Source and Accuracy of Estimates for Income, Poverty, and Health Insurance Coverage in the United States: 2004

SOURCES OF DATA

The estimates in the report Income, Poverty, and Health Insurance Coverage in the United States: 2004 come from the 2005 Annual Social and Economic Supplement (ASEC). The U.S. Census Bureau conducts the ASEC over a 3-month period, in February, March, and April, with most data collection occurring in the month of March. The ASEC uses two sets of questions: the basic Current Population Survey (CPS) and a set of supplemental questions. The CPS, sponsored jointly by the Census Bureau and the U.S. Bureau of Labor Statistics, is the country's primary source of labor force statistics for the entire population. The Census Bureau and the Bureau of Labor Statistics also jointly sponsor the ASEC.

Basic CPS. The monthly CPS collects primarily labor force data about the civilian noninstitutionalized population living in the United States. Interviewers ask questions concerning labor force participation about each member 15 years old and over in sample households.

The CPS uses a multistage probability sample based on the results of the decennial census. When files from the most recent decennial census become available, the Census Bureau gradually introduces a new sample design for the CPS.

In April 2004, the Census Bureau began phasing out the 1990 sample and replacing it with the 2000 sample, creating a mixed sampling frame. Two simultaneous changes will occur during this phase-in period. First, primary sampling units (PSUs) ${ }^{2}$ selected for only the 2000 design will gradually replace those selected for the 1990 design. This will involve 10 percent of the sample. Second, within PSUs selected for both the 1990 and 2000 designs, sample households from the 2000 design will gradually replace sample households from the 1990 design. This will involve about 90 percent of the entire sample. By July 2005, the new sam-

[^0]ple design will be completely implemented, and the sample will come entirely from Census 2000 files.

In the first stage of the sampling process, PSUs are selected for sample. In the 1990 design, the United States was divided into 2,007 PSUs. These were then grouped into 754 strata, and 1 PSU was selected for sample from each stratum. In the 2000 sample design, the United States is divided into 2,025 PSUs. These PSUs are then grouped into 824 strata. Within each stratum, a single PSU is chosen for the sample, with its probability of selection proportional to its population as of the most recent decennial census. This PSU represents the entire stratum from which it was selected. In the case of strata consisting of only one PSU, the PSU is chosen with certainty.

The 1990 design and 2000 design strata numbers are not directly comparable since the 1990 design contained some PSUs in New England and Hawaii that were based on minor civil divisions instead of counties while the PSUs in the 2000 design are strictly countybased. The PSUs have also been redefined to correspond to the new Core-Based Statistical Area definitions and to improve efficiency in field operations.

Approximately 72,700 households were selected for sample from the mixed sampling frame in March. Based on eligibility criteria, 11 percent of these households were sent directly to Computer-Assisted Telephone Interviewing (CATI). The remaining units were assigned to interviewers for Computer-Assisted Personal Interviewing (CAPI). ${ }^{3}$ Of all housing units in sample, about 60,100 were determined to be eligible for interview. Interviewers obtained interviews at about 54,400 of these units. Noninterviews occur when the occupants are not found at home after repeated calls or are unavailable for some other reason.

Table 1 summarizes changes in the CPS designs for the years in which data appear in this report.

[^1]Table 1.
Description of the March 2005 CPS Sample Cases, Basic + ASEC

[^2]The Annual Social and Economic Supplement. In addition to the basic CPS questions, interviewers asked supplementary questions for the ASEC. They asked these questions of the civilian noninstitutionalized population and also of military personnel who lived in households with at least one other civilian adult. The additional questions covered the following topics:

- Household and family characteristics
- Marital status
- Geographic mobility
- Foreign-born population
- Income from the previous calendar year
- Poverty
- Work status/occupation
- Health insurance coverage
- Program participation
- Educational attainment

Including the basic CPS sample, approximately 98,700 housing units were in sample for the 2005 ASEC.

About 84,700 were determined to be eligible for interview and about 77,200 interviews were obtained. (See Table 1.)

The additional sample for the ASEC provides more reliable data for Hispanic households, non-Hispanic minority households, and non-Hispanic White households with children 18 years or younger. These households are identified for sample from previous months and the following April. For more information about the households eligible for the ASEC, please refer to:

Technical Paper 63RV, Current Population Survey: Design and Methodology, U.S. Census Bureau, U.S. Department of Commerce, 2002. <www.census.gov/prod/2002pubs/tp63rv.pdf>.

Estimation Procedure. This survey's estimation procedure adjusts weighted sample results to agree with independently derived population estimates of the civilian noninstitutionalized population of the United States. These population estimates, used as controls
for the CPS, are prepared annually to agree with the most current set of population estimates that are released as part of the Census Bureau's population estimates and projections program.

The population controls for the nation are distributed by demographic characteristics in two ways:

- Age, sex, and race (White alone, Black alone, Asian alone, and all other groups combined).
- Age, sex, and Hispanic origin.

The projections for the states are distributed by race (Black alone and all other race groups combined), age (0-15, 16-44, and 45 and over), and sex.

