994 were Cape Cod and Mid-Atlantic yellowtail, white hake and Southern New England/Mid-Atlantic winter flounder. Of the 19 stocks for which 2001 fishing mortality (or its proxy) can be estimated, 10 were fished below FMSY in 2001, and 9 above (Table 5.1; Figure 5.1.1).

Overall landings for the 20 stocks (USA and Canada combined) increased from 49,700 mt in 1995 to $69,400 \mathrm{mt}$ in 2001 (a 40% increase). The primary stocks contributing to increased groundfish landings were Georges Bank haddock, Georges Bank yellowtail flounder, Georges Bank cod, and Georges Bank winter flounder. Together, these four stocks accounted for a combined increase in landings of 21,700 mt; greater than the cumulative 20 stock total increase of 19,700 mt between 1995 and 2001. Stocks declining in landings since 1995 were primarily pollock, Gulf of Maine cod and white hake.

Trends in biomasses for the various stocks since 1990 are summarized in Figure 5.1.2. The various stocks are grouped by assessment area, based on where the stock distributions and landings are predominant (since some stocks occur in more than one of the areas). Biomasses generally declined in all regions from 1990 to 1995. Increases since have been most rapid on Georges Bank and the Gulf of Maine, with biomass increases for four of the five Southern New England-Mid-Atlantic stocks more modest.

Two stocks continue to have extremely high fishing mortality rates - Mid-Atlantic yellowtail flounder and Cape Cod yellowtail flounder (Figure 5.1.1). In the former case, assessment scientists will present analyses to SARC 36 recommending that the MidAtlantic and Southern New England yellowtail resources be combined. The case of Cape Cod yellowtail remains enigmatic, in that the apparent mortality rates on the stock remain exceptionally high despite the reductions in F seen in co-occurring stocks (e.g., Gulf of Maine cod, and winter flounder). The GARM recommended additional biological
studies, including tagging, to better understand the relationships between Cape Cod yellowtail and adjacent stocks of the same species.

For the remaining seven stocks where fishing mortality exceeded F-MSY, the average reduction necessary to reach that level was 52% (range: 37% for Southern New England/Mid-Atlantic winter flounder to 64%, witch flounder).

In order to achieve biomass targets by appropriate dates, F-rebuild was computed for each stock using stochastic medium-term projection methodologies. The F reductions required to achieve the biomass goals by the target dates are greater than the F reductions required to achieve F-MSY on a stock-by-stock basis (Table 5.1).

Table 5.1. Summary of fishing mortality rate and biomass status for 20 Northeast groundfish stocks in 2001. Projections of maximum F to achieve B-MSY (F-Rebuild) assume F in $2002=0.85 * \mathrm{~F}$ in 2001, and stocks should be rebuilt by 2009, unless otherwise noted.

Species	Stock	F-MSY	F-2001	$\overline{\% F}$ Reduction to achieve F-MSY	F-Rebuild	$\%$ F Reduction to achieve F-Rebuild	$\begin{aligned} & \text { B-MSY } \\ & \text { (‘000 mt) } \end{aligned}$	$\begin{gathered} \text { B-2001 } \\ \text { (‘000 mt) } \end{gathered}$	$\begin{gathered} \text { B-2001 } \\ \% \text { of } \\ \text { B-MSY } \end{gathered}$
Cod	GM	0.23	0.47	51	0.11	76	82.8	22.0	27
	GB	0.18	0.38	53	0.15*	61	216.8	29.2	14
Haddock	GM	0.23+	0.12	none	0.20	none	22.17\#	10.31	47
	GB	0.26	0.22	none	0.20	10	250.3	74.4	30
Yellowtail	CC	0.21	1.97	89	0.12	94	8.4	1.9	23
	GB	0.25	0.13	none	0.22	none	58.8	38.9	66
	SNE	0.27	0.46	41	0.10**	78	45.2	1.9	4
	MA	0.33+	2.17	85	0.30	86	12.91\#	0.21	2
Witch Flounder		0.16	0.45	64	-	none	19.9	11.3	57
American Plaice		0.17	0.43	60	0.10	77	28.6	13.8	48
Winter Flounder	GM	0.26	0.14	none	-	none	5.4	5.37	99
	GB	0.32	0.25	none	-	none	9.4	9.8	104
	SNE-MA	0.32	0.51	37	0.12	76	30.1	7.6	25
White Hake		0.55+	1.36	60	0.50	63	7.70\#	2.35	31
Pollock		5.88+	3.55	none	4.83	none	3.0\#	1.60	53
Redfish		0.04	0.01	none	0.01***	none	236.7	119.6	51
Ocean Pout		0.31+	0.007	none	n/a	n/a	4.90\#	2.46	50
Windowpane	Northern	1.11+	0.1	none	-	none	0.94\#	0.79	84
	Southern	0.98+	0.69	none	0.73	none	0.92\#	0.21	23
Atlantic Halibut		0.06	unknown	unknown	unknown	unknown	5.4	0.2	4

$+=$ fishing mortality rate proxy is catch divided by the survey abundance index
\# = biomass target based on survey abundance index

* $=$ rebuilding period is 2019 for GB cod
** = the SNE YT stock cannot be rebuilt to long-term biomass target by 2009 even if $\mathrm{F}=0.0$ (using recruitment from last 10 years)
*** $=$ rebuilding period is 2041 for redfish

Groundfish Stock Status - 2001

Figure 5.1.1. Status of 19 Northeast groundfish stocks relative to status determination criteria of fishing mortality and stock biomass. The data are expressed as ratios of the 2001 F and biomass to the F-MSY and B-MSY values for each stock. Halibut status not plotted

Biomass Indices for 20 Groundfish Stocks 1990-2001

Figure 5.1.2. Changes in stock biomass (spawning biomass or total biomass survey index) for 20 Northeast groundfish stocks, 1990-2001. The biomass index plotted for each stock is noted. Stocks are grouped by the area of predominant concentration (Gulf of Maine, Georges Bank, Southern New England - Mid-Atlantic Bight).

Figure 5.1.3. Changes in fishing mortality rate or exploitation rate indices for 19 stocks of Northeast groundfish between 1994 and 2001. The fishing mortality rate in each year is expressed as a ratio of the F-MSY value for each stock (a ratio of 1 means the stock is fished at F-MSY).

5.2 Sensitivity of Stock Assessment Calculations to Potential Warp Offsets

Given the absence of measurable intervention effects associated with the warp offsets, the GARM endorsed the nominal assessment calculations as the basis for management decision-making. However, in order to examine the robustness of the management advice to potential variations in the survey catches, the GARM carried out a series of sensitivity analyses. These analyses are reflected in each of the stock assessments presented in section 2 of this report, and specifically as the "cross" plots of sensitivity of assessment calculations to arbitrary increases in survey indices in years influenced by the warp offsets.

Sensitivity runs conducted for the various assessments included arbitrary increases in trawl survey catches for affected surveys of $10 \%, 25 \%$ and 100%. The first two scenarios consider decreases in survey catch rates that are at or below the limits of detection of the analyses of offset effects carried out at the GARM. The 100% increase is not supported by analyses carried out at the meeting, the increase is only included for illustrative purposes. An effect of this magnitude would likely have been detectable in the various exploratory data analyses. It should be noted that these arbitrary increases in survey catches were used in assessment calculations across all species, including those found in shallow depths (and thus less likely to be negatively influenced by warp offsets, e.g., yellowtail flounder, winter flounder, windowpane).

The confidence intervals from the $+10 \%$ and $+25 \%$ sensitivity runs overlapped the nominal assessment results for all stocks therefore changes of this magnitude have no significant impact on estimates of F and SSB (Table 5.2). The stock assessment models integrate unaffected catch information from commercial and recreational fisheries and the full time series from the research vessel surveys, reducing the influence of variations in recent survey indices.

In only three of 20 stocks did the qualitative status determination for overfished (e.g., $<1 / 2$ BMSY) change by adding arbitrary increases in survey abundance indices (Table 5.2). In two cases (American plaice, and Gulf of Maine haddock), the stocks were near $1 / 2$ BMSY based on nominal assessment results. In these cases the 10% increases in surveys were sufficient to change biomass status determination. Of the 18 other cases, arbitrary increases in recent surveys of 100% changed only the biomass status for white hake.

In only one case (Southern New England yellowtail flounder) did the status determination regarding the overfishing criterion (fishing mortality rate) change with arbitrary increases in survey catches up to 100%.

The overall management advice is robust to variations in recent survey catch rates.

Table 5.2. Summary of status determinations for 20 New England groundfish stocks. Sensitivity of status determination to arbitrary increases in trawl survey abundance indices for 2000 to spring 2002 are given for three levels of increase $(+10 \%,+25 \%$ and $+100 \%)$. Overfishing refers to the current fishing mortality rate relative to F-MSY. Overfished refers to the current biomass relative to B-MSY. Asterisks $\left({ }^{*}\right)$ indicate cases where the 80% bootstrap confidence interval for a particular criterion does not overlap that from the nominal assessment run. Shaded cells are where status determination changes from the nominal assessment when survey catch data are increased. SSB is spawning stock biomass, TSB is total stock biomass.

Species	Stock	Status Criterion	Nominal Status	Status +10\%	Status +25\%	Status +100\%
Atlantic Cod	Gulf of Maine	F	overfishing	overfishing	overfishing	overfishing
		SSB	overfished	overfished	overfished	overfished *
	Georges Bank	F	overfishing	overfishing	overfishing	overfishing *
		SSB	overfished	overfished	overfished	overfished *
Haddock	Gulf of Maine	F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	overfished	not overfished	not overfished	not overfished
	Georges Bank	F	no overfishing	no overfishing	no overfishing	no overfishing
		SSB	overfished	overfished	overfished	overfished *
Yellowtail Flounder	Cape Cod	F	overfishing	overfishing	overfishing	overfishing
		SSB	overfished	overfished	overfished	overfished
	Georges Bank	F	no overfishing	no overfishing	no overfishing	no overfishing *
		SSB	not overfished	not overfished	not overfished	not overfished *
	S. New England	F	overfishing	overfishing	overfishing	no overfishing *
		SSB	overfished	overfished	overfished	overfished *
	Mid-Atlantic	F	overfishing	overfishing	overfishing	overfishing
		TSB	overfished	overfished	overfished	overfished
Witch Flounder		F	overfishing	overfishing	overfishing	overfishing *
		SSB	not overfished	not overfished	not overfished	not overfished *
American Plaice		F	overfishing	overfishing	overfishing	overfishing
		SSB	overfished	not overfished	not overfished	not overfished *

Table 5.2 (continued).

Species	Stock	Criterion	Nominal	+10\%	+25\%	+100\%
Winter Flounder	Gulf of Maine	F	no overfishing	no overfishing	no overfishing	no overfishing
		SSB	not overfished	not overfished	not overfished	not overfished
	Georges Bank	F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	not overfished	not overfished	not overfished	not overfished
	S. New England-Mid-Atlantic	F	overfishing	overfishing	overfishing	overfishing *
		SSB	overfished	overfished	overfished	overfished *
White Hake		F	overfishing	overfishing	overfishing	overfishing
		SSB	overfished	overfished	overfished	not overfished
Pollock		F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	not overfished	not overfished	not overfished	not overfished
Acadian Redfish +		F	no overfishing	no overfishing	no overfishing	no overfishing
		SSB	not overfished	not overfished	not overfished	not overfished
Ocean Pout		F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	Not overfished	not overfished	not overfished	not overfished
Windowpane Flounder	Northern	F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	not overfished	not overfished	not overfished	not overfished
	Southern	F	no overfishing	no overfishing	no overfishing	no overfishing
		TSB	overfished	overfished	overfished	overfished
Atlantic Halibut		F	unknown	unknown	unknown	unknown
		SSB	overfished	overfished	overfished	overfished

[^8]
5.3 Consistency of NMFS Bottom Trawl Survey Data

Evidence for a postulated decrease in catch efficiency due to trawl warp offsets during 2000 - 2002 spring NMFS bottom trawl surveys is reviewed and summarized in sections 3 and 4 of this report. Given the interest in this topic and other issues that were raised concerning the catch efficiency of the fishing system in recent years (NEFSC 2002), it is useful to consider long term trends in the indices and how they relate to other measures of abundance. The total, multispecies abundance index (kg/tow, all species combined) was computed for all offshore survey strata consistently sampled in the NMFS fall survey during 1963-2001 (Figure 5.3a). This series showed initial high abundance of all species, followed by a precipitous decline in the mid-1960s to a low in the mid-1970s. The index increased in the late 1970s-early 1980s, then declined to a time series low in the early 1990s. Recent indices have increased steadily to a level similar to those in the early 1980s. The 2001 index was $141 \mathrm{~kg} /$ tow - about 67% of the time series high in 1964 (209 kg/tow).

The second index is that from the Massachusetts Division of Marine Fisheries, fall bottom trawl survey (Figure 5.3b). This series uses a different vessel and trawl gear and fishes at generally shallower depths (primarily within 3 miles of the Massachusetts coastline) than the NMFS survey. This series began in 1978, and its all time high value ($311 \mathrm{~kg} /$ tow) occurred in that year. The 2001 fall Massachusetts index was 257 kg , or 83% of the 1978 value. The series also shows a declining trend in the early 1990s, followed by an increase in the past several years.

The third survey series (Figure 5.3c) is a subset of the NMFS fall trawl series only for those offshore survey strata near the Massachusetts coast. The NMFS survey generally samples deeper waters than the Massachusetts survey, but the species mix of the reduced NMFS survey set is more similar to that sampled inshore than the NMFS survey as a whole. This series shows trends in abundance similar to the NMFS series and the Massachusetts Division of Marine Fisheries Series. The time-series high index was in 1983 at $301 \mathrm{~kg} /$ tow, and the 2001 index was $215 \mathrm{~kg} /$ tow, or 71% of the maximum.

The fourth series displayed (Figure 5.3d) is the "principal groundfish and flounders" index computed from the fall survey series. The index includes 12 groundfish and flatfish species, and all offshore survey strata, and is smoothed with an autoregressive moving average model. This index peaked in 1963 at $72 \mathrm{~kg} / \mathrm{tow}$, and the 2001 value was $36 \mathrm{~kg} /$ tow (50% of the maximum).

The overall trends in these indices and the general comportment of the NMFS and MassDMF surveys do not support the hypothesis of highly reduced catch efficiency in the NMFS surveys during the period of warp offsets or in the recent past (as compared with earlier periods of the time series). The Massachusetts and NMFS series do not necessarily index the same things (i.e., the MA-DMF inshore survey catches a higher proportion of juvenile fish than does the offshore NMFS survey), but the trends and scale of indices in these series are comparable. If the NMFS survey has become $1 / 10^{\text {th }}$ as efficient as it used to be (as was proposed at the Trawl Warp Workshop, NEFSC 2002),
then the 2001 index for the full NMFS trawl survey would be 1.41 metric tons per tow, roughly 6.8 times the maximum (1964) value. Even if the recent catch efficiency were reduced by a factor of two as compared with earlier years, this would generate indices inconsistent with the trends in other survey series, and at levels that are inconsistent with population sizes of fished resources or landings patterns. For example, the 1964 survey index for all species was 209 kg . The maximum groundfish catch ever taken off the Northeast USA was in 1965 (766,000 metric tons), and the index declined steeply by the fall of 1965 (Figure 5.3a). By comparison, landings of groundfish in 2001 were about 80,000 metric tons, and the index of abundance increased modestly from 2000. Doubling of the 2001 trawl survey catch would produce an value equivalent to the highest value ever seen in the principal groundfish and flounders index (1963), and 36\% higher than the maximum value of the fall survey series for all species (Figure 5.3a).