The independent estimates by age, sex, race, and Hispanic origin and for states by selected age groups and broad race categories are developed using the basic demographic accounting formula whereby the population from the latest decennial data is updated using data on the components of population change (births, deaths, and net international migration) with internal migration as an additional component in the state population estimates.

The net international migration component in the population estimates includes a combination of:

- Legal migration to the United States.
- Emigration of foreign-born and native people from the United States.
- Net movement between the United States and Puerto Rico.
- Estimates of temporary migration.
- Estimates of net residual foreign-born population, which include unauthorized migration.

Because the latest available information on these components lags the survey date, it is necessary to make short-term projections of these components to develop the estimate for the survey date.

The estimation procedure of the ASEC includes a further adjustment so the husband and wife of a household receive the same weight.

ACCURACY OF ESTIMATES

A sample survey estimate has two types of error: sampling and nonsampling. The accuracy of an estimate depends on both types of error. The nature of the sampling error is known, given the survey design; the full extent of the nonsampling error is unknown.

Sampling Error. Since the CPS estimates come from a sample, they may differ from figures from an enumeration of the entire population using the same questionnaires, instructions, and enumerators. For a given estimator, the difference between an estimate based on a sample and the estimate that would result if the sample were to include the entire population is known as sampling error. Standard errors, as calculated by methods described in "Standard Errors and Their Use," are primarily measures of the magnitude of sampling error. However, they may include some nonsampling error.

Nonsampling Error. For a given estimator, the difference between the estimate that would result if the sample were to include the entire population and the true population value being estimated is known as nonsampling error. Sources of nonsampling errors include the following:

- Inability to obtain information about all cases in the sample (nonresponse).
- Definitional difficulties.
- Differences in the interpretation of questions.
- Respondent inability or unwillingness to provide correct information.
- Respondent inability to recall information.
- Errors made in data collection, such as in recording or coding the data.
- Errors made in processing the data.
- Errors made in estimating values for missing data.
- Failure to represent all units with the sample (undercoverage).

Answers to questions about money income often depend on the memory or knowledge of one person in a household. Recall problems can cause underestimates of income in survey data because it is easy to forget minor or irregular sources of income. Respondents may also misunderstand what the Census Bureau considers money income or may simply be unwilling to answer these questions correctly because the questions are considered too personal. See Appendix C, Current Population Reports, Series P60-184, Money Income of Households, Families, and Persons in the United States: 1992 for more details.

To minimize these errors, the Census Bureau employs quality control procedures in sample selection, wording of questions, interviewing, coding, data processing, and data analysis.

Table 2.
March 2005 CPS Coverage Ratios

Age	All people			White only		Black only		Residual race		Hispanic ${ }^{1}$	
	Total	Male	Female								
0 to 15 years	0.92	0.92	0.92	0.94	0.94	0.81	0.78	0.95	0.98	0.97	0.94
16 to 19 years	0.88	0.90	0.85	0.91	0.88	0.78	0.71	0.97	0.94	1.03	0.94
20 to 24 years	0.81	0.80	0.82	0.82	0.84	0.59	0.72	0.91	0.76	0.83	0.84
25 to 34 years	0.84	0.81	0.87	0.84	0.89	0.66	0.79	0.82	0.86	0.76	0.87
35 to 44 years	0.89	0.86	0.93	0.88	0.95	0.70	0.80	0.85	0.88	0.84	0.94
45 to 54 years	0.91	0.89	0.93	0.90	0.94	0.80	0.85	0.88	0.96	0.81	0.91
55 to 64 years	0.91	0.91	0.90	0.91	0.91	0.86	0.89	0.90	0.83	0.88	0.82
65 years and older	0.94	0.95	0.93	0.96	0.94	0.94	0.95	0.90	0.83	0.78	0.89
15 years and older	0.89	0.88	0.90	0.89	0.92	0.75	0.82	0.88	0.87	0.83	0.90
0 years and older	0.90	0.89	0.91	0.90	0.92	0.77	0.81	0.89	0.90	0.87	0.91

${ }^{1}$ Hispanics may be any race.
Note: The Residual race group includes cases indicating a single race other than White or Black, and cases indicating two or more races.

Source: U.S. Census Bureau, Demographic Statistical Methods Division.

Two types of nonsampling error that can be examined to a limited extent are nonresponse and undercoverage.

Nonresponse. The effect of nonresponse cannot be measured directly, but one indication of its potential effect is the nonresponse rate. For the cases eligible for the 2005 ASEC, the basic CPS nonresponse rate was 9.4 percent. The nonresponse rate for the ASEC was an additional 8.8 percent. These two nonresponse rates lead to a combined supplement nonresponse rate of 17.4 percent.

Coverage. The concept of coverage in the survey sampling process is the extent to which the total population that could be selected for sample "covers" the survey's target population. CPS undercoverage results from missed housing units and missed people within sample households. Overall CPS undercoverage for March 2005 is estimated to be about 10 percent. CPS undercoverage varies with age, sex, and race.
Generally, undercoverage is larger for males than for females and larger for Blacks than for Non-Blacks.