Information from the NEFSC, Massachusetts DMF, and other applicable fisheryindependent surveys are consistent in that they show a strong and continuing recovery of the groundfish complex in recent years, roughly to levels last seen in the early 1980s.

Reference

NEFSC 2002. Report of the Workshop on Trawl Warp Effects on Fishing Gear Performance, 2-3 October, 2002, Woods Hole, MA. Northeast Fisheries Science Center Reference Document 00-15. 80 pp .

Figure 5.3. Trends in bottom trawl survey abundance indices, 1963-2001. The panels display observed and smoothed (bold lines) indices for: (a) the NMFS Fall survey (kg/tow) for all species, (b) the Massachusetts Division of Marine Fisheries Fall, (c) the NMFS Fall offshore survey for strata near the Massachusetts coast, and (d) the principal groundfish and flounders abundance index for the NMFS fall bottom trawl survey (smoothed series).

Section 6 Comments and Recommendations

This section summarizes various generic discussion items at the GARM meeting, and provides additional recommendations.

6.1 Projections

Medium-term projections for assessments were conducted for years 2002-2009, with the exception of Georges Bank cod which had a 2002-2019 time horizon. The index assessments were projected assuming a 10% growth rate in stock size each year to determine the expected catch under this condition. The ASPIC assessment of Georges Bank winter flounder was projected assuming the r and K estimates from each bootstrap of the tuning indices. This projection used the F needed to achieve Bmsy in 2009 with 50% probability over all the bootstraps. The two sources of uncertainty included in the age-based projections were initial stock abundance at age in 2001 and future recruitment. Other potential sources of variability, such as implementation uncertainty and changes in weight-at-age, maturity-at-age, selectivity-atage, or natural mortality, were not included. Therefore, the confidence intervals presented in the assessment projections are minimal estimates of future uncertainty.

More importantly, the lack of inclusion of other sources of uncertainty in the projections could bias the estimated probability of achieving a biomass target. If unmodeled uncertainties were symmetrically distributed about the median, then the probability of achieving a biomass target would remain unchanged. However, if unmodeled uncertainties were not symmetrically distributed about the median, the probability of achieving a biomass target would either decrease or increase. For example, although many of the age-based assessments exhibited retrospective patterns, no corrections were made to the 2001 population abundances. Since many of the retrospective patterns showed an overestimation of SSB in the terminal year, the projections may be biased upwards in terms of the initial stock abundance and produce overly optimistic rebuilding trajectories. A recent examination of stock assessment projections using a wide range stocks found that unmodeled uncertainties were not symmetrically distributed in general (Patterson et al., 2001). In particular, Patterson et al. reported a substantial bias towards being overly optimistic in estimating the probability of achieving biomass targets. They recommended using multiple model structures and assumptions combined with model-averaging methods, decision tables, or management procedure simulations to more accurately reflect inherent uncertainties in management advice. Time constraints have not allowed their approach to be used in this report. As a result, it is recommended that projection results be viewed with caution since they may overstate the true probability of achieving biomass targets.

Reference

Patterson, K., R. Cook, C. Darby, S. Gavaris, L. Kell, P. Lewy, B. Mesnil, A. Punt, V. Restrepo, D.W. Skagen, and G. Stefánsson. 2001. Estimating uncertainty in fish stock assessment and forecasting. Fish and Fisheries. 2: 125-157.

6.2 Use of Exploitation Ratios

For stocks where instantaneous rates of fishing mortality cannot be calculated (e.g., age or length data are not sufficient for age- or length-based analytical assessment), proxies for the exploitation rate have been used for reference point determination and status evaluation (NEFSC 2002). These proxies for exploitation rate involve dividing the landings by an annual biomass index determined from trawl survey data. Generally, a three-year moving average of the survey data were used as the annual index to smooth variability from survey sampling. In most cases the indices used in such analyses were the total catch per tow of all size groups combined. This index was used as the denominator of the relative exploitation ratio, with the numerator the catch in weight (usually only the landings are known for the stocks having incomplete age- or lengthbased data).

Application of this technique should allow a relatively robust evaluation of the relative rate of exploitation over time. However, there is a potential mis-match in these ratios since a portion of the biomass index (in the denominator) comprises sizes not contributing to the catch (e.g., juvenile fish). The effect of the use of the total biomass index for all sizes may not be substantial as juvenile fish are likely to have a disproportionately lower influence on the total biomass index owing to their lower average individual weights. For the various stocks so assessed, only the white hake assessment uses catch and survey indices comprising the same size groups (e.g., fish $>60 \mathrm{~cm}$). It is recommended that when calculating such indices in the future, that only size groups likely to be included in the catches (landings and discards) be used to develop indices of exploitation.

Reference

NEFSC 2002. Final report of the Working Group on re-evaluation of biological reference points for New England groundfish. Northeast Fisheries Science Center Reference Document 02-04. 123 p .

6.3. Quality of Catch-at-Age Sampling

Estimates of the age composition of the catch are a primary requisite for age-structured assessment techniques such as virtual population analysis (VPA). Of the 20 groundfish stocks reassessed herein, 10 stocks use age-based assessments (section 2). In order to estimate the catch-at-age, age composition estimates are derived from port sampling of landings, and sea sampling of discards (if sufficient sampling exists). Length and age samples are obtained at the port of landing by sampling at dealer's businesses, fish houses and auctions. The sampling is stratified by market category since increased sampling of large (old) fish is usually the goal, because ages at length are more variable for larger fish.

Port sampling performance is summarized in appropriate tables included in the various species sections. Sampling information for 9 of the 10 stocks is summarized for the past four years (1998-2001) by the number of samples obtained (e.g., number of individual samples aggregated over market categories by species), the number of fish lengths measured, and the number of age structures (e.g., scales or otoliths) aged for the species (Table 6.3; Figure 6.3). One measure of sampling intensity is the number of metric tons of landings per sample obtained. With this metric, more intensive sampling is indicated by a relatively low number (fewer tons represented by each sample).

Overall sampling increased substantially between 1998-1999 and 2000-2001 (Table 6.3; Figure 6.3). The total numbers of samples and ages more than doubled from 1998-1999 to 2000-2001 and the number of lengths increased by over 60%. The sampling increase was most apparent in 2000, but 2001 sampling, particularly for ages, was much higher than in 1998 and 1999. Sampling intensity increased from $75 \mathrm{mt} / \mathrm{sample}$ to $41 \mathrm{mt} / \mathrm{sample}$ in 2000 and decreased to 69 $\mathrm{mt} / \mathrm{sample}$ in 2001. Overall landings increased 61% for the nine stocks summarized, thus rates of sampling have more than kept pace with the landings increases. Sampling intensity varied by stock; improved sampling in recent years is most apparent for Gulf of Maine cod, Georges Bank haddock, and Georges Bank yellowtail (although the number of t /sample for Georges Bank yellowtail is higher than for most stocks).

The GARM considered the port sampling issues in the larger context of the overall level of sampling required to characterize catch-at-age with acceptable levels of precision for use in agebased assessments. This information is particularly important since the overall level of landings of these stocks is expected to increase significantly in the next few years. The GARM recommended that a statistical bootstrapping technique be applied to the landings-at-age data to estimate the variance in landings-at-age and to investigate the stability of such estimates given various sampling rates. The GARM noted that, because of cluster sampling issues, increasing the numbers of different vessel trips sampled, rather than just the total lengths and ages obtained would likely have the most positive impact on the quality of landings-at-age estimates.

Table 6.3. Summary of commercial catch-at-age sampling for VPA stocks, 1998-2001.

stock	year	samples	lengths	ages	Landings (mt)	mt/samp
gb cod	1998	80	7076	1545	6959	87
	1999	68	5987	1503	8061	119
	2000	155	12219	2951	7617	49
	2001	108	8389	2389	10635	98
gb had	1998	24	1692	686	1841	77
	1999	28	2268	595	2775	99
	2000	51	3699	1256	3366	66
	2001	72	5276	1985	4637	64
gb yt	1998	9	1426	293	1823	203
	1999	11	1542	300	2066	188
	2000	11	2762	605	3678	334
	2001	30	3400	814	3768	126
sne yt	1998	10	1134	239	400	40
	1999	9	1167	333	700	78
	2000	28	1146	984	700	25
	2001	18	1454	1224	800	44
ccyt	1998	13	6054	195	1169	90
	1999	8	4247	106	1089	136
	2000	61	11696	1298	2279	37
	2001	24	7440	628	2362	98
gm cod	1998	46	4205	912	4156	90
	1999	15	1305	350	1636	109
	2000	61	4687	1300	3730	61
	2001	113	7326	2436	4416	39
witch	1998	23	1904	242	1849	80
	1999	41	3091	359	2121	52
	2000	110	2439	1314	2439	22
	2001	43	3609	704	3024	70
plaice	1998	53	5434	824	2234	42
	1999	86	8784	1275	1718	20
	2000	108	7113	1155	2497	23
	2001	53	5232	663	2602	49
gm wf	1998	19	1504	341	637	34
	1999	9	1036	149	253	28
	2000	64	5827	883	382	6
	2001	14	3644	246	571	41
total	1998	277	30429	5277	21068	76
	1999	275	29427	4970	20419	74
	2000	649	51588	11746	26688	41
	2001	475	45770	11089	32815	69

Catch-at-Age Sampling for VPA Stocks

Figure 6.3. Summary of biological sampling for catch-at-age estimation, 1998-2001. Data are the number of samples, number of individual length frequency samples, numbers of fish aged and the sampling intensity (metric tons of landings per sample).

6.4 Recommendations

Research recommendations appropriate to individual stocks are summarized in appropriate chapters in section 2 of this report. Listed below are research recommendations of a more generic nature:

- Based on considerations outlined in section 6.1, a retrospective evaluation of the performance of stock projections used in support of management is recommended. Such an analysis could shed light on the utility of various recruitment assumptions and other sources of uncertainty in stock and landings projection approaches.
- Index methods for biomass and fishing mortality status determination are used for a number of the groundfish stocks for which age- or length-based catch and abundance information are lacking. The performance of these indices should be evaluated and uncertainty measures routinely incorporated in the determination of stock status.
- Port sampling for estimating landings-at-age is an important component of stock assessment. The overall levels of port sampling have increased since 1998, as landings have increased. Maintenance, and in some cases, improvement in the rates of sampling are required to ensure adequate levels of sampling for estimating the catch-at-age. Further, a simulation (re-sampling) study is recommended to evaluate the reliability of catch-at-age estimates in relation to the rates of sampling.
- Estimation of fishery discards remains problematic for these stocks, as the overall level of sea sampling prior to 2002 was low and variable by fishery type. Increased rates of sea sampling coverage (occurring in 2002 and beyond) should allow a statistical evaluation of the reliability of discard estimates, and the development of target sampling rates in order to reliably estimate discard mortalities at age for inclusion in assessments.
- Some stocks might have sufficient age and length-based information to upgrade the assessment type from an index basis to an age structured assessment (e.g., Gulf of Maine haddock). Age-structured modeling, even with partial information, may improve the basis for status determination for these stocks, and these improvements should be investigated.
- The GARM considered a variety of studies, including comparative fishing experiments developed to evaluate ship effects, to better understand the potential effects on survey indices due to the warp offset issue. The GARM notes that in order to evaluate the warp offset issue more directly, appropriately designed experimentation with warp offset and warp aligned tows is considered the most direct method.

Appendix 1.

Centre for Independent Experts University of Miami

Independent Experts Report of the Groundfish Assessment Review Meeting Woods Hole 8-11 October 2002

Dr C. D. Darby
The Centre for Environment Fisheries \& Aquacultre Science (C.E.F.A.S.) Methods and Multispecies Modelling Group
Lowestoft Laboratory, Pakefield, Lowestoft, UK.

Executive summary

The Groundfish Assessment Review Meeting (GARM) took place in Woods Hole on the $8-11$ October 2002. The meeting peer reviewed stock assessments for 20 Northeast USA groundfish species.

The GARM meeting was competently chaired, organised, and supported by NEFSC staff. All of its terms of reference were addressed within the limited time available. Assessment co-ordinators were prepared for the meeting and presentations of data and model results were well structured. The ability, attitude, and team-work demonstrated by the meeting participants was of a comparable, high standard to the better quality assessment meetings that I have attended within the International Commission for the Exploration o the Sea (ICES), Canada, and the North Atlantic Fisheries Organisation (NAFO).

The procedures adopted for the assessment reviews follow similar protocols and standards to those used within ICES and NAFO. Each assessment was reviewed in detail, and suggestions and criticism were readily accepted and incorporated into the assessment models or taken forward within research recommendations.

The meeting was the most optimistic assessment meeting that I have attended. For the majority of stocks, fishing mortality has gradually been reduced and in response spawning stock biomass (SSB) is rebuilding.

Unfortunately, the trawl offset issue clouded what would otherwise have been a relatively straightforward assessment review. The attitude of the NEFSC staff to the data analysis required for resolving this issue was open-minded and thorough. The conclusion that there were limited or no effects of the offset on survey catch rates was robust to the type of analysis and the data sets used. Sensitivity tests of the assessments revealed that even if a substantial warp effect had not been detected by the statistical analysis, the conclusions that the stocks are currently being over-fished would not change.

Conduct of the meeting

Review

The meeting presentations and discussions were open and balanced, and sufficient time was allowed for each issue. It is unfortunate that the invitation to attend was not taken up by the fishing industry; this would have provided a useful opportunity for the industry to contribute to the process and add its experience on the state of the stocks.

The GARM meeting was well chaired and organised by Dr. Steve Murawski who, given the limited time available for the review of 20 stocks, kept the meeting on track and discussions relevant.

The GARM had high-quality background support from the NEFSC staff, prior to and during the meeting. Without this support, the meeting would have been considerably more difficult. The Web site and LAN set up for the meeting allowed rapid dissemination of information and results and both were extremely successful.

At the meeting, the assessment co-ordinators were well prepared. Suggestions and criticism were readily accepted and most of the additional work required by the GARM was completed during the evenings, after the meetings, in time for review the next day. The ability, attitude, and team-work demonstrated by the meeting participants was of a comparable, high, standard to the better quality assessment meetings that I have attended within ICES, Canada, and at NAFO.

The NEFSC Modelling Group provided invaluable support to the meeting on the issue of the trawl warp offset. The extraction and statistical analysis of the data used in the resolution of this issue required a substantial amount of effort by that group in a very short time period. Their input was much appreciated by the GARM and the external reviewers.

Recommendations

I have two minor criticisms that apply to the review procedure and logistics.

- I could have achieved more if I had earlier notice that the meeting was to take place. Reading of the papers and supporting documentation was carried out at short notice and more time to assimilate and link together the information would have been a distinct advantage.
- Although some of the important background documents were available on the Web site, many were not. Electronic versions of all the major texts referred to in the report should be accessible. This issue was raised during the meeting and will be addressed for the current report.

Data

Review

During recent years, there has been an increased pressure on the fishery to reduce fishing mortality. In general, this has led to high-grading and dumping when trip limits are exceeded. In some fisheries, the reduction in commercial landings has also led to the recreational fishery becoming a major proportion of the catch.

Data on the number of samples for length and age were presented at the meeting for each stock. The stock co-ordinators were aware that the level of sampling has been very low, and that this has created problems in the collation of assessment data sets. In recent years, the situation has improved as the level of sampling of the commercial catch has increased.

Recommendations

- The level of sampling of the commercial landings has increased in recent years and is described within the assessment texts as currently being "adequate". The magnitude of the error resulting from sampling should be enumerated annually.
- Calculations for the levels of random error associated with sampling for length and age distributions are routinely submitted to ICES Working Groups as part of a report on the quality and sources of the data being used for the assessment. This should be a routine part of the preparation of assessment data for the stocks examined by the GARM.
- In many cases, catch data are prorated from logbook information. If not currently available (there was no obvious reference in the stock assessment texts), a study of the levels of uncertainty that this raising procedure introduces to the catch data should be considered.
- The intensity of sampling of the discards and recreational landings does not appear to have been increased in line with their magnitude; consequently, increasing levels of uncertainty are associated with the assessment results.
- The retrospective patterns shown by the majority of the assessments, overestimation of SSB, and under-estimation of F could be a direct result of under estimation of discard mortality.

The Review and Updating of Stock Assessments

Review

All of the assessment Terms of Reference for the GARM were covered. Assessment models were fitted to the updated survey and catch data and stock status determined for each of the stocks. The fitting procedures, model diagnostics, and results were discussed in detail, and the conclusions drawn about the stock dynamics are consistent with the model estimates and associated uncertainties.

Assessment co-ordinators were well prepared and organised. The presentations of data and model results were well structured. The procedures adopted for the assessment reviews follow similar protocols and standards to those used within ICES and NAFO. Each assessment was reviewed in detail and suggestions and criticism were readily accepted and incorporated into the assessment models or taken forward within research recommendations.

The age-based models that were applied to assess the recent stock dynamics are standard methods that are routinely used within other fisheries management institutions, and the review protocol adopted by the meeting was appropriate for those methods. The index based assessment methodology approach to the estimation stock status and reference points, that is being developed at the NEFSC, is more advanced than methods applied at other North Atlantic research and management organisations.

The potential influence of the trawl warp offset on model estimates was examined and discussed at all stages of the assessment process. Within each stock, the sensitivity of the assessments to the trawl warp issue was thoroughly explored in a consistent approach to the problem. The approach was discussed and developed prior to the meeting, which was a useful time saver.

Recommendations

- Single calibration series assessments were used by the GARM to examine the agreement between stock estimates derived from independent survey series. Caution is needed when applying this approach, in that the series should cover the whole age range and spatial distribution of the exploited fraction of the stock used in the assessment model. Discussions within the GARM showed that this issue was being addressed in the current approach and in the research recommendations.
- In only a limited number of cases were alternative model structures used to examine the robustness of the results to model structural uncertainty (e.g. VPA vs. ASPIC). Recent studies have shown that this uncertainty can be as significant as random errors about the assumed model. Given the uncertainty introduced to the assessment by the low levels of sampling in recent years, I would recommend a comparison with models that allow for uncertainty in the catch at age data.
- It was surprising that age based stock assessments were not being carried out for Gulf of Maine haddock and pollock. Ageing of these species is relatively straightforward. It should therefore be possible to construct age-based assessments even if only for recent short periods of time. Such models could be used to
evaluate growth over-fishing reference points for comparison with the index based analyses presented at the GARM.
- The level of mortality estimated for the Yellowtail stocks is very high for a flatfish species. This is especially the case for the Cape Cod stock, which is increasing under severe fishing pressure. A co-operative tagging study, carried out with the fishing industry, could provide valuable information on growth rates, ageing and stock identity. This information could help resolve this apparent anomaly.
- The bootstrap procedures used to derive confidence limits for F and SSB do not include all of the uncertainty in the assessment process. They are model conditioned and do not include errors in the catch data or retrospective bias. They are therefore under-estimates of the uncertainty in F and SSB. This problem is not unique to the GARM/Working Group models. It is a research area within fisheries science that is currently being actively explored. The GARM was up to date with the most recent thinking on these issues and its advice was given with regard to them.
- Further development of the index based assessment methodology should be encouraged, especially with regard to the estimation of the uncertainty associated with stock and reference point parameters.

Management Advice and Reference Points

Review

The GARM did not update any of the reference points established by the Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish. For each stock, the recent dynamic history of the population and the fishery were discussed in detail in relation to the biomass and fishing mortality benchmark reference points. The sensitivity, of the stock status relative to reference point benchmarks, to the trawl warp issue was continually raised within the meeting and addressed using sensitivity analyses. The conclusion that the status of the stocks relative to management reference points is robust to the relatively minor changes in catchability that would have resulted from the trawl warp offset.

Recommendations

- At least two of the stocks for which the GARM provides management advice (pollock and Atlantic halibut) are not "closed" entities but are part of a much larger population complex. The units are not true stocks with negligible immigration and emigration, as required for a full understanding of the population and fishery dynamics. Whilst management of these stocks using reference points derived from the index method provides an indication of the relative exploitation status of the stock sub-unit, the stock dynamics could be controlled by events taking place outside of the management area, e.g. recruitment. As such, spawning stock and recruitment analyses and reference points for these stocks could be highly ambiguous. The GARM was aware of the problem and is monitoring the
situation. It is strongly recommended that the assessment and management of such stocks be addressed in spatial units that equate to the scale of their system dynamics.
- In some texts, $\mathrm{B}_{\text {msy }}$ is quoted when SSB values have been used for the determination of the reference point. Although the authors are aware of their meaning and glossaries are sometimes provided at the beginning of reports, if the reader is not aware of the potential for error or the text is extracted in isolation, this will lead to confusion and mistakes. It is strongly recommended that a common nomenclature is adopted for the SSB and biomass based reference points. This issue was discussed within the GARM and will be addressed.
- The majority of the stocks examined by the GARM are taken in mixed species fisheries. Changes in effort or TAC directed towards target species will influence the dynamics of other species. It was therefore surprising that the management advice was provided on a single stock basis without discussion of mixed fishery issues. F rebuild resulting in the recovery of one stock within the designated time frame may impose an indirect bycatch or discard mortality, on a second stock, that is too high for it to recover.

The Trawl Warp Issue

Review

The GARM was unanimous in its conclusion that that the magnitude of the trawl warp offset effect on survey catchability is relatively small relative to the natural and sampling variation inherent in all survey time series. Assessment results and the advice as to the state of the stock were shown to be robust to under-estimation bias at the level of the expected effects.

In my opinion, a level-headed and rigorous scientific analysis was applied to the trawl warp offset problem. Although the "gut feeling" of the participants was that there should be little or no effect, this was not allowed to influence the analysis or the interpretation of the results.

Numerous diverse data sets and methodologies were analysed in order to find an indication that the mis-marked trawl warps had had an effect on the catch rates from the surveys. These included trawl monitoring measurements, trawl damage indices, catch rates of species by depth, between and within survey series. In each case, the results of the analysis pointed to the conclusion that a reduction in survey catchability could not be detected during the period when the offset was present. This was not unexpected given the video evidence that the net was still fishing at the expected range of trawl offsets and that such offsets will fall within the natural variation induced by currents, wind and wave action, fishing on slopes, etc.

Sensitivity tests applied to the assessments revealed that even if a substantial (x2) effect were to be missed by the statistical data analysis, the conclusions that the stocks are being over-fished would not change.

Recommendations

- Although current statistical analysis have established that the trawl warp offset does not appear to have had a significant impact on the catchability of the survey series, this issue should not be closed after this GARM. It is my understanding that there are a series of experiments that will be conducted by the NEFSC and the fishing industry to examine the problem in more detail. The issue should therefore be placed on the agenda for next year's Working Groups and GARM.
- The detailed data analysis required for the resolution of the trawl warp offset issue has highlighted the importance of comparative towing calibration exercises when planning gear and ship alterations.

Documents reviewed

Historic

Brodziak, J., P. Rago, and R. Conser. 1998. A general approach for making short-term stochastic projections from an age-structured fisheries assessment model. In F. Funk, T. Quinn II, J. Heifetz, J. Ianelli, J. Powers, J. Schweigert, P. Sullivan, and C.-I. Zhang (Eds.), Proceedings of the International Symposium on Fishery Stock Assessment Models for the 21st Century. Alaska Sea Grant College Program, Univ. of Alaska, Fairbanks.

Mayo, R.K., E. Thunberg, S.E. Wigley and S.X. Cadrin. 2002. The 2001 Assessment of the Gulf of Maine cod stock. Northeast Fish. Sci. Cent. Ref. Doc. 02-02

NEFSC 2002. Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish, . NMFS/NEFSC, Reference Document 02-04, 254p.

NEFSC (Northeast Fisheries Science Center). 2001. Assessment of 19 Northeast Groundfish Stocks through 2000. Northern Demersal and Southern Demersal Working Groups, Northeast Regional Stock Assessment Workshop. Northeast Fish. Sci. Cent. Ref. Doc. 01-20, 217p.

O'Brien, L. and N. J. Munroe 2001. Assessment of the Georges Bank cod stock for 2001. Northeast Fish. Sci. Cent. Ref. Doc 01-10, 126 p.

Stone, H. H Stock assessment of Georges Bank (5Zjmnh) Yellowtail Flounder for 2002 CSAS Research Document 2002/057

APPENDIX I

GARM Working documents

A O'Brien L., N. J. Munroe, and L. Col. Georges Bank Cod.
B Brodziak, J., M. Thompson, R. Brown, and N. Munroe. Georges Bank Haddock.

C1 Legault, C. Georges Bank Yellowtail Flounder.
C2 Legault, C. Georges Bank Yellowtail Flounder Sensitivities.
D Cadrin, S. Southern New England Yellowtail Flounder.
E Cadrin, S and J King. Cape Cod Yellowtail Flounder.
F Mayo, R.K. and L. Col. Gulf of Maine Atlantic Cod Stock.
G Wigley, S. E. Witch Flounder.
H O'Brien, L., C.Esteves, and L. Col Amercian Plaice in the Gulf of Maine/Georges Bank Region.

I Hendrickson, L. Georges Bank Winter Flounder
J Terceiro, M. Southern New England/Mid-Atlantic Winter Flounder
K Sosebee, K.A. Georges Bank/Gulf of Maine White Hake.
L Mayo and L. Col. R.K. The 2002 Status of Pollock, Pollachius virens (L.) in NAFO Divisions 4VWX and Subareas 5 and 6.

M Mayo R.K. and L. Col. The 2002 Status of Acadian Redfish, Sebastes fasciatus Storer in the Gulf of Maine-Georges Bank Region.

N Wigley S. Ocean Pout
O Hendrickson, L. Windowpane Flounder (Gulf of Maine-Georges Bank)
P Hendrickson, L. Windowpane Flounder (Southern New England-Mid-Atlantic Bight)

Q Cadrin, S. Mid Atlantic Yellowtail Flounder.
R Brodziak, J. and M.Thompson Gulf of Maine Haddock.
S Brodziak, J. Atlantic Halibut
T Nitschke, P. Gulf of Maine Winter Flounder

U Report of the NEFSC Methods Working Group. Evaluation of the potential effects of asymmetric trawl cables on R/V Albatross survey indices from 2000 to 2002 .

STATEMENT OF WORK

Subcontract between the University of Miami and CEFAS (Dr. Chris Darby)

Groundfish Assessment Review Meeting

The purpose of requesting outside peer reviewers from the Center of Independent Experts (CIE) is to provide input to the Groundfish Assessment Review Meeting (GARM) for northeast USA stocks. The Northeast Multispecies Fishery Management Plan (Multispecies Plan) includes 20 groundfish stocks. The GARM meeting (scheduled for 8-11 October, 2002, in Woods Hole, Massachusetts), will provide scientific review of assessment information and ancillary analyses. The CIE reviewers are requested to provide input on assessment results and forecasts, and to help construct the final report of the meeting.

The GARM meeting is a regional process for updating stock assessments using existing models, VPA formulations, and other assessment approaches. Specifically, the GARM will:
A. Provide updated catch information (landings and discards, where appropriate) for the 20 stocks to be assessed (see list below), catch-at-age data (estimated based on port sampling, where applicable);

Cod	Gulf of Maine Georges Bank Gulf of Maine Georges Bank Georges Bank Cape Cod
Yellowtail flounder	Southern New England Mid-Atlantic Gulf of Maine Georges Bank Southern New England
Winter flounder	
Acadian redfish	
American plaice	Witch flounder
Porlock	Sindowpane flounder
White hake	
Ocean pout	
Atlantic halibut	

B. Provide updated research vessel survey indices (through spring 2002) for all appropriate survey series, including NMFS spring and autumn series, Canadian series, and state surveys (as appropriate);
C. Estimate fishing mortality rates (or appropriate proxies) for all 20 stocks (through 2001), and provide estimates of terminal year stock sizes;
D. Evaluate stock status relative to applicable biological reference points (FMSY and BMSY) as provided in the Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish (http://www.nefsc.noaa.gov/nefsc/publications/crd/crd0204/);
E. Provide updated estimates of F-Rebuild (the fishing mortality rate required to rebuild biomasses to BMSY by 2009) for all applicable stocks; and
F. Comment on the potential sensitivity of assessment results to trawl warp marking discrepancies that occurred in surveys between spring 2000 and spring 2002.

Specific Responsibilities of the CIE Reviewer

The scientific expertise required is in the area of stock assessment and population dynamics.

The CIE reviewer's duties shall occupy no longer than 10 days: Several days prior to the GARM meeting for document review; four days to participate in the GARM meeting; one day following the GARM meeting to review the draft final workshop report; and several days to complete the report to be submitted to the CIE. No consensus opinion between the two CIE reviewers is sought.

Specific tasks and the schedule are itemized below.

1. Prepare for the GARM meeting by reviewing documents posted on the web prior to 8 October 2002.
2. Serve as active participant in the GARM meeting from 8-11 October 2002, providing input, comment, and scientific overview of analyses, and actively participate in drafting the final report and conclusions of the GARM.
3. Review the draft GARM report during the week of 14-18 October 2002, so that the NEFSC can meet the deadline for completion of the final document by 21 October 2002. The review comments should be provided to the Northeast Fisheries Science Center via Dr. Steven Murawski (508-495-2303, smurawsk@,whsun1.wh.whoi.edu) no later than October 18, 2002.
4. No later than October 25, 2002, submit the written report ${ }^{1}$ (see Annex I) addressed to the "University of Miami Independent System for Peer Review," and sent to
[^9]Dr. David Die, via email to ddie@rsmas.miami.edu, and to Mr. Manoj Shivlani, via email to mshivlani@rsmas.miami.edu. This report shall include the comments provided under task 3 above.