The CPS weighting procedure partially corrects for bias due to undercoverage, but biases may still be present when people who are missed by the survey differ from those interviewed in ways other than age, race, sex, Hispanic ancestry, and state of residence. How this weighting procedure affects other variables in the survey is not precisely known. All of these considerations affect comparisons across different surveys or data sources.

A common measure of survey coverage is the coverage ratio, calculated as the estimated population before poststratification divided by the independent
population control. Table 2 shows March 2005 CPS coverage ratios for certain age-sex-race-ancestry groups. The CPS coverage ratios can exhibit some variability from month to month.
Comparability of Data. Data obtained from the CPS and other sources are not entirely comparable. This results from differences in interviewer training and experience and in differing survey processes. This is an example of nonsampling variability not reflected in the standard errors. Therefore, caution should be used when comparing results from different sources.

Caution should also be used when comparing estimates for 1999 to 2004 in Income, Poverty, and Health Insurance Coverage in the United States: 2004 (which reflect Census 2000-based population controls) with estimates for 1992 to 1998 (from March 1993 CPS to March 1999 CPS), which reflect 1990 census-based population controls and with estimates for 1991 (from March 1992 CPS) and earlier years, which reflect 1980 census-based population controls. Be sure to compare estimates with the same controls when possible. Estimates from previous years reflect the latest available census-based population controls. Although this change in population controls had relatively little impact on summary measures, such as averages, medians, and percentage distributions, it did have a significant impact on levels. For example, use of Census 2000-based population controls results in about a 1 percent increase in the civilian noninstitutionalized population and in the number of families and households. Thus, estimates of levels for data collected in 2002 and later years will differ from those for earlier years by more than what could be attributed to actual changes in the population.

These differences could be disproportionately greater for certain population subgroups than for the total population.

Caution should also be used when comparing Hispanic estimates over time. No independent population control totals for people of Hispanic ancestry were used before 1985.

Users should also exercise caution due to changes caused by the phase-in of the Census 2000 files. During this time period, CPS data are collected from sample designs based on different censuses. Three features of the new CPS design have the potential of affecting published estimates: (1) the temporary disruption of the rotation pattern from August 2004 through June 2005 for a comparatively small portion of the sample, (2) the change in sample areas, and (3) the introduction of the new Core-Based Statistical Areas (formerly called metropolitan area). Most of the known effect on estimates during and after the sample redesign will be the result of changing from 1990 to 2000 geographic definitions. Research has shown that the national-level estimates of the metropolitan and nonmetropolitan populations should not change appreciably because of the new sample design. However, users should still exercise caution when comparing metropolitan and nonmetropolitan estimates across years with a design change, especially at the state level.

A Nonsampling Error Warning. Since the full extent of the nonsampling error is unknown, one should be particularly careful when interpreting results based on small differences between estimates. Even a small amount of nonsampling error can cause a borderline difference to appear significant or not, thus distorting a seemingly valid hypothesis test. Caution should also be used when interpreting results based on a relatively small number of cases. Summary measures (such as medians and percentage distributions) probably do not reveal useful information when computed on a subpopulation smaller than 75,000.

For additional information on nonsampling error, including the possible impact on CPS data when known, refer to:

- Statistical Policy Working Paper 3, An Error Profile: Employment as Measured by the Current Population Survey, Office of Federal Statistical Policy and Standards, U.S. Department of Commerce, 1978. <www.fcsm.gov/working-papers/spp.html>.
- Technical Paper 63RV, Current Population Survey: Design and Methodology, U.S. Census Bureau, U.S. Department of Commerce, 2002. <www.census.gov/prod/2002pubs/tp63rv.pdf>.

Estimation of Median Incomes. The Census Bureau has changed the methodology for computing median income over time. The Census Bureau has computed medians using either Pareto interpolation or linear interpolation. Currently, we are using linear interpolation to estimate all medians. Pareto interpolation assumes a decreasing density of population within an income interval; whereas, linear interpolation assumes a constant density of population within an income interval. The Census Bureau calculated estimates of median income and associated standard errors for 1979 through 1987 using Pareto interpolation if the estimate was larger than $\$ 20,000$ for people or $\$ 40,000$ for families and households. This is because the width of the income interval containing the estimate is greater than $\$ 2,500$.

We calculated estimates of median income and associated standard errors for 1976, 1977, and 1978 using Pareto interpolation if the estimate was larger than $\$ 12,000$ for people or $\$ 18,000$ for families and households. This is because the width of the income interval containing the estimate is greater than $\$ 1,000$. All other estimates of median income and associated standard errors for 1976 through 2004 and almost all of the estimates of median income and associated standard errors for 1975 and earlier were calculated using linear interpolation.

Thus, use caution when comparing median incomes above $\$ 12,000$ for people or $\$ 18,000$ for families and households for different years. Median incomes below those levels are more comparable from year to year since they have always been calculated using linear interpolation. For an indication of the comparability of medians calculated using Pareto interpolation with medians calculated using linear interpolation, see Series P-60, No. 114, Money Income in 1976 of Families and Persons in the United States.

Standard Errors and Their Use. The sample estimate and its standard error enable one to construct a confidence interval. A confidence interval is a range that would include the average result of all possible samples with a known probability. For example, if all possible samples were surveyed under essentially the same general conditions and using the same sample design, and if an estimate and its standard error were calculated from each sample, then approximately 90 percent of the intervals from 1.645 standard errors below the estimate to 1.645 standard errors above the estimate would include the average result of all possible samples.

A particular confidence interval may or may not contain the average estimate derived from all possible samples. However, one can say with specified confidence that the interval includes the average estimate calculated from all possible samples.

Standard errors may be used to perform hypothesis testing. This is a procedure for distinguishing between population parameters using sample estimates. The most common type of hypothesis is that the population parameters are different. An example of this would be comparing the percentage of Whites in poverty to the percentage of Blacks in poverty.

Tests may be performed at various levels of significance. A significance level is the probability of concluding that the characteristics are different when, in fact, they are the same. For example, to conclude that two characteristics are different at the 0.10 level of significance, the absolute value of the estimated difference between characteristics must be greater than or equal to 1.645 times the standard error of the difference.

The tables in Income, Poverty, and Health Insurance Coverage in the United States: 2004 list estimates followed by a number labeled "90-percent confidence interval (\pm)." This number can be added to or subtracted from the estimates to calculate upper and lower bounds of the 90 -percent confidence interval. For example, Table 7 in Income, Poverty, and Health Insurance Coverage in the United States: 2004 shows the numbers for health insurance. For the statement "the percentage of people without health insurance was 15.7 percent in 2004," the 90 -percent confidence interval for the estimate, 15.7 percent, is $15.7(\pm 0.2)$ percent, or 15.5 percent to 15.9 percent. The tables also display asterisks in the last columns for significant differences.

The Census Bureau uses 90-percent confidence intervals and 0.10 levels of significance to determine statistical validity. Consult standard statistical textbooks for alternative criteria.

Estimating Standard Errors. The Census Bureau uses replication methods to estimate the standard errors of CPS estimates. These methods primarily measure the magnitude of sampling error. However, they do measure some effects of nonsampling error as well. They do not measure systematic biases in the data due to nonsampling error. Bias is the average over all possible samples of the differences between the sample estimates and the true value.

Generalized Variance Parameters. It is possible to compute and present an estimate of the standard error based on the survey data for each estimate in a report, but there are a number of reasons why this is not done. A presentation of the individual standard errors would be of limited use, since one could not possibly predict all of the combinations of results that may be of interest to data users. Additionally, variance estimates are based on sample data and have variances of their own. Therefore, some method of stabilizing these estimates of variance, for example, by generalizing or averaging over time, may be used to improve their reliability.

Experience has shown that certain groups of estimates have a similar relationship between their variance and expected value. Modeling or generalization may provide more stable variance estimates by taking advantage of these similarities. The generalized variance function is a simple model that expresses the variance as a function of the expected value of the survey estimate. The parameters of the generalized variance function are estimated using direct replicate variances. These generalized variance parameters provide a relatively easy method to obtain approximate standard errors for numerous characteristics. In this source and accuracy statement, Tables 3 and 4 provide generalized variance parameters for characteristics from the ASEC data by race and ethnicity. Table 5 provides factors to approximate parameters for ASEC estimates prior to 2004. Tables 6 and 7 contain the year-to-year correlation coefficients for ASEC characteristics. Table 8 contains the correlation coefficients for comparing race categories that are subsets of one another. Table 9 contains the state factors and populations, and Table 10 contains the regional factors and populations.

Standard Errors of Estimated Numbers. The approximate standard error, s_{x}, of an estimated number shown in Income, Poverty, and Health Insurance Coverage in the United States: 2004 can be obtained using the formula:
$s_{x}=\sqrt{a x^{2}+b x}$
Here x is the size of the estimate and a and b are the parameters in Tables 3 and 4 associated with the particular type of characteristic. When calculating standard errors from cross-tabulations involving different characteristics, use the set of parameters for the characteristic that will give the largest standard error.

Table 3

a and b Parameters for Income, Poverty, and Health Insurance Coverage in the United States: 2004 Standard Error Estimates

[^3]Source: U.S. Census Bureau, Demographic Statistical Methods Division.