ANNEX I: REPORT GENERATION AND PROCEDURAL ITEMS

1. The report shall be prefaced with an executive summary of findings and/or recommendations.
2. The main body of the report shall consist of a background, description of review activities, summary of findings, and conclusions/recommendations.
3. The report shall also include as separate appendices the bibliography of materials reviewed for the GARM and a copy of the statement of work.

Review Report on the 2002 Groundfish Assessment Review Meeting (GARM) and its findings and recommendations

By

Jon Helge Vølstad ${ }^{1}$, Ph.D.
Versar, Inc.
9200 Rumsey Road
Columbia, Maryland 21045
USA
${ }^{1}$ Representing the Center of Independent Experts, at the Rosenstiel School of Marine and Atmospheric Science, University of Miami.

October 29, 2002

Executive Summary

Assessments (through 2001) of the 20 stocks under the Northeast fisheries management plan updated and reviewed by GARM are of consistent high quality, based on models that are suitable for the available data for each stock. The GARM review meeting was competently chaired, and conducted in a spirit of cooperation and teamwork. The assessments, conducted by experienced stock assessment biologists, were subject to a rigorous and very open peer review process that identified the most likely sources of uncertainty and, in some cases, inconsistencies were discovered. In response to requests by GARM, inconsistencies were usually corrected in time for review the next day. Inaccurate information on catch-at-age, resulting from limited spatial and temporal sampling coverage of landings and limited, if any, information on discard was identified as a major source of uncertainty in some age-based assessments. Systematic patterns in the residuals of many VPA model fits (e.g., multiple years in a row with negative or positive residuals) strongly indicates bias in the catch-at-age data, for example resulting from significant discards not accounted for, or from biased catch sampling. The control of fishing mortality through trip limits, which has been implemented for some stocks in recent years, might increase the level of discards and, worse, cause a shift in the time series of catch-at-age that is difficult to correct for in stock assessments.

GARM conducted a rigorous and very thorough evaluation of potential effects of a trawl warp offset recently discovered on the NOAA research vessel Albatross $I V$. The offset, which applied to surveys conducted from winter and spring 2000-2002, and fall 2000 and 2001, could potentially affect recent stock assessments. A suite of studies related to gear configuration, fishing power, and survey indices of abundance and size composition over time strongly suggested that any change in trawling efficiency as a result of the offset was minor. Results from previous controlled fishing power experiments conduced with Albatross IV trawling alongside another vessel (Delaware II) showed very similar catching efficiencies for Albatross IV relative to Delaware II before and after the warp offset, thus precluding a major drop in trawl catching efficiency caused by the offset. Analyses of the series of Albatross $I V$ survey indices of abundance (and size
composition) alone, or compared to Canadian independent surveys for some species, did not reveal a substantial shift related to drop in fishing power after the warp offset. An additional sensitivity analysis conducted by GARM using hypothetical increases of 10%, 25%, and 100% in survey abundances (corresponding to reductions in catching efficiency well beyond what is supported by available data) would not have sufficient impact on stock assessments to change the determination of status with respect to overfishing (fishing mortality rates) for 19 of the 20 species under the Northeast FMP. American plaice, which had a biomass close to the target of $1 / 2$ B-MSY in 2001, changed status from 'overfishing' to 'no overfishing" in the (unlikely) event of a 50% reduction in fishing power caused by the warp offset (corresponding to a 100% upward adjustment of the abundance index). The qualitative status based on the comparison of estimated biomass to the reference ($1 / 2 \mathrm{~B}-\mathrm{MSY}$) changed for two species (American Plaice and Gulf of Maine haddock) with a hypothetical 10% (or higher) increase in abundance because their estimated biomass were close to the threshold. Clearly, when the point estimate of biomass is close to the threshold, even insignificant changes in catching efficiency (i.e., within the natural variability caused by weather conditions, variations in the vertical distribution of fish, and other factors) could change the qualitative status. Based on these considerations, I believe that it was demonstrated beyond a reasonable doubt that the offset of trawl warps on Albatross IV has not invalidated the stock assessments and the determination of fishing status with respect to overfishing.

1. Background

The Northeast Fisheries Science Center (NEFSC) conducts assessments of 20 major groundfish stocks (A-T, Appendix A) under the Northeast Multispecies Fishery Management Plan (FMP). These stock assessments are based on methods that use abundance indices from fisheries independent trawl surveys (conducted since 1963), either directly or indirectly. For stocks where sufficient information is available on catch at age over time (e.g., from port sampling, logbooks and other sources), the assessments are based on VPA (Virtual Population or Cohort Analysis) (A-G) or ADAPT (H). Independent survey indices of abundance (or biomass) are used for the tuning (calibration) of these age-based or integrated models. The assessments of nine stocks (LT) are based directly on the fisheries independent survey indices of abundance (or biomass) and the estimated population characteristics of the stocks (e.g., size and age distribution), along with information on catch. Due to limitations in basic catch-at-age data, the assessment of two stocks (I, J) was based on a stock production model incorporating covariates (ASPIC), with spring and autumn survey indices of biomass used for tuning; while one stock (K) was assessed by a biomass dynamic model, using survey indices of biomass.

Abundance indices and estimates of population characteristics from fisheries independent surveys provide essential information for the assessments of the groundfish stocks under the Northeast FMP. The NOAA research vessel Albatross IV has been used by NEFSC to conduct stratified random surveys for the assessment and monitoring of groundfish stocks since 1963, representing an unparalleled continuous time series for tracking the status and trends of major stocks under the Northeast FMP. The normal operating area for Albatross IV is the Gulf of Maine, Georges Bank, and the continental shelf and slope from Southern New England to Cape Hatteras, NC. Concerns have been raised that the reliability of the surveys conducted by Albatross $I V$ has been jeopardized in the most recent years because of an un-intended change in the sampling gear configuration in

2000, thus potentially compromising stock assessments for recent years. Measurements of NEFSC survey trawl warps in autumn 2002 suggested that right and left warps (the wires that attach the trawl gear to the vessel) may have been offset by up to several feet on the NOAA Ship Albatross IV during surveys conducted from winter 2000 through spring 2002. The offset was caused by biased measurements of the 50 m intervals for one warp, and as a result of these miss-markings, the offset increased proportionally with the length of cable deployed. The fishing industry and other constituents have postulated that the offset may have substantially reduced the trawl catching efficiency because of reduced bottom contact and lesser opening of the trawl. The possibility of the trawl collapsing at greater depths, which would result in zero catches, was also raised. A considerable reduction in trawling efficiency would introduce bias and reduce the reliability of the survey indices of abundance and estimates of population characteristics (e.g., length and age compositions) of groundfish species under the FMP.

These concerns were addressed in the Groundfish Assessment Review Meeting (GARM) from October 8-11, 2002 in Woods Hole, MA. GARM conducted a scientific review of assessment information and ancillary analyses including multiple studies to assess if the warp offset significantly affected trawling efficiency. GARM also assessed the potential implications of warp offset on stock assessment and resulting determination for overfished status (e.g., $<1 / 2 \mathrm{BMSY}$) for the 20 species under the Northeast FMP, based on hypothesized reductions in the catching efficiency of the trawl in a series of sensitivity analyses.

2. Review of the GARM Activities and Findings

Dr. Steve Murawski chaired the GARM meeting, held at the Northeast Fisheries Science Center (NEFSC) in Woods Hole from October 8-11, 2002, in an organized and effective manner. The meeting was conducted in a spirit of cooperation and teamwork. Draft documents of most updated stock assessments were made available for review a few days
before the meeting. During the GARM meeting, the responsible assessment expert presented each stock assessment update, and the panel of experts reviewed it. The group of regional stock assessment scientists (both NMFS and non-NMFS people) and external experts conducted the review. The team of scientists was very diligent in the search for inconsistencies in the methods and results, and everyone was very open to critique from the panel of reviewers.

2.1. Updating of Stock Assessments

Most stock assessments reviewed at the GARM were routine updates of assessments previously reviewed in the SAW or elsewhere. All the assessments specified in the Terms of Reference for the GARM were covered. Estimates of fishing mortality rates (or proxies thereof) and biomasses in 2001, relative to management reference points 2001 fishing mortality (or its proxy), were provided for 19 stocks. For one stock (T), the assessment presented was developed for the first time (by the ASMFC Technical Committee), and has not yet been subject to standard peer review. Accordingly, the details of the analytical stock assessment modeling are not incorporated in the GARM report, pending that "benchmark" review to be conducted at SAW-36 in December 2002.

Quality of the input data, and the suitability of the VPA model specifications were evaluated through inspection of residual plots. Alternative model structures (e.g., ASPIC) were used in a few cases to examine the robustness of the VPA results. The two primary sources of uncertainty included in the projections (for 2002 and onwards) based on VPA assessments are: (1) the initial estimated stock abundance at age in year 2001, which is driven by the fisheries-independent survey indices used for tuning, and (2) future recruitment to the stock. The tuning minimized the differences between predicted numbers at age from the VPA and the fisheries-independent indices of abundance through parameter adjustments, and has most influence on estimates for recent years. The VPA is a recursive procedure that converges to yield robust estimates of number at age
back in time (under certain assumptions) provided that the input catch statistics are reliable over time.

Inaccuracy in catch-at-age for commercial (and recreational) fisheries resulting from limited spatial and temporal sampling coverage of landings, and limited, if any, information on discard, was recognized by the whole panel as a problem. The nonrandom residual pattern in the VPA model fits observed for many stocks, with residuals being negative or positive for a series of years, strongly indicates that substantial components of the catch are unaccounted for. The strong retrospective patterns of underestimation of F also could results from discard unaccounted for. The recent implementation of trip limits to reduce fishing pressure for some stocks is likely to increase discard of target species (e.g., through high-grading), and could introduce significant bias in stock assessments.

2.2. Management Advice and Reference Points

The GARM maintained the reference points established in "The Report of the Working Group on Re-evaluation of Biological Reference Points for New England groundfish". Sensitivity analyses were conducted to evaluate hypothetical effects of trawl warp offset on the status determination for each stock. Their analyses demonstrated that the determination of the status of stocks, relative to biological reference points set by management, was robust to small (10\%), and moderate (25%) changes in the catching efficiency of the trawl used for tracking relative abundance over time. I agree with these findings.

Sampling variability in survey indices of abundance, and the variability in VPA estimates related to uncertainty in catch-at-age, is generally not taken into account in the determination of overfishing status. In my opinion, this introduces a risk, since true abundance could be substantially lower, or higher, than the value used in the determination of overfishing status. Effects of errors in catch-at-age, for example
resulting from poor information about discard, are likely to be of greater importance in the determination of fishing status than the minor change in trawl catching efficiency resulting from the warp offset on Albatross $I V$.

2.3. Trawling performance related to warp offset

The GARM reviewed the results of a series of 10 different studies to evaluate evidence of a reduction in trawl catch efficiency associated with the use of miss-calibrated trawl warps on Albatross IV. There were eight affected surveys (winter and spring 2000-2002; and fall 2000 and 2001). These studies covered three broad categories:
a. Trawl geometry and performance in relation to the warp offsets as function of depth - direct observations of bottom contact and trawl configuration (wing-spread and headrope height measurements), as well as data on rates of gear damage from the Albatross IV surveys;
b. Shifts in the time series of survey indices of abundance and estimated population characteristics (e.g., size distributions) resulting from reduced trawling efficiency;
c. Fishing power studies - paired trawling conducted by Albatross IV alongside the Delaware II vessel before and after spring 2000.

I was very impressed by the thorough scientific analysis that had been conducted by NEFSC staff, using all available relevant data, to reveal any shift in trawl catching efficiency caused by the warp offset on Albatross $I V$. The analysts and methods experts, at the request of myself and other GARM members, conducted multiple additional analyses during the meeting. The results did not reveal any significant effects on the catching efficiency of the trawl related to the offset of the warps for depths where groundfish typically occur (warp offset up to about nine feet). In particular, a large number of parallel trawl hauls conducted by Albatross IV alongside Delaware II before
and after the warp offset showed virtually no change in relative fishing power between the vessels. The analyses were restricted to ten species (including cod, haddock, and yellowtail flounder) that had sufficient sampling coverage for a valid comparison of fishing power between vessels. The almost identical relative catch rates for flatfish before and after the warp offset clearly indicate that the trawl maintained good bottom contact despite the warp offset. In effect, this fishing power study can be considered a controlled experiment (although not intended at the time) to detect effects of the warp offset. The Delaware II served as a control because it used a fixed gear and trawling procedure for both time periods (before and after the warp offset on the Albatross IV gear). Thus, an appreciable reduction in catching efficiency for Albatross $I V$ after the warp offset, as postulated by some, would have resulted in a change in the ratio of mean catches for the two vessels. This did not happen. Any substantial changes in the underlying fish abundance pre and post warp offset, which could be a confounding factor in the evaluation of Albatross IV survey indices alone, are essentially accounted for because of the parallel trawling (in space and time) with another vessel.

3. Conclusions and Recommendations

Assessments through 2001 of the 20 stocks under the Northeast fisheries management are of consistently high quality, based on models that are suitable for the available data for each stock. The assessments and updates, conducted by experienced stock assessment biologists, were subject to a rigorous review process. The potential effects of the warp offset on Albatross IV in recent years were thoroughly evaluated. Based on all available results, I firmly believe that the warp offset has had minimal effects on the stock assessments conducted in recent years. Because the reduction of trawl catching efficiency resulting from warp offsets appear to be very small in depths where groundfish typically occur (warp offset up to about 9 feet), an intensive and well designed parallel trawling experiment involving Albatross $I V$ along with a control vessel (e.g., the Delaware II or an industrial fishing vessel) would be required to detect and calibrate such
effects. Such an experiment could also provide additional information on the fishing power in deep waters, with warps offsets up to 18 feet. Although recent trawl experiment studies showed that the net remained open at the maximum offset of 18 feet, the actual fishing power in this case can only be determined from further experimental trawling. It is my understanding that such an experiment is being planned by NEFSC in cooperation with the fishing industry. Depending on the results from such an experiment, additional evaluations of the effects of the warp offset on stock assessments might be warranted.

Age-based assessments (VPA or ADAPT) with appropriate tuning are generally considered to be robust, when assumptions about natural mortality and recruitment are reasonable. However, such age-based assessments are particularly sensitive to inaccurate information on catches at age, for example related limited sampling coverage (spatially and temporally) of landings, and unreported discards. I recommend that the variability in VPA (and ADAPT) assessments caused by sampling variability in estimated landings in number by age be evaluated, for example by applying boot-strapping to port sampling data in connection with the model runs. Also, biased assessments (of unknown magnitude) could occur when multiple survey indices used for tuning of VPA are assigned equal weights, regardless of spatial coverage and precision. Such bias can be severe when some surveys only cover a limited fraction of the distribution area of a species. One way to reduce or eliminate such bias is to combine the respective survey estimates by using a composite estimator with appropriate weighting of each series, before the series is applied in tuning of VPA models. Additional post-stratification might be appropriate when surveys overlap in a sub-area.

I also noted that index based methods for determining fishing status do not incorporate measures of uncertainty in relative fishing mortality rate in the determination of overfished status. Reference points are based on estimated relative F that support replacement of the stock, or a specified growth rate. In the index-based assessments, the relative fishing mortality rate of a species is estimated as the ratio of catch (or harvest for some species) to the relative estimate of abundance from the research trawl surveys. Uncertainty in this ratio estimate is due to sampling variability in the survey indices, as
well as in the estimated total catches. Also, bias would be introduced if the total catches were poorly estimated, for example due to unreliable or no estimates of discard. It is important that the precision and accuracy of the estimated fishing mortality (F) be quantified, so that risk of stock depletion (or of setting too harsh limits on catch size) under current management regimes can be evaluated. The research trawl surveys conducted by NEFSC are probability-based, and thus have the great advantage that precision in the survey estimates of abundance can be quantified. In fact, to my knowledge, the survey series started by NEFSC in 1963 (using Albatross I) was the first example (worldwide) of applying stratified random sampling to trawl surveys. I recommend that NEFSC move towards using a more precautionary approach to determine status relative to reference points, for example based on confidence limits of the abundance estimates. Although the relative standard errors might be fairly large because the estimates are based on moderate sample sizes, it would be more in line with the pre-cautionary approach to take such uncertainty into account. This can be illustrated through an example: If a point estimate of F for a species is just below the overfishing threshold, but with an upper confidence interval that extends well above the threshold, this would clearly indicate that the risk of overfishing occurring is high. By contrast, an estimated F just above the threshold, but with tight confidence limits, suggest a lower risk of severe overfishing than in the former example. The comparison of sampling variability in survey indices of abundance to variability in estimates of catch-at-age can also be useful when planning allocation of resources among fisheries dependent and fisheries in-dependent sampling programs.

4. References

The Report of the Working Group on Re-evaluation of Biological Reference Points for New England groundfish Improving Fish Stock Assessments. National Academy Press, Washington DC, 1998. 177 p.

Improving Fish Stock Assessments. National Academy Press. Washington, DC, 1998. 176 pp.

Improving the Collection, Management, and Use of Marine Fisheries Data, 2000. Ocean Studies Board, National Research Council, 236 pp.

Appendix A

Bibliography of materials reviewed:

- Report of the Groundfish Assessment Review Meeting (GARM) Assessment of 20 Northeast Groundfish Stocks through 2001. (By the Northern Demersal Working Group; Southern Demersal Working Group; Assessment Methods Working Group).

The above report includes updated stock assessments for 20 groundfish species (Documents posted on www.nefsc.noaa.gov/garm):
A. Georges Bank cod (Loretta O'Brien)
B. Georges Bank Haddock (Jon Brodziak)
C. Georges Bank Yellowtail Flounder (Chris Legault/Steve Cadrin)
D. So. New England Yellowtail Flounder (Steve Cadrin/Chris Legault)
E. Cape Cod Yellowtail Flounder (Steve Cadrin/Chris Legault)
F. Gulf of Maine Cod (Ralph Mayo)
G. Witch Flounder (Sue Wigley)
H. American Plaice (Loretta O'Brien)
I. Georges Bank Winter Flounder (Lisa Hendrickson)
J. So. New England/Mid Atlantic Winter Flounder (Steve C/Mark)
K. White Hake (Kathy Sosebee)
L. Pollock (Ralph Mayo)
M. Acadian Redfish (Ralph Mayo)
N. Ocean Pout (Sue Wigley)
O. Gulf of Maine/Georges Bank Windowpane (Lisa Hendrickson)
P. So. New England/Mid-Atlantic Windowpane (Lisa Hendrickson)
Q. Mid-Atlantic Yellowtail Flounder (Steve Cadrin/Chris Legault)
R. Gulf of Maine Haddock (Jon Brodziak)
S. Atlantic Halibut (Jon Brodziak)
T. Gulf of Maine Winter Flounder (Paul Nitschke)

Results from the Methods Working Group Report on Examination of Possible Trawl Survey Time- Series Interventions beginning in 2000 were presented in power-point with additional hand-outs. The following issues were covered:

- Description of warp offset problem, and how it relates to fishing depth (Paul Rago)
- Gear Damage Studies (Larry Jacobson)
- Evaluation of Fish Size in Relation to Warp Offsets (Larry Jacobson w/ Anne Richards)
- Warp Experiment Information (Data provided by Lisa Hendrickson)
- Trawl Geometry and Related Issues (Paul Rago/Steve Cadrin)
- Mean/Variance Relationships in Fish Catch (Paul Rago)
- Catch-at-Depth Relationships (Paul Rago /Steve Cadrin)
- Changes in Abundance Indices Pre- and Post Warp Intervention (Steve Cadrin)
- Log Catch Ratios Between Affected and Unaffected Surveys (Larry/Steve)
- VPA Performance (Residuals, Retrospective Patterns) (Chris Legault)
- Evaluation of Fishing Power Experiments, 1980s vs. 2002 (Mike Fogarty/Steve Cadrin)

APPENDIX B: STATEMENT OF WORK

Subcontract between the University of Miami and Versar, Inc. (Dr. Jon Helge Vølstad)

Groundfish Assessment Review Meeting

The purpose of requesting outside peer reviewers from the Center of Independent Experts (CIE) is to provide input to the Groundfish Assessment Review Meeting (GARM) for northeast USA stocks. The Northeast Multispecies Fishery Management Plan (Multispecies Plan) includes 20 groundfish stocks. The GARM meeting (scheduled for 8-11 October, 2002, in Woods Hole, Massachusetts) will provide scientific review of assessment information and ancillary analyses. The CIE reviewers are requested to provide input on assessment results and forecasts, and to help construct the final report of the meeting.

The GARM meeting is a regional process for updating stock assessments using existing models, VPA formulations, and other assessment approaches. Specifically, the GARM will:
A. Provide updated catch information (landings and discards, where appropriate) for the 20 stocks to be assessed (see list below), catch-at-age data (estimated based on port sampling, where applicable);

Cod	Gulf of Maine Georges Bank Gulf of Maine Georges Bank Georges Bank Cape Cod Southern New England Mid-Atlantic Gulf of Maine Georges Bank Southern New England
Winter flounder	
Acadian redfish	
American plaice	Witch flounder Pollock
Windowpane flounder	Northern
White hake	Southern
Ocean pout	

Atlantic halibut
B. Provide updated research vessel survey indices (through spring 2002) for all appropriate survey series, including NMFS spring and autumn series, Canadian series, and state surveys (as appropriate);
C. Estimate fishing mortality rates (or appropriate proxies) for all 20 stocks (through 2001), and provide estimates of terminal year stock sizes;
D. Evaluate stock status relative to applicable biological reference points (FMSY and BMSY) as provided in the Report of the Working Group on Re-Evaluation of Biological Reference Points for New England Groundfish (http://www.nefsc.noaa.gov/nefsc/publications/crd/crd0204/);
E. Provide updated estimates of F-Rebuild (the fishing mortality rate required to rebuild biomasses to BMSY by 2009) for all applicable stocks; and
F. Comment on the potential sensitivity of assessment results to trawl warp-marking discrepancies that occurred in surveys between spring 2000 and spring 2002.

Specific Responsibilities of the CIE Reviewer

The scientific expertise required is in the area of stock assessment and population dynamics.

The CIE reviewer's duties shall occupy no longer than 10 days: Several days prior to the GARM meeting for document review; four days to participate in the GARM meeting; one day following the GARM meeting to review the draft final workshop report; and several days to complete the report to be submitted to the CIE. No consensus opinion between the two CIE reviewers is sought.

Specific tasks and the schedule are itemized below.

1. Prepare for the GARM meeting by reviewing documents posted on the web prior to 8 October 2002. This web site is http://www.nefsc.noaa.gov/garm/. The login is "garm"; the password is "kingfish". Additional scientific information will be presented during the GARM meeting.
2. Serve as active participant in the GARM meeting from 8-11 October 2002, providing input, comment, and scientific overview of analyses, and actively participate in drafting the final report and conclusions of the GARM.
3. Review the draft GARM report during the week of $14-18$ October 2002, so that the NEFSC can meet the deadline for completion of the final document by 21 October 2002. The review comments should be provided to the Northeast Fisheries Science

Center via Dr. Steven Murawski (508-495-2303, smurawsk@whsun1.wh.whoi.edu) no later than October 18, 2002.
4. No later than October 25, 2002, submit the written report ${ }^{1}$ (see Annex I) addressed to the "University of Miami Independent System for Peer Review," and sent to Dr. David Die, via email to ddie@rsmas.miami.edu, and to Mr. Manoj Shivlani, via email to mshivlani@rsmas.miami.edu. This report shall include the comments provided under task 3 above.

Signed
Date \qquad

[^10]
ANNEX I: REPORT GENERATION AND PROCEDURAL ITEMS

1. The report shall be prefaced with an executive summary of findings and/or recommendations.
2. The main body of the report shall consist of a background, description of review activities, summary of findings, and conclusions/recommendations.
3. The report shall also include as separate appendices the bibliography of materials reviewed for the GARM and a copy of the statement of work.

Appendix 2 Supplemental Information from Section 3.7.

Cumulative Distribution Plots

More subtle changes in the depth distribution might be ascertained by considering the cumulative distribution of catch at depth by year and survey type. The general idea here is that the historical pattern of catches at depth constitute an "envelope" of historical variation. Under the hypothesis that the efficiency of capture decreases with increasing depth, the expected pattern during the post treatment period should be a CDF lying to the left of the envelope. The basic intuitive properties of this approach are summarized in Fig. H. 23 using a hypothetical example. Suppose that the indices of abundance for species X in the 2000-2002 surveys were low and should actually have been $25 \%, 100 \%$, or even 1000% higher. Equation 6 can be substituted into Eq. 4 and value of theta can be solved using nonlinear optimization of the equation:

Fig. H23 illustrates the expected behavior of the CDF for values of delta $=0.1,1.0$, and 10.0. The respective values of theta were $1.725,0.721$, and 0.109

Examination of these plots was conducted for the two stocks of cod (Fig. H.24-25), two haddock stocks (Fig. H.26-27), three yellowtail flounder stocks (Fig. H.28-30), witch flounder (Fig. H.31), spiny dogfish (Fig. H.32), and longhorn sculpin (Fig. H.33). There was some suggestion that one of the spring surveys for spiny dogfish and longhorn scalping "fit" this expected pattern. For all other species, stock, and surveys, the 20002002 Cuffs lay within the historical range. (Fig. H24-H33).

Fig. H23. Predicted shift in shift in average depth distribution for population distribution at depth for varying levels of underestimation of abundance. In the above example the theta parameter of the depth dependent relative efficiency function is modified to attain the target increase in biomass.