Table 4.
a and b Parameters for Income, Poverty, and Health Insurance Coverage in the United States: 2004 Standard Error Estimates

Characteristic	Two or more races	
	a	b
BELOW POVERTY LEVEL		
People		
Total	-0.000260	5,282
Male	-0.000534	5,282
Female	-0.000507	5,282
Age		
Under 15	-0.000763	4,072
Under 18	-0.000621	4,072
15 and older	-0.000338	5,282
15 to 24	-0.000583	1,998
25 to 44	-0.000308	1,998
45 to 64	-0.000477	1,998
65 and older	-0.001320	1,998
Households, Families, and Unrelated Individuals		
Total	0.000052	1,243
ALL INCOME LEVELS		
People		
Total	-0.000092	1,430
Male	-0.000191	1,430
Female	-0.000176	1,430
Age		
15 to 24	-0.000417	1,430
25 to 44	-0.000221	1,430
45 to 64	-0.000341	1,430
65 and older	-0.000945	1,430
Households, Families, and Unrelated Individuals		
Total	-0.000080	1,245
NONINCOME CHARACTERISTICS		
People		
Employment status	-0.000151	3,455
Educational attainment	-0.000087	1,364
Health insurance	-0.000188	3,809
Total, Marital Status, Other		
Some household members	-0.000188	3,809
All household members	-0.000277	5,617
Households, Families, and Unrelated Individuals		
Total	-0.000061	952

Notes: To obtain parameters prior to 2004, multiply by the appropriate factor in Table 5. For nonmetropolitan residence categories, multiply the a and b parameters by 1.5 .

Source: U.S. Census Bureau, Demographic Statistical Methods Division.

Table 5.
Year Factors for ASEC Estimates (1959 to 2003) ${ }^{\mathbf{1}}$

Year of estimate	Total/White	Black ${ }^{2}$		Hispanic
	a and b	a and b	a^{3}	a and b
2002 to 2003	1.00	1.00	1.00	1.00
2000 (expanded) to 2001	1.00	1.00	1.53	1.00
1995 to 2000 (basic)	1.97	1.97	3.00	1.97
1989 to 1994 ...	1.82	1.82	2.78	1.82
1988	2.02	2.02	3.09	2.12
1984 to 1987	1.70	1.70	2.60	1.70
1981 to 1983	1.70	1.70	2.60	2.38
1972 to 1980	1.52	1.52	2.32	2.13
1966 to 1971	1.52	1.52	2.32	3.58
1959 to 1965	2.28	2.28	3.48	5.38

[^4]Table 6.
CPS Year-to-Year Correlation Coefficients for Poverty Estimates: 1970 to 2004^{1}

Characteristic	$\begin{gathered} \text { 1972-1983, } \\ 1984-2000 \text { (basic), } \\ \text { or } \\ 2000 \text { (expanded)-2004 } \end{gathered}$		1999 (basic)2000 (expanded)		1983-1984		1971-1972		1970-1971	
	People	Families								
Total	0.45	0.35	0.29	0.22	0.39	0.30	0.15	0.14	0.31	0.28
White	0.35	0.30	0.23	0.20	0.30	0.26	0.14	0.13	0.28	0.25
Black	0.45	0.35	0.23	0.18	0.39	0.30	0.17	0.16	0.35	0.32
Other	0.45	0.35	0.22	0.17	0.30	0.30	0.17	0.16	0.35	0.32
Hispanic ${ }^{2}$	0.65	0.55	0.52	0.40	0.56	0.47	0.17	0.16	0.35	0.32

[^5]Source: U.S. Census Bureau, Demographic Statistical Methods Division.

Table 7.
CPS Year-to-Year Correlation Coefficients for Income and Health Insurance Estimates: 1960 to $2004{ }^{1}$

| Characteristic | $1960-2000$ (basic)
 or
 (expanded)-2004 | | 1999 (basic)-2000 (expanded) |
| :---: | ---: | ---: | ---: | ---: |

${ }^{1}$ Correlation coefficients are not available for income and health insurance estimates before 1960.
${ }^{2}$ Hispanics may be any race.
Note: These correlations are for comparisons of consecutive years. For comparisons of nonconsecutive years, assume the correlations are zero.

Source: U.S. Census Bureau, Demographic Statistical Methods Division.

Table 8.

CPS Correlation Coefficients for Subsetted Race Estimates: 2004

Race 1	Race 2	r
White alone, not Hispanic	White alone.	0.83
Black alone	Black alone or in combination . . .	0.96
Asian alone	Asian alone or in combination...	0.92

Source: U.S. Census Bureau, Demographic Statistical Methods Division.

Illustration No. 1

In Income, Poverty, and Health Insurance Coverage in the United States: 2004, Table 1 shows that there were 113,146,000 households in the United States in 2004. Use the appropriate parameters from Table 3 and Formula (1) to get:

Number of households (x)	$113,146,000$
a parameter (a)	-0.000005
b parameter (b)	1,052
Standard error	235,000
90-percent confidence interval	$112,759,000$ to
	$113,533,000$

The standard error is calculated as

$$
s_{x}=\sqrt{-0.000005 \times 113,146,000^{2}+1,052 \times 113,146,000}=235,000
$$

and the 90 -percent confidence interval is calculated as $113,146,000 \pm 1.645 \times 235,000$.

A conclusion that the average estimate derived from all possible samples lies within a range computed in this way would be correct for roughly 90 percent of all possible samples.

Standard Errors of Estimated Percentages. The reliability of an estimated percentage, computed using sample data for both numerator and denominator, depends on both the size of the percentage and its base. Estimated percentages are relatively more reliable than the corresponding estimates of the numerators of the percentages, particularly if the percentages are 50 percent or more. When the numerator and denominator of the percentage are in different categories, use the parameter from Table 3 or 4 as indicated by the numerator. However, for calculating standard errors for different characteristics of families in poverty, use the standard error of a ratio equation (see Formula (8) in "Standard Errors of Ratios").

The approximate standard error, $\mathrm{s}_{\mathrm{x}, \mathrm{p}}$, of an estimated percentage can be obtained by using the formula:
$s_{x, p}=\sqrt{\frac{b}{x} p(100-p)}$

Here x is the total number of people, families, households, or unrelated individuals in the base of the percentage, p is the percentage ($0 \leq \mathrm{p} \leq 100$), and b is the parameter in Table 3 or 4 associated with the characteristic in the numerator of the percentage.

Illustration No. 2

In Income, Poverty, and Health Insurance Coverage in the United States: 2004, Table 7 shows that there were $45,820,000$ out of $291,155,000$ people, or 15.7 percent, who did not have health insurance. Use the appropriate parameter from Table 3 and Formula (2) to get:

Percentage of people without health insurance $(p) \quad 15.7$
Base (x) 291,155,000
b parameter (b) 2,652
Standard error
90-percent confidence interval
15.5 to 15.9

The standard error is calculated as

$$
s_{x, p}=\sqrt{\frac{2,652}{291,155,000} \times 15.7 \times(100-15.7)}=0.1
$$

The 90-percent confidence interval of the percentage of people without health insurance is calculated as $15.7 \pm 1.645 \times 0.1$.

Standard Errors of Differences. The standard error of the difference between two sample estimates is approximately equal to

$$
\begin{equation*}
s_{x-y}=\sqrt{s_{x}^{2}+s_{y}^{2}-2 r s_{x} s_{y}} \tag{3}
\end{equation*}
$$

where s_{X} and s_{y} are the standard errors of the estimates, x and y. The estimates can be numbers, percentages, ratios, etc. Tables 6 and 7 contain the correlation coefficient, r, for year-to-year comparisons for CPS poverty, income, and health insurance estimates of numbers and proportions. Table 8 contains the correlation coefficient, r, for making comparisons between race categories that are subsets of one another. For example, to compare the number of people in poverty who listed White as their only race to the number of people in poverty who are White in combination with another race, a correlation coefficient is needed to account for the large overlap between the two groups. For making other comparisons (including race overlapping where one group is not a complete subset of the other), assume that r equals zero. Making this assumption will result in accurate estimates of standard errors for the difference between two estimates of the same characteristic in two different areas, or for the difference between separate and uncorrelated characteristics in the same area.

However, if there is a high positive (negative) correlation between the two characteristics, the formula will overestimate (underestimate) the true standard error.

Illustration No. 3

In Income, Poverty, and Health Insurance Coverage in the United States: 2004, Table 7 shows that the number of people without health insurance in 2004 was $45,820,000$ and in 2003 was $44,961,000$. The apparent difference is 859,000 . Use the appropriate parameters, year factors, and correlation coefficients from Tables 3, 5, and 7 and Formulas (1) and (3) to get:

2004 (x) 2003 (y) Difference

Number of people without health			
insurance	45,820,000	44,961,000	859,000
a parameter (a)) -0.000009	-0.000009	
b parameter (b)	2,652	2,652	
correlation (r)		-	. 30
Standard error	320,000	318,000	377,000
90-percent			
confidence	45,294,000 to	44,438,000 to	239,000 to
interval	46,346,000	45,484,000	1,479,000

The standard error of the difference is calculated as
$s_{x-y}=\sqrt{320,000^{2}+318,000^{2}-2 \times 0.30 \times 320,000 \times 318,000}=377,000$
and the 90 -percent confidence interval around the difference is calculated as $859,000 \pm 1.645 \times 377,000$. Since this interval does not include zero, we can conclude with 90 -percent confidence that the number of people without health insurance in 2004 was higher than the number of people without health insurance in 2003.

Standard Errors of Averages for Grouped Data.

The formula used to estimate the standard error of an average for grouped data is

$$
\begin{equation*}
s_{\bar{x}}=\sqrt{\frac{b}{y}\left(S^{2}\right)} \tag{4}
\end{equation*}
$$

In this formula, y is the size of the base of the distribution and b is the parameter from Table 3 or 4 . The variance, S^{2}, is given by the following formula:

$$
\begin{equation*}
S^{2}=\sum_{i=1}^{c} p_{i} \bar{x}_{i}^{2}-\bar{x}^{2} \tag{5}
\end{equation*}
$$

where \bar{x}, the average of the distribution, is estimated by

$$
\begin{equation*}
\bar{x}=\sum_{i=1}^{c} p_{i} \bar{x}_{i} \tag{6}
\end{equation*}
$$