List of Tables

Table 1. Summary of fishing mortality rate and biomass status for 20 Northeast groundfish stocks in 2001 xii
Table 2. Summary of status determinations for 20 New England groundfish stocks xiii-xiv
Table A1. Commercial landings of Atlantic cod from the Georges Bank and South stock, 1960-2001. 17
Table A2. Standardized stratified mean catch per tow in numbers and weight for Atlantic cod in NEFSC offshore spring and autumn research vessel bottom trawl surveys on Georges Bank, 1963-2000 18
Table A3a. Standardized stratified mean catch per tow at age of Atlantic cod in NEFSC offshore spring and autumn bottom trawl surveys on Georges Bank, 1963 - 2002 19-20
Table A3b. Stratified mean catch per tow at age of Atlantic cod in Canadian spring bottom trawl survey on Georges Bank, 1986 - 2002 21
Table A4. USA and Canadian sampling of commercial Atlantic cod landings from the Georges Bank and South cod stock, 1978 - 2001 22
Table A5. USA sampling of commercial Atlantic cod landings, by market category, for the Georges Bank and South cod, 1978-2001 23
Table A6. Landings at age and mean weight and mean length at age of total commercial landings of Atlantic cod from the Georges Bank and South stock, 1978-2000 24-25
Table A7. Estimates of beginning year stock size, instantaneous fishing mortality, mean biomass, spawning stock biomass, and percent mature of Georges Bank cod, estimated from virtual population analysis, calibrated using the commercial catch at age ADAPT formulation, 1978-2001 26-27
Table A8. Input parameters and results of stochastic projection analysis using a Beverton-Holt stock recruit model for Georges Bank Atlantic cod for 2002-2019. 28
Table B1. Commercial landings of haddock from Georges Bank and south, 1960-2001 39
Table B2. U.S. sampling of commercial haddock landings for length and age composition from Georges Bank and south, 1982-2001 40
Table B3. Total catch at age and mean weight at age of commercial landings and discards of haddock from Georges Bank and south, 1982-2001 41-42
Table B4. Stratified mean catch per tow for haddock in NEFSC offshore spring research vessel bottom trawl surveys on Georges Bank, 1968-2002 43
Table B5. Stratified mean catch per tow for haddock in NEFSC offshore autumn research vessel bottom trawl surveys on Georges Bank, 1963-2001 44
Table B6. Stratified mean catch per tow for haddock in Canadian offshore research vessel bottom trawl surveys on Georges Bank, 1986-2002 45
Table B7. Beginning year stock size of Georges Bank haddock estimated from the VPA, 1963 to 2002 46-47
Table B8. Spawning stock biomass of Georges Bank haddock estimated from the VPA, 1963 to 2001 48-49
Table B9. Fishing mortality at age and average F for Georges Bank haddock estimated from VPA, 1963 to 2001 ...50-51
Table B10. Input data and results for short-term stochastic stock biomass and catch projections for Georges Bankhaddock52
Table C1. Catch of Georges Bank yellowtail flounder 64
Table C2. Sampling history of the Georges Bank yellowtail flounder fishery 65
Table C3a. Total catch at age of Georges Bank yellowtail flounder 66
Table C3b. Total weight at age of George Bank yellowtail flounder from US and Canadian commercial samples 67
Table C4a. Survey indices of Georges Bank yellowtail abundance and biomass 68
Table C4b. Survey indices of Georges Bank yellowtail abundance and biomass 69
Table C4c. Survey indices of Georges Bank yellowtail abundance and biomass. 70
Table C5a. Estimates of stock size from virtual population analysis 71
Table C5b. Estimates of fishing mortality from VPA 72
Table C5c. Estimates of spawning biomass from VPA 73
Table C6. Projection input and short term output from the age based assessment 74
Table D1. Landings and catch of southern New England yellowtail flounder 86-87
Table D2. Samples of southern New England yellowtail flounder 87
Table D3a. Catch at age of southern New England yellowtail flounder. 88
Table D3b. Mean weight at age of southern New England yellowtail flounder catch 89
Table D4a. Survey indices of southern New England yellowtail abundance and biomass 90
Table D4b. Survey indices of southern New England yellowtail abundance and biomass 91
Table D4c. Survey indices of southern New England yellowtail abundance and biomass 92
Table D5a. Stock numbers from VPA for southern New England yellowtail flounder 93
Table D5b. Fishing mortality estimates from VPA for southern New England yellowtail flounder 94
Table D5c. Spawning stock biomass estimates from VPA for southern New England yellowtail flounder 95
Table D6. Short-term projections of southern New England yellowtail flounder 96
Table E1. Landings of Cape Cod yellowtail flounder 107
Table E2. Samples of Cape Cod yellowtail flounder 108
Table E3. Catch at age and mean weights at age of Cape Cod yellowtail flounder. 109
Table E4a. Survey indices of Cape Cod yellowtail abundance and biomass 110
Table E4b. Survey indices of Cape Cod yellowtail abundance and biomass 111
Table E4c. Survey indices of Cape Cod yellowtail abundance and biomass 112
Table E4d. Survey indices of Cape Cod yellowtail abundance and biomass 113
Table E5a. Stock numbers of Cape Cod yellowtail flounder from VPA 114
Table E5b. Fishing mortality estimates for Cape Cod yellowtail flounder from VPA 115
Table E5c. Spawning stock biomass estimates for Cape Cod yellowtail flounder from VPA. 116
Table E6. Short term projections of Cape Cod yellowtail flounder 117
Table F1. Commercial landings of Atlantic cod from the Gulf of Maine, 1960-2001. 129
Table F2. USA sampling of commercial Atlantic cod landings from the Gulf of Maine cod stock, 1982. 130
Table F3. Percentage of USA commercial Atlantic cod landings from the Gulf of Maine, by market category, 1964 - 2001 131
Table F4a. Total landings at age of Atlantic cod from the Gulf of Maine stock, 1982 - 2001 132
Table F4b. Mean weight and mean length at age of total landings of Atlantic cod from the Gulf of Maine stock, 1982 - 2001. 133
Table F5. Standardized stratified mean catch per tow in numbers and weight (kg) for Atlantic cod from NEFSC offshore spring and autumn research vessel bottom trawl surveys in the Gulf of Maine, 1963-2002. 134
Table F6. Final VPA Results for Gulf of Maine Cod, 1982-2002 135-137
Table F7a. Starting conditions and input data for short-term stochastic stock biomass and catch projections for Gulf of Maine cod 138
Table G1. Witch flounder landings, discards and catch from Subareas 5 and 6 1960-2001. 150
Table G2. Summary of USA commercial witch flounder landings, number of length samples, number of fish measured and number of age samples by market category and quarter for all gear types, 1981-2001 151-153
Table G3. Numbers at age of witch flounder in the total catch, 1982-2001 154
Table G4. Mean weight at age of witch flounder in the total catch, 1982-2001 155
Table G5. Stratified mean number per tow at age of witch flounder in NEFSC offshore spring and autumn bottom trawl surveys in Gulf of Maine-Georges Bank region, 1963-2002. 156
Table G6. Stratified mean number per tow at age of witch flounder in NEFSC bottom trawl spring and autumn surveys,1980-2002157-158
Table G7. Estimates of beginning year stock size, instantaneous fishing mortality and spawning stock biomass for witchflounder estimated from virtual population analysis, 1982-2001 .. 159-161
Table G8. Summary of projection input and results for witch flounder 162
Table H1. Commercial landings of American plaice from the Gulf of Maine, Georges Bank, Southern New England and the Mid-Atlantic, 1960-2001 176
Table H2. Standardized stratified mean number and mean weight per tow of American plaice in NEFSC spring and autumn bottom trawl surveys in the Gulf of Maine - Georges Bank area, 1963-2002 177
Table H3a. Standardized stratified mean number per tow by age and mean weight per tow of American plaice in NEFSC spring and autumn bottom trawl surveys in the Gulf of Maine - Georges Bank1 area, 1980- 2002. 178-179
Table H3b. Stratified mean number per tow by age of American plaice in Massachusetts spring and autumn bottom trawl surveys in Massachusetts Bay and Cape Cod Bay, 1982-2002 180
Table H4. Sampling of commercial American plaice landings, by market category, for the Gulf of Maine and Georges Bank areas, 1985-2001 181
Table H5. Catch at age and mean weight of commercial landings, large mesh and northern shrimp fishery discards ofAmerican plaice, ages 1-9+, from Gulf of Maine - Georges Bank, and South, 1980-2001182-183
Table H6. Estimates of beginning year stock size, instantaneous fishing mortality and spawning stock biomass of Gulfof Maine-Georges Bank American plaice, estimated from virtual population analysis and calibrated using thecommercial catch at age ADAPT formulation, 1980-2001184-185
Table H7. Input parameters and results of stochastic projection analysis using an empirical resampling model for Gulf of Maine-Georges Bank American plaice for 2002-2009 186
Table I1. Landings of Georges Bank winter flounder, by statistical area and country, during 1964-2001 198
Table I2. Standardized, stratified abundance and biomass indices for Georges Bank winter flounder from the U.S. NEFSC spring and autumn, and Canadian spring research vessel bottom trawl surveys 199
Table I3. Fishing mortality rates and average total biomass estimates for Georges Bank winter flounder during 1964- 2001 200
Table I4. Summary of results from a sensitivity analysis of increases in survey biomass indices using an ASPIC biomass dynamics model for the assessment of Georges Bank winter flounder 201
Table I5. Short-term stochastic projections of yield and total biomass, during 2002-2005, for Georges Bank winter flounder assuming F2002 $=15 \%$ reduction in F2001 and F2003-2005 $=$ FMSY 202
Table J1. Winter flounder commercial landings for southern New England/Mid-Atlantic stock complex area as reportedby NEFSC weighout, state bulletin and general canvass data.. 215
Table J2. Estimated number and weight of winter flounder caught, landed, and discarded in the recreational fishery, Southern New England/Mid-Atlantic stock complex 216
Table J3. The total number of commercial lengths sampled by market category for Southern New England/Mid-Atlantic winter flounder 217
Table J4. Total winter flounder recreational and commercial catch for the Southern New England/Mid-Atlantic stock complex in weight and numbers 218
Table J5. Winter flounder NEFSC survey index stratified mean number and mean weight per tow for the Southern New England- Mid-Atlantic stock complex 219-220
Table J6. SNE/MA winter flounder mean weight per tow for annual state surveys 221
Table J7. State survey indices for young-of-year winter flounder in Southern New England/Mid-Atlantic stock complex 222
Table J8. Virtual Population Analysis for SNE/MA winter flounder, 1981-2001 223-225
Table K1. Total Landings of white hake by country from the Gulf of Maine to Cape Hatteras, 1964-2001 237
Table K2. Summary of US commercial white hake landings, number of length samples, and number of fish measured by market category and quarter from the Gulf of Maine to the Mid-Atlantic for all gear types, 1985- 2001 238-239
Table K3. Summary of Domestic Observer number of number of trips and number of age samples taken by gear type, half year, and catch disposition, 1989-2001 240
Table K4. Commercial catch of white hake by size group 241
Table K5. Stratified mean catch per tow in numbers and weight for white hake from NEFSC offshore spring and autumn research vessel bottom trawl surveys, 1963-2002 242
Table K6. NEFSC autumn and spring survey indices by size group 243
Table K7. Three-year moving average of the NEFSC autumn survey index and the relative F values used in the index- based model of replacement ratios 244
Table L1. Pollock landings from Divisions 4VWX and Subareas 5 and 6 by country, 1960-2001 255
Table L2. Stratified mean catch per tow in numbers and weight for Scotian Shelf, Gulf of Maine, and Georges Bank pollock in NEFSC offshore spring, summer, and autumn bottom trawl surveys, 1963-2001 256
Table L3. Total commercial landings, NEFSC autumn survey biomass index, replacement index and exploitation ratio for pollock in NAFO Subareas 257
Table M1 Nominal redfish catches, actual and standardized catch per unit effort, and calculated standardized USA andtotal effort for the Gulf of Maine-Georges Bank redfish fishery269
Table M2 Autumn NEFSC bottom trawl survey stratified mean catch per tow indices, average weights and average lengths of redfish in the Gulf of Maine - Georges Bank region 270
Table M3. Commercial landings, NEFSC autumn survey biomass index, and index of exploitation for Gulf of Maine redfish 271
Table N1. Commercial landings of ocean pout from the Gulf of Maine-Mid-Atlantic region, 1962-2002 278
Table N2. Stratified mean catch per tow in weight and numbers, mean length and individual average fish weight of ocean pout in NEFSC spring surveys, in the Gulf of Maine-Mid-Atlantic region, 1968-2002 279
Table N3. Annual relative exploitation ratios and relative exploitation ratios used in stock status for ocean pout, 1968- 2002. 280
Table O1. Landings, NEFSC autumn survey biomass indices, and exploitation indices for Gulf of Maine-Georges Bank windowpane flounder during 1963-2001 285
Table P1. Landings, NEFSC autumn survey biomass indices, and exploitation indices for Southern New England-Mid- Atlantic Bight windowpane flounder during 1963-2001 290
Table Q1. Survey indices, landings and exploitation indices of Mid-Atlantic yellowtail flounder 295
Table R1. Commercial landings of haddock from the Gulf of Maine from 1956-2001 300
Table R2. Stratified mean catch number and weight (kg) per tow for haddock in NEFSC offshore spring and autumn research vessel bottom trawl surveys in the Gulf of Maine, 1963-2002 301
Table R3. Exploitation rate index for Gulf of Maine haddock based on autumn NEFSC survey biomass index and annual commercial landings, 1963-2001 302
Table S1. Reported landings of Atlantic halibut from the Gulf of Maine and Georges Bank, 1893-2001 309
Table S2. Stratified mean weight per tow of Atlantic halibut from NEFSC spring and autumn surveys and exploitation rate indices calculated as annual landings divided by the 5-year moving average of swept-area biomass indices 310
Table T1. Winter flounder commercial landings for Gulf of Maine stock 317
Table T2. Estimated number and weight of winter flounder caught, landed, and discarded in the recreational fishery, Gulf of Maine stock 318
Table T3. Number of samples, lengths, ages, and sampling intensity for Gulf of Maine winter flounder 319-320
Table T4. NEFSC and MA DMF survey indices of abundance for Gulf of Maine winter flounder 321
Table 3.1.1. Measured differences in trawl warp lengths at varying fishing depths 330
Table 3.2.1. Gear damage and summary information for bottom trawl survey cruises by the R / V Albatross $I V$ during 1983-2002 341
Table 3.7.1. Summary of statistical tests to evaluate the likelihood that the catch-weighted average depth and variance of catch-weighted depth had changed in response to warp offset factors in 2000 to 2002 389-394
Table 3.7.2. Summary of statistical test of regression model for standardized difference of pre-post treatment catch rates versus depth for numbers per tow, and biomass per tow 395-396
Table 3.7.3. Summary of statistical tests of regression model for standardized difference of pre-post treatment catch rates versus depth for numbers per tow, and biomass per tow 397
Table 3.7.4. Summary of frequencies of standardized residuals of average catch vs. depth for all species combined 398
Table 3.8. Directional change in abundance of various species/stocks for pairs of years 432
Table 3.9.1. Standardized SLSCR indices of relative fishing power for NEFSC bottom trawls during 1991-2002 440
Table 3.9.2. The sign of SLSCR relative fishing power indices during 1991-2002 441
Table 3.10.1 Mean square residual and change in mean square residual relative to the base run from eight stocks assessed with VPA 451
Table 3.11. Estimated relative fishing power coefficients (ratio of Albatross to Delaware) for side-by-side trawling studies done between 1982 and 1988 and in spring 2002 454
Table 5.1. Summary of fishing mortality rate and biomass status for 20 Northeast groundfish stocks in 2001 463
Table 5.2. Summary of status determinations for 20 New England groundfish stocks 468-469
Table 6.3. Summary of commercial catch-at-age sampling for VPA stocks, 1998-2001 476

List of Figures

Figure 1. Fishing mortality rate and biomass status of 19 groundfish stocks managed under the Northeast
Multispecies FMP..
Figure 2. Median catch-weighted depth at capture of various groundfish species in NMFS bottom trawl surveys pre and post trawl warp offset problems $x v i$
Figure 3. Results of side-by-side tows made by NOAA R/Vs Albatross IV and Delaware II in paired towing in the

$$
1980 \text { s and } 2002 \text {...ii }
$$

Figure A1a. Total commercial landings of Georges Bank cod, 1893-2001... 29
Figure A1b. Total commercial landings of Georges Bank cod, 1960-2001 ... 29
Figure A2. Standardized stratified mean catch per tow of Atlantic cod in NEFSC spring and autumn research vessel
bottom trawl surveys on Georges Bank, 1963-2001.. 30
Figure A3. Standardized stratified mean number per tow of Atlantic cod in NEFSC and DFO spring and NEFSC autumn research vessel bottom trawl surveys on Georges Bank, 1963-200230

Figure A4. Trends in total commercial landings and fishing mortality for Georges Bank cod, 1978-2001 31
Figure A5. Trends in stock biomass and recruitment for Georges Bank Atlantic cod, 1978-2001 32
Figure A6. Retrospective analysis of Georges Bank cod recruits at age 1, spawning stock biomass, and fishing
mortality, based on the final ADAPT VPA formulation, 2001-1996 .. 33
Figure A7. Fishing mortality and spawning stock biomass estimates from VPA calibrated using survey indices increased by 0% (base), 10% (110), 25% (125), and 100% (200)34
Figure A8. Median and 80% confidence intervals of predicted spawning stock biomass and predicted catch for Georges Bank Atlantic cod under Frebuild $=0.10$ 35
Figure B1. Total commercial landings of haddock from Georges Bank and south, 1904-2001 53
Figure B2. Georges Bank haddock research survey indices, 1963-2002 54
Figure B3. Trends in spawning stock biomass and recruitment for Georges Bank haddock from 1931-2001 55
Figure B4. Trends in commercial landings and fishing mortality for Georges Bank haddock from 1931-2001 56
Figure B5. Retrospective analysis of Georges Bank haddock recruitment, spawning stock biomass and fishing mortality 57
Figure B6. Georges Bank haddock sensitivity to hypothetical NEFSC survey index adjustments due to trawl warp offsets during 2000-2002 58
Figure B 7 . Georges Bank haddock projection results for $\mathrm{F}=\mathrm{F}_{\text {REbUILD }}$ 59
Figure C1. Total catch of Georges Bank yellowtail flounder 75
Figure C2. Survey indices of Georges Bank yellowtail flounder biomass 75
Figure C3. Survey indices of abundance at age 76
Figure C4. Summary of Georges Bank yellowtail flounder VPA results 77
Figure C5. Population abundance at age from VPA compared to equilibrium levels at MSY 78
Figure C6. Retrospective patterns in Georges Bank yellowtail flounder VPA. 79
Figure C7. Point estimate and 80% confidence intervals for F and SSB in 2001 for the base run and three sensitivity analyses which increased the impacted survey catches 80
Figure C8. Projected spawning stock biomass under $\mathrm{F}_{\text {Rebuild }}=0.22$ in years 2003 through 2009 to achieve a 50% probability of Bmsy in 2009 81
Figure C9. Mean biomass of Georges Bank yellowtail flounder and fishing mortality on biomass. 82
Figure D1. Total catch of southern New England yellowtail flounder 97
Figure D2. Survey indices of southern New England yellowtail flounder biomass 97
Figure D3a. Estimates of fishing mortality, recruitment and spawning stock biomass for southern New England yellowtail flounder from VPA 98
Figure D3b. Abundance at age of southern New England yellowtail flounder 99
Figure D4. Retrospective analysis of the southern New England yellowtail flounder VPA 100
Figure D5. Stochastic projection of spawning biomass and total catch under two scenarios of recruitment and a constant F of $\mathrm{F}_{\text {rebuild }}=0.10$ 101
Figure D6. Mean biomass of southern New England yellowtail flounder and fishing mortality on biomass. 102
Figure D7. Sensitivity of results to increasing NEFSC indices since 2000 by $10 \%, 25 \%$ and 100%. 103
Figure E1. Total catch of Cape Cod yellowtail flounder 118
Figure E2. Survey indices of Cape Cod yellowtail flounder biomass 118
Figure E3. Cape Cod yellowtail flounder VPA results 119
Figure E4. Retrospective analysis of the Cape Cod yellowtail flounder VPA 120
Figure E5. Stochastic projection of Cape Cod yellowtail flounder for $\mathrm{F}_{\text {rebuild }}=0.12$ 121
Figure E6. Sensitivity of results to excluding NEFSC survey indices and increasing NEFSC indices since 2000 by$10 \%, 25 \%$ and 100%122
Figure F1. Total commercial landings of Gulf of Maine cod, 1893-2001 139
Figure F2. Biomass indices for Gulf of Maine cod from NEFSC autumn bottom trawl surveys 140
Figure F3. Trends in landings and fishing mortality for Gulf of Maine cod 141
Figure F4. Trends in recruitment and biomass for Gulf of Maine cod 142
Figure F5. Retrospective analysis of estimates of terminal year F, recruitment and SSB from the VPA for Gulf of Maine Cod 143
Figure F6. Sensitivity of VPA estimates of F and SSB in 2001 to presumed differences in survey catchability during 2000-2002 based on 1000 bootstrap replications of the base VPA 144
Figure F7. Projected SSB, recruitment and catch for Gulf of Maine cod 145
Figure G1. Historical USA witch flounder landings the Grand Banks in the mid-1980's 163
Figure G2. Number of witch flounder at age in the total catch, by fishery, 1982-2001 164-165
Figure G3. Stratified mean weight per tow and mean number per tow of witch flounder in the NEFSC spring and autumn bottom trawl surveys, 1963-2002. 166
Figure G4. Trends in total catch and fishing mortality for witch flounder, 1982-2001 167
Figure G5. Trends in spawning stock biomass and recruitment for witch flounder 167
Figure G6. Retrospective analysis results of fishing mortality, spawning stock biomass, and age 3 recruitment. 168
Figure G7. Stock status of witch flounder in 2001 and three sensitivity analyses. 169
Figure G8. Projected median spawning stock biomass and median catch with 80% confidence intervals 170
Figure H1. Total commercial landings of Gulf of Maine-Georges Bank American plaice, 1960-2001 187
Figure H2. Number American plaice at age in the total catch, 1980-2001 188-189
Figure H3. Standardized stratified mean weight per tow of American plaice in NEFSC spring and autumn research vessel bottom trawl survey in the Gulf of Maine-Georges Bank region, 1963-2002. 190
Figure H4. Standardized stratified mean number per tow of American plaice in NEFSC spring and autumn research vessel bottom trawl survey in the Gulf of Maine-Georges Bank region, 1963-2002 190
Figure H5. Trends in total commercial landings and fishing mortality for Gulf of Maine-Georges Bank American plaice, 1980-2001 191
Figure H6. Trends in recruitment and spawning stock biomass for Gulf of Maine-Georges Bank American plaice, 1980-2001 191
Figure H7. Retrospective analysis of Gulf of Maine-Georges Bank American plaice recruits at age 1, spawning stockbiomass, and fishing mortality, based on the final ADAPT VPA formulation, 2001-1996.192
Figure H8. Fishing mortality and spawning stock biomass estimates from VPA calibrated using survey indices increased by 0% (base), 10% (110), 25% (125), and 100% (200) 193
Figure H9. Median and 80% confidence intervals of predicted spawning stock biomass and predicted landings for American plaice under $\mathrm{F}_{\text {rebuild }}=0.10$ 194
Figure I1. Total commercial landings of Georges Bank winter flounder during 1964-2001 203
Figure I2. Relative biomass indices of Georges Bank winter flounder from NEFSC spring (1968-2002) and autumn (1963-2001) bottom trawl surveys and the Canadian spring (1987-2002) bottom trawl survey. 203
Figure I3. Trends in total landings and fishing mortality rates for Georges Bank winter flounder during 1964- 2001 204
Figure I4. Trends in Georges Bank winter flounder total biomass, estimated from an ASPIC biomass dynamics model, during 1964-2001 in relation to BMSY 204
Figure I5. Retrospective analysis of ASPIC-derived estimates of fishing mortality rates and total biomass for Georges Bank winter flounder during 1995-2001 205
Figure I6. Point estimates and 80% confidence intervals of relative total biomass and fishing mortality rates during 2001 generated from a bootstrapped nominal run of an ASPIC biomass dynamics model and three sensitivity runs, including increased NEFSC survey biomass indices during spring 2000-2002, for the Georges Bank winter flounder stock 206
Figure I7. Median and 80% confidence intervals of projected yield and total biomass of Georges Bank winter flounder under $\mathrm{F}_{\text {MSY }}$ fishing mortality rates ($\mathrm{F}=0.32$) during 2003-2010 207
Figure J1. Commercial landings (1964-2001), commercial discards (1981-2001) recreational landings (1981-2001), recreational discards (1981-2001) and total fishery catch (1981-2001) for the SNE/MA winter flounder stock complex 226
Figure J2. Trends in research survey biomass indices for SNE/MA w inter flounder 227
Figure J3. T rends in research survey recruitment indices for SNE/MA winter flounder. 228-229
Figure J4. Total catch and fishing mortality rate for SNE/MA winter flounder 230
Figure J5. Spawning stock biomass and recruitment for SNE/MA winter flounder 231
Figure J6. Retrospective VPAs for SNE/MA winter flounder. 232
Figure J7. SNE/MA winter flounder VPA sensitivity to hypothetical NEFSC winter, spring, and fall survey index adjustments 233
Figure K1. Total landings and discards of white hake from the Gulf of Maine to Mid-Atlantic region, 1964- 2001 245
Figure K2. Trends in catch and survey indices of biomass by size class 246
Figure K3. White hake indices of biomass and abundance from the NEFSC bottom trawl spring and autumn surveys in the Gulf of Maine to Northern Georges Bank region, 1963-2002 247
Figure K4. Six-panel plot depicting relationship between relative F and replacement ratio, trend in replacement ratio,relationship between biomass and relative F, trend in biomass, trend in catch, and trend in relative F . 248
Figure L1. Trends in total and USA landings of pollock from Divisions 4VWX and Subareas 5 and 6, and NEFSCautumn survey biomass index, 1963-2001258
Figure L2. Trends in total landings of pollock from Divisions 4VWX and from Subareas 5 and 6, and NEFSC autumn survey biomass index, 1963-2001 258
Figure L3. Trends in total landings of pollock from Divisions 4VWX and Subareas 5 and 6, and indices of relative exploitation, 1963-2001 259
Figure L4. Trends in total landings of pollock from Subareas 5 and 6, and indices of relative exploitation, 1963- 2001 259
Figure L5. Trends in the NEFSC autumn survey biomass index for pollock from Subareas 5 and 6, 1963-2001 260
Figure L6. Trends in total landings of pollock from Subareas 5 and 6, 1963-2001 260
Figure L7. Trends in relative F for pollock in Subareas 5 and 6, 1963-2001 261
Figure L8. Trends in replacement ratio for pollock in Subareas 5 and 6, 1963-2001 261
Figure L9. Relationship between the replacement ratio and relative F for pollock in Subareas 5 and 6, 1963- 2001 262
Figure L10. Relationship between the NEFSC autumn survey biomass index and relative F for pollock in Subareas 5and 6, 1963-2001262
Figure L11. Six-panel plot illustrating relationships between landings, survey biomass indices, relative F, and replacement ratios for pollock in Subareas 5 and 6, 1963-2001 263
Figure M1. Total commercial landings of Acadian redfish from the Gulf of Maine-Georges Bank region, 1934- 2001 272
Figure M2. Commercial landings and biomass index derived from NEFSC autumn survey biomass indices for Acadian redfish, 1963-2001 273
Figure M3. Commercial landings and exploitation ratios derived from NEFSC autumn survey biomass indices for Acadian redfish 274
Figure N1. Trends in landings and NEFSC spring survey biomass (kg/tow) for ocean pout, 1968-2002 281
Figure N2. Exploitation indices for ocean pout, 1970-2002 281
Figure N3. Ocean pout stock status in 2001 and three sensitivity analyses in which NEFSC spring survey biomass was arbitrarily adjusted by $10 \%, 25 \%$ and 100% 282
Figure O1. Commercial landings of Gulf of Maine-Georges Bank windowpane flounder during 1975-2001 286
Figure O2. Relative biomass indices for Gulf of Maine-Georges Bank windowpane flounder from the NEFSC autumn bottom trawl surveys during 1963-2001 286
Figure O3. Relative exploitation indices and landings of Gulf of Maine-Georges Bank windowpane flounder during 1975-2001 287
Figure P1. Landings of Southern New England-Mid-Atlantic Bight windowpane flounder during 1963-2001 291
Figure P2. Relative biomass indices for Southern New England- Mid-Atlantic Bight windowpane flounder from the NEFSC autumn research vessel bottom trawl surveys during 1963-2001 291
Figure P3. Relative exploitation indices and landings of Southern New England-Mid-Atlantic Bight windowpane flounder during 1975-2001 292
Figure Q1. Landings and exploitation index of Mid Atlantic yellowtail flounder. 296
Figure Q2. Indices of Mid Atlantic yellowtail flounder biomass 296
Figure Q3. Sensitivity of results to increasing NEFSC indices since 2000 by $10 \%, 25 \%$ and 100% 297
Figure R1. Gulf of Maine haddock commercial landings during 1956-2001 and provisional recreational landings during 1982-2001 303
Figure R2. Northeast Fisheries Science Center research standardized and stratified survey abundance and biomass indices for Gulf of Maine haddock from 1963-2002 304
Figure R3. Observed and smoothed exploitation rate indices for Gulf of Maine haddock, 1963-2001 305
Figure S1. Atlantic halibut landings from the Gulf of Maine- Georges Bank region during 1893-2001 311
Figure S2. Trends in swept-area biomass indices of Atlantic halibut from NEFSC spring and autumn bottom trawl surveys 311
Figure S3. T rends in Atlantic halibut landings from the Gulf of Maine and Georges Bank in comparison to 5-year moving averages of spring and autumn survey indices, 1967-2001 312
Figure S4. T rends in exploitation rate indices for Atlantic halibut from the Gulf of Maine and Georges Bank basedon 5 -year moving averages of NEFSC spring and autumn survey indices, 1967-2001 Exploitation RateIndex313
Figure T1. Gulf of Maine winter flounder landings by gear 322
Figure T2. Recreational landings in numbers and metric tons for Gulf of Maine winter flounder 323
Figure T3. NEFSC Spring survey stratified mean numbers and mean weight per tow for Gulf of Maine winter flounder 324
Figure T4. NEFSC Fall survey stratified mean numbers and mean weight per tow for Gulf of Maine winter flounder 325
Figure T5. Massachusetts Division of Marine Fisheries spring survey stratified mean numbers and mean weight pertow for Gulf of Maine winter flounder326
Figure T6. Massachusetts Division of Marine Fisheries Fall survey stratified mean numbers and mean weight per tow for Gulf of Maine winter flounder 327
Figure T7. Seabrook Nuclear Power Plant in spring and fall survey mean numbers per tow for Gulf of Maine winter flounder 328
Figure 3.1.1. Difference between port and starboard warp marks vs. fishing depth 335
Figure 3.1.2. Predicted effect of trawl offset on reduction in area swept for fishing depths from 0 to 400 m 336
Figure 3.2.1. Location of tows by the R / V Albatross $I V$ with "any" damage in NEFSC fall, spring and winter surveys during 1983-2002 342
Figure 3.2.2. Location of tows by the R / V Albatross $I V$ with "major" damage in NEFSC fall, spring and winter surveys during 1983-2002 343
Figure 3.2.3. Proportion of tows with any, minor and major damage in NEFSC fall, spring and winter surveys during 1983-2002 344
Figure 3.2.4. Estimated warp effects in the final GAM model for the frequency of any damage during NEFSC survey tows 345
Figure 3.2.5. Predicted frequency of tows with any and major gear damage as a function of tow depth, based on separate GAM models for surveys during 2000-2002 with mis-marked warps and surveys during 1983- 2001 without mis-marked warps. 346
Figure 3.3-1. Length composition data for cod on Georges Bank in spring surveys 349
Figure 3.3-2. Length composition data for haddock on Georges Bank in spring surveys 349
Figure 3.3-3. Length composition data for yellowtail flounder on Georges Bank in spring surveys 349
Figure 3.3-4. Length composition data for monkfish during 2001 in the NEFSC winter survey and commercial vessels in the Cooperative Monkfish Survey 350
Figure 3.3.5. Length composition data for cod, haddock and yellowtail flounder in paired tows for a fishing power experiment during the spring of 2002 351
Figure 3.4.1. Locations of stations where video and trawl sensor data were collected to assess the effects of warp length offsets on the trawl performance of the R/V Albatross IV during 25-26 September, 2002 354
Figure 3.4.2. Yankee 36 headrope height and wing spread measurements recorded by the Simrad ITI system of the R/V Albatross IV at stations sampled during a 25-26 September, 2002 warp length offset experiment . 355
Figure 3.4.3356
Figure 3.4.4. Means and standard deviations of headrope height and wing spread measurements of the Yankee 36net of the R/V Albatross $I V$, at starboard and port trawl warp length offsets of $0 \mathrm{ft} ., 2 \mathrm{ft}$., 4 ft ., 6 ft ., 12 ft .,
for stations $906,907,908$ and 909 combined for stations 906, 907,908 and 909 combined 357
Figure 3.5.1. Example behavior of Model 2 for varying levels of θ 360
Figure 3.6.1. Box plots of stratum-specific coefficients of catch for Georges Bank stock of cod for fall, spring, and winter NEFSC trawl surveys 362
Figure 3.6.2. Box plots of stratum-specific coefficients of catch for Gulf of Maine stock of cod for fall, spring, andwinter NEFSC trawl surveys363
Figure 3.6.3. Box plots of stratum-specific coefficients of catch for Georges Bank stock of haddock for fall, spring, and winter NEFSC trawl surveys 364
Figure 3.6.4. Box plots of stratum-specific coefficients of catch for Gulf of Maine stock of haddock for fall, spring, and winter NEFSC trawl surveys 365
Figure 3.6.5. Box plots of stratum-specific coefficients of catch for Georges Bank stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys 366
Figure 3.6.6. Box plots of stratum-specific coefficients of catch for Southern New England stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys 367
Figure 3.6.7. Box plots of stratum-specific coefficients of catch for Cape Cod stock of yellowtail flounder for fall, spring, and winter NEFSC trawl surveys 368
Figure 3.6.8. Box plots of stratum-specific coefficients of catch for American plaice for fall, spring, and winter NEFSC trawl surveys 369
Figure 3.6.9. Box plots of stratum-specific coefficients of catch for Georges Bank stock of winter flounder for fall, spring, and winter NEFSC trawl surveys 370
Figure 3.6.10. Box plots of stratum-specific coefficients of catch for Southern New England stock of winter flounder for fall, spring, and winter NEFSC trawl surveys 371
Figure 3.6.11. Box plots of stratum-specific coefficients of catch for Acadian redfish for fall, spring, and winter NEFSC trawl surveys 372
Figure 3.6.12. Box plots of stratum-specific coefficients of catch for white hake for fall, spring, and winter NEFSC trawl surveys 373
Figure 3.6.13. Box plots of stratum-specific coefficients of catch for pollock for fall, spring, and winter NEFSC trawl surveys 374
Figure 3.6.14. Box plots of stratum-specific coefficients of catch for northern stock of windowpane flounder for fall, spring, and winter NEFSC trawl surveys 375
Figure 3.6.15. Box plots of stratum-specific coefficients of catch for southern stock of windowpane flounder for fall, spring, and winter NEFSC trawl surveys 376
Figure 3.6.16. Box plots of stratum-specific coefficients of catch for ocean pout for fall, spring, and winter NEFSC trawl surveys 377
Figure 3.6.17. Box plots of stratum-specific coefficients of catch for spiny dogfish for fall, spring, and winter NEFSC trawl surveys 378
Figure 3.6.18. Box plots of stratum-specific coefficients of catch for summer flounder for fall, spring, and winter NEFSC trawl surveys 379
Figure 3.6.19. Box plots of stratum-specific coefficients of catch for longhorn sculpins for fall, spring, and winter NEFSC trawl surveys 380
Figure 3.6.20. Box plots of stratum-specific coefficients of catch for fourspot flounders for fall, spring, and winter NEFSC trawl surveys 381
Figure 3.7.1. Temporal trends in catch weighted average depth for Georges Bank Cod stock for fall, winter and spring surveys 399
Figure 3.7. 2. Temporal trends in catch weighted average depth for Gulf of Maine Cod stock for fall, winter and spring surveys 400
Figure 3.7.3. Temporal trends in catch weighted average depth for Georges Bank Haddock stock for fall, winter andspring surveys401
Figure 3.7.4. Temporal trends in catch weighted average depth for Gulf of Maine Haddock stock for fall, winter and spring surveys 402
Figure 3.7.5. Temporal trends in catch weighted average depth for Georges Bank Yellowtail stock for fall, winter and spring surveys 403
Figure 3.7.6. Temporal trends in catch weighted average depth for Southern New England Yellowtail stock for fall, winter and spring surveys 404
Figure 3.7.7. Temporal trends in catch weighted average depth for Cape Cod Yellowtail Flounder stock for fall, winter and spring surveys 405
Figure 3.7.8. Temporal trends in catch weighted average depth for Witch Flounder stock for fall, winter and spring surveys 406
Figure 3.7.9. Temporal trends in catch weighted average depth for American Plaice stock for fall, winter and spring surveys 407
Figure 3.7.10. Temporal trends in catch weighted average depth for Acadian Redfish stock for fall, winter and spring surveys 408
Figure 3.7.11. Temporal trends in catch weighted average depth for White Hake stock for fall, winter and spring surveys 409
Figure 3.7.12. Temporal trends in catch weighted average depth for pollock stock for fall, winter and spring surveys 410
Figure 3.7.13. Temporal trends in catch weighted average depth for Georges Bank Winter Flounder stock for fall, winter and spring surveys 411
Figure 3.7.14. Temporal trends in catch weighted average depth for Southern New England Winter Flounder stock for fall, winter and spring surveys 412
Figure 3.7.15. Temporal trends in catch weighted average depth for Northern Windowpane Flounder stock for fall, winter and spring surveys 413
Figure 3.7.16. Temporal trends in catch weighted average depth for Windowpane Flounder stock for fall, winter andspring surveys414
Figure 3.7.17. Temporal trends in catch weighted average depth for Ocean Pout stock for fall, winter and spring surveys 415
Figure 3.7.18. Temporal trends in catch weighted average depth for Spiny Dogfish stock for fall, winter and spring surveys 416
Figure 3.7.19. Temporal trends in catch weighted average depth for Summer Flounder stock for fall, winter and spring surveys 417
Figure 3.7.20. Temporal trends in catch weighted average depth for Fourspot Flounder stock for fall, winter and spring surveys 418
Figure 3.7. 21. Temporal trends in catch weighted average depth for Longhorn Sculpin stock for fall, winter and spring surveys 419
Figure 3.7.22. Temporal trends in catch weighted average depth for Halibut stock for fall, winter and spring surveys 420
Figure 3.7.23. Distribution of standardized difference in catch rates vs. depth interval for all species combined 421
Figure 3.7.24. Distribution of standardized difference in catch rates vs. depth interval for gadoid species (GB cod, GOM cod, GB haddock, GOM haddock, white hake, and pollock 422
Figure 3.7.25. Distribution of standardized difference in catch rates vs. depth interval for flatfish species, GB winterflounder SNE winter flounder, summer flounder, and fourspot flounder... 423
Figure 3.7.26. Distribution of standardized difference in catch rates vs. depth interval for flatfish species, GB winterflounder, GB cod, GOM cod, SNE winter flounder, summer flounder, fourspot flounder, ocean pout,longhorn sculpin, spiny dogfish424
Figure 3.7.27. Distribution of standardized difference in catch rates vs. depth interval for flatfish species 425
Figure 3.7.28. Predicted reductions in relative efficiency of capture for cod in fall and spring surveys given hypothesized increases in overall abundance of 10,25 , and 100% 426
Figure 3.7.29. Predicted reductions in relative efficiency of capture for haddock in fall and spring surveys given hypothesized increases in overall abundance of 10,25 , and 100% 427
Figure 3.7.30. Predicted reductions in relative efficiency of capture for yellowtail flounder in fall and spring surveysgiven hypothesized increases in overall abundance of 10,25 , and 100%.. 428
Figure 3.7.31. Catch weighted average depths at capture for 16 species of groundfish taken in NEFSC bottom trawl surveys 429
Figure 3.7.32. Catch weighted average depths at capture for 16 species of groundfish taken in NEFSC bottom trawl surveys 430
Figure 3.8. Directional change in abundance (numbers per tow) of various species/stocks for pairs of years 433
Figure 3.9.1. Time series of survey catch rates for all species comparisons in this analysis 442-445
Figure 3.9.2. Time series of SLSCR indices of relative fishing power for all species comparisons in this analysis 446-449
Figure 3.11.1. Results of fishing power calibration studies for NOAA R/Vs Albatross IV and Delaware II during two time periods 455
Figure 3.11.2. Calculated ratios of Albatross to Delaware surveys that can be detected at the 0.05 level of significance, using a twotailed test 456
Figure 5.1.1. Status of 19 Northeast groundfish stocks relative to status determination criteria of fishing mortality and stock biomass 464
Figure 5.1.2. Changes in stock biomass (spawning biomass or total biomass survey index) for 20 Northeast groundfish stocks, 1990-2001 465
Figure 5.1.3. Changes in fishing mortality rate or exploitation rate indices for 19 stocks of Northeast groundfish between 1994 and 2001 466
Figure 5.3. Trends in bottom trawl survey abundance indices, 1963-2001 472
Figure 6.3. Summary of biological sampling for catch-at-age estimation, 1998-2001 477
Figure H23. Predicted shift in shift in average depth distribution for population distribution at depth for varying levels of underestimation of abundance 511