$c=$ the number of groups; i indicates a specific group, thus taking on values 1 through c.
$p_{i}=$ estimated proportion of households, families, or people whose values, for the characteristic (x values) being considered, fall in group i.
$x_{i}=\left(Z_{i-1}+Z_{i}\right) / 2$ where Z_{i-1} and Z_{i} are the lower and upper interval boundaries, respectively, for group $i . x_{i}$ is assumed to be the most representative value for the characteristic for households, families, and unrelated individuals or people in group i. Group c is open-ended, i.e., no upper interval boundary exists. For this group the approximate average value is

$$
\begin{equation*}
\bar{x}_{c}=\frac{3}{2} Z_{c-1} \tag{7}
\end{equation*}
$$

Illustration No. 4

Suppose the average income deficit (the difference between the poverty threshold and actual income) for families in poverty is $\$ 7,775$ with a variance of $6,477,000$. Use the appropriate parameter from Table 3 and Formula (4) to get:

Average income deficit
for families in poverty
Variance (S^{2})
6,477,000
Base (y)
7,854,000
b parameter (b)
5,282
Standard error
\$66
90-percent confidence interval $\$ 7,666$ to $\$ 7,884$
The standard error is calculated as
$s_{\bar{x}}=\sqrt{\frac{5,282}{7,854,000}(6,477,000)}=66$
and the 90-percent confidence interval is calculated as $\$ 7,775 \pm 1.645 \times \$ 66$.

Standard Errors of Ratios. Certain estimates may be calculated as the ratio of two numbers. Compute
the standard error of a ratio, x / y, using
$s_{x / y}=\frac{x}{y} \sqrt{\left(\frac{s_{x}}{x}\right)^{2}+\left(\frac{s_{y}}{y}\right)^{2}-2 r \frac{s_{x} s_{y}}{x y}}$
The standard error of the numerator, s_{x}, and that of the denominator, s_{y}, may be calculated using formulas described earlier. In Formula (8), r represents the correlation between the numerator and the denominator of the estimate.

For one type of ratio, the denominator is a count of families or households and the numerator is a count of people in those families or households with a certain characteristic. If there is at least one person with the characteristic in every family or household, use 0.7 as an estimate of r. An example of the type is the average number of children per family with children.

For year-to-year and subsetted race correlations coefficients see "Standard Errors of Differences." For all other types of ratios, r is assumed to be zero. If r is actually positive (negative), then this procedure will provide an overestimate (underestimate) of the standard error of the ratio. Examples of this type are the average number of children per family and the family poverty rate.

Note: For estimates expressed as the ratio of x per $100 y$ or x per $1,000 y$, multiply Formula (8) by 100 or 1,000 , respectively, to obtain the standard error.

Illustration No. 5

Suppose the number of families below the poverty level, x, was $7,854,000$ and the total number of families, y, was $77,019,000$. The ratio of families below the poverty level to the total number of families would be 0.102 or 10.2 percent. Use the appropriate parameters from Table 3 and Formulas (1) and (8) with $r=0$ to get:

	In poverty (x)	Total (y)	Ratio
Number of families	$7,854,000$	$77,019,000$	0.102
a parameter (a)	+0.000052	-0.000005	-
b parameter (b)	1,243	1,052	-
Standard error	114,000	227,000	0.002
90-percent	$7,666,000$	$76,646,000$	0.099
confidence interval	to	to	to
	$8,042,000$	$77,392,000$	0.105

The standard error is calculated as

$$
s_{x / y}=\frac{7,854,000}{77,019,000} \sqrt{\left(\frac{114,000}{7,854,000}\right)^{2}+\left(\frac{227,000}{77,019,000}\right)^{2}}=0.002
$$

and the 90-percent confidence interval is calculated as $0.102 \pm 1.645 \times 0.002$.

Standard Errors of Estimated Medians. The sampling variability of an estimated median depends on the form of the distribution and the size of the base. One can approximate the reliability of an estimated median by determining a confidence interval about it. (See "Standard Errors and Their Use" for a general discussion of confidence intervals.)

Estimate the 68-percent confidence limits of a median based on sample data using the following procedure:

1. Determine, using Formula (2), the standard error of the estimate of 50 percent from the distribution.
2. Add to and subtract from 50 percent the standard error determined in step 1. These two numbers are the percentage limits corresponding to the 68 -percent confidence about the estimated median.
3. Using the distribution of the characteristic, determine upper and lower limits of the 68-percent confidence interval by calculating values corresponding to the two points established in step 2.

Use the following formula to calculate the upper and lower limits:

$$
\begin{equation*}
X_{p N}=\frac{p N-N_{1}}{N_{2}-N_{1}}\left(A_{2}-A_{1}\right)+A_{1} \tag{9}
\end{equation*}
$$

where

$$
\begin{aligned}
X_{p N}= & \text { estimated upper and lower bounds for } \\
& \text { the confidence interval }(0 \leq p \leq 1) . \text { For } \\
& \text { purposes of calculating the confidence } \\
& \text { interval, } p \text { takes on the values deter- } \\
& \text { mined in step } 2 . \text { Note that } X_{p N} \text { esti- } \\
& \text { mates the median when } p=0.50 . \\
N= & \text { for distribution of numbers: the total } \\
& \text { number of units (people, households, etc.) } \\
& \text { for the characteristic in the distribution. } \\
= & \text { for distribution of percentages: the } \\
& \text { value } 100 . \\
p= & \text { the values obtained in Step } 2 .
\end{aligned}
$$