Procedures for Issuing Manuscripts in the
 Northeast Fisheries Science Center Reference Document (CRD) Series

Clearance: All manuscripts submitted for issuance as CRDs must have cleared the NEFSC 's manuscript/abstract/webpage review process. If any author is not a federal employee, he/she will be required to sign an "NEFSC Release-of-Copyright Form." If your manuscript includes material lifted from another work which has been copyrighted, then you will need to work with the NEFSC's Editorial Office to arrange for permission to use that material by securing release signatures on the "NEFSC Use of Copyrighted Work Permission Form."

Organization: Manuscripts must have an abstract and table of contents, and - if applicable - lists of figures and tables. As much as possible, use traditional scientific manuscript organization for sections: "Introduction," "Study Area"/"Experimental Apparatus," "Methods," "Results," "Discussion" and/ or "Conclusions," "Acknowledgments," and "Literature/References Cited."

Style: The CRD series is obligated to conform with the style contained in the current edition of the United States Government Printing Office Style Manual. That style manual is silent on many aspects of scientific manuscripts. The CRD series relies more on the CBE Style Manual, 5th ed. Manuscripts should be prepared to conform with these style manuals.

The CRD series uses the American Fisheries Society's guides to names of fishes, mollusks, and decapod crustaceans, the Society for Marine Mammalogy's guide to names of marine mammals, the Biosciences Information Service's guide to serial title abbreviations, and the International Standardization Organization's guide to statistical terms.

For in-text citation, use the name-date system. A special effort should be made to ensure that all necessary bibliographic information is included in the list of cited works. Personal communications must include date, full name, and full mailing address of the contact.

Preparation: Type a clean/neat, single-spaced version of the document. The document must be paginated continuously from beginning to end and must have a "Table of Contents." Begin the preliminary pages of the document - always the "Table of Contents" - with page "iii." Begin the body of the document - normally the "Introduction" - with page " 1 ," and continuously paginate all pages including tables, figures, appendices, and indices. You can insert blank pages as appropriate throughout the document, but account for them in your pagination (e.g., if your last figure ends on an odd-numbered/right-hand page such as " 75 ," and if your next page is the first page of an appendix, then you would normally insert a blank page after the last figure, and paginate the first page of the appendix as " 77 " to make it begin on an odd-numbered/ right-hand page also). Forward the final version to the Editorial Office as both a paper copy and electronically (i.e., e-mail attachment, 3.5-inch floppy disk, high-density zip disk, or $\mathrm{CD})$. For purposes of publishing the CRD series only, the use of Microsoft Word is preferable to the use ofCorel WordPerfect.

Production and Distribution: The Editorial Office will develop the inside and outside front covers, the outside back cover, and the title and bibliographic control pages (pages "i" and "ii") of the document, then combine those covers and preliminary pages with the text that you have supplied. The document will then be issued online.

Paper copies of the three covers and two preliminary pages will be sent to the sole/senior NEFSC author should he/ she wish to prepare some paper copies of the overall document as well. The Editorial Office will only produce four paper copies (i.e., three copies for the NEFSC's libraries and one copy for its own archives) of the overall document.

Several hundred organizations and individuals in the Northeast Region will be notified by e-mail of the availability of the online version of the document. The sole/senior NEFSC author of the document will receive a list of those so notified.

Publications and Reports of the

 Northeast Fisheries Science CenterThe mission of NOAA's National Marine Fisheries Service (NMFS) is "stewardship of living marine resources for the benefit of the nation through their science-based conservation and management and promotion of the health of their environment." As the research arm of the NMFS's Northeast Region, the Northeast Fisheries Science Center (NEFSC) supports the NMFS mission by "planning, developing, and managing multidisciplinary programs of basic and applied research to: 1) better understand the living marine resources (including marine mammals) of the Northwest Atlantic, and the environmental quality essential for their existence and continued productivity; and 2) describe and provide to management, industry, and the public, options for the utilization and conservation of living marine resources and maintenance of environmental quality which are consistent with national and regional goals and needs, and with international commitments." Results of NEFSC research are largely reported in primary scientific media (e.g., anonymously-peer-reviewed scientific journals). However, to assist itself in providing data, information, and advice to its constituents, the NEFSC occasionally releases its results in its own media. Those media are in four categories:

NOAA Technical Memorandum NMFS-NE -- This series is issued irregularly. The series typically includes: data reports of long-term field or lab studies of important species or habitats; synthesis reports for important species or habitats; annual reports of overall assessment or monitoring programs; manuals describing program-wide surveying or experimental techniques; literature surveys of important species or habitat topics; proceedings and collected papers of scientific meetings; and indexed and/or annotated bibliographies. All issues receive internal scientific review and most issues receive technical and copy editing.

Northeast Fisheries Science Center Reference Document -- This series is issued irregularly. The series typically includes: data reports on field and lab studies; progress reports on experiments, monitoring, and assessments; background papers for, collected abstracts of, and/or summary reports of scientific meetings; and simple bibliographies. Issues receive internal scientific review, but no technical or copy editing.

Fishermen's Report -- This information report is a quick-turnaround report on the distribution and relative abundance of commercial fisheries resources as derived from each of the NEFSC's periodic research vessel surveys of the Northeast's continental shelf. There is no scientific review, nor any technical or copy editing, of this report.

The Shark Tagger -- This newsletter is an annual summary of tagging and recapture data on large pelagic sharks as derived from the NMFS's Cooperative Shark Tagging Program; it also presents information on the biology (movement, growth, reproduction, etc.) of these sharks as subsequently derived from the tagging and recapture data. There is internal scientific review, but no technical or copy editing, of this newsletter.

OBTAINING A COPY: To obtain a copy of a NOAA Technical Memorandum NMFS-NE or a Northeast Fisheries Science Center Reference Document, or to subscribe to the Fishermen's Report or the The Shark Tagger, either contact the NEFSC Editorial Office (166 Water St., Woods Hole, MA 02543-1026; 508-495-2228) or consult the NEFSC webpage on "Reports and Publications" (http: //www.nefsc.noaa.gov/nefsc/publications/).

ANY USE OF TRADE OR BRAND NAMES IN ANY NEFSC PUBLICATION OR REPORT DOES NOT IMPLY ENDORSEMENT.

[^0]: * indices not included in VPA calibration

[^1]: S. Gavaris Personal communication.

[^2]: * assumes long-term recruitment pattern

[^3]: ${ }^{1}$ Includes West Germany, East Germany, Poland, Spain, Japan, \& the former USSR. ${ }^{2}$ excluding landings from Grand Banks (subarea 3).

[^4]: 1996-1999 Canadian Data Preliminary
 1994-2001 USA Data Preliminary
 1999 DWF Data Preliminary

[^5]: ${ }^{1}$ Landings from 1995-2001were prorated based on Vessel Trip Reports.

[^6]: ${ }^{1}$ Landings from 1995-2001were prorated based on Vessel Trip Reports.

[^7]: ${ }^{1}$ Dr. J. Hunt, Fisheries and Oceans Canada, Marine Fish Division, Gulf of Maine Section, 531 Brandy Cove Rd., St. Andrews, New Brunswick, E5B 2L9, CANADA

[^8]: $+=$ Assessment models were not updated for Acadian redfish
 unknown $=$ estimates of F or proxy are not available for Atlantic halibut

[^9]: ${ }^{1}$ The written report will undergo an internal CIE review before it is considered final. After completion, the CIE will create a PDF version of the written report that will be submitted to NMFS and the consultant.

[^10]: ${ }^{1}$ The written report will undergo an internal CIE review before it is considered final. After completion, the CIE will create a PDF version of the written report that will be submitted to NMFS and the consultant.