$$
\begin{aligned}
A_{1}, A_{2}= & \text { the lower and upper bounds, respectively, } \\
& \text { of the interval containing } X_{p N} . \\
N_{1}, N_{2}= & \text { for distribution of numbers: the estimated } \\
& \text { number of units (people, households, etc.) } \\
& \text { with values of the characteristic greater } \\
& \text { than or equal to } A_{1} \text { and } A_{2}, \text { respectively. } \\
= & \text { for distribution of percentages: the esti- } \\
& \text { mated percentage of units (people, } \\
& \text { households, etc.) having values of the } \\
& \text { characteristic greater than or equal to } A_{1} \\
& \text { and } A_{2}, \text { respectively. }
\end{aligned}
$$

4. Divide the difference between the two points determined in step 3 by 2 to obtain the standard error of the median.

Note: Median incomes and their standard errors as calculated below may differ from those in published tables showing income, since narrower income intervals were used in those calculations.

Illustration No. 6

Suppose you want to calculate the standard error of the median of total money income for families with the following distribution:

Income level	Number of families	Cumulative number of families	percent of families
Under $\$ 5,000$	$2,185,000$	$2,185,000$	2.84
$\$ 5,000$ to $\$ 9,999$	$2,072,000$	$4,257,000$	5.53
$\$ 10,000$ to $\$ 14,999$	$3,060,000$	$7,317,000$	9.50
$\$ 15,000$ to $\$ 24,999$	$8,241,000$	$15,558,000$	20.20
$\$ 25,000$ to $\$ 34,999$	$8,378,000$	$23,936,000$	31.08
$\$ 35,000$ to $\$ 49,999$	$11,407,000$	$35,343,000$	45.89
$\$ 50,000$ to $\$ 74,999$	$15,836,000$	$51,179,000$	66.45
$\$ 75,000$ to $\$ 99,999$	$10,338,000$	$61,517,000$	79.87
$\$ 100,000$ and over	$15,502,000$	$77,019,000$	100.00

Total number
of families 77,019,000

1. Using Formula (2) with $b=1,249$, the standard error of 50 percent on a base of $77,019,000$ is about 0.20 percent.
2. To obtain a 68-percent confidence interval on an estimated median, add to and subtract from 50 percent the standard error found in step 1. This yields percentage limits of 49.80 and 50.20 .
3. The lower and upper limits for the interval in which the percentage limits fall are $\$ 50,000$ and $\$ 75,000$, respectively.

Then, by addition, the estimated numbers of families with an income greater than or equal to $\$ 50,000$ and $\$ 75,000$ are $41,676,000$ and $25,840,000$, respectively.

Using Formula (9), the upper limit for the confidence interval of the median is found to be about
$X_{p N}=\frac{0.4980 \times 77,019,000-41,676,000}{25,840,000-41,676,000}(75,000-50,000)+50,000=55,242$

Similarly, the lower limit is found to be about
$X_{p N}=\frac{0.5020 \times 77,019,000-41,676,000}{25,840,000-41,676,000}(75,000-50,000)+50,000=54,756$

Thus, a 68-percent confidence interval for the median income for families is from $\$ 54,756$ to $\$ 55,242$.
4. The standard error of the median is, therefore,

$$
\frac{55,242-54,756}{2}=243
$$

Standard Error of Estimated Per Capita Deficit.

Certain average values in reports associated with the ASEC data represent the per capita deficit for households of a certain class. The average per capita deficit is approximately equal to

$$
\begin{equation*}
x=\frac{h m}{p} \tag{10}
\end{equation*}
$$

where
$h=$ number of households in the class.
$m=$ average deficit for households in the class.
$p=$ number of people in households in the class.
$x=$ average per capita deficit of people in households in the class.

To approximate standard errors for these averages, use the formula:

$$
\begin{equation*}
s_{x}=\frac{h m}{p} \sqrt{\left(\frac{s_{m}}{m}\right)^{2}+\left(\frac{s_{p}}{p}\right)^{2}+\left(\frac{s_{h}}{h}\right)^{2}-2 r\left(\frac{s_{p}}{p}\right)\left(\frac{s_{h}}{h}\right)} \tag{11}
\end{equation*}
$$

In Formula (11), r represents the correlation between p and h.

For one type of average, the class represents households containing a fixed number of people. For example, h could be the number of three-person households. In this case, there is an exact correlation
between the number of people in households and the number of households. Therefore, $r=1$ for such households.

For other types of averages, the class represents households of other demographic types; for example, households in distinct regions, households in which the householder is of a certain age group, and owneroccupied and tenant-occupied households. In this and other cases in which the correlation between p and h is not perfect, use 0.7 as an estimate of r.

Illustration No. 7

According to Income, Poverty, and Health Insurance in the United States: 2004, there are $26,564,000$ people living in families in poverty and $7,854,000$ families in poverty, with the average deficit income for families in poverty being $\$ 7,775$ with a standard error of $\$ 66$.
Use the appropriate parameters and Formulas (1), (10), and (11) and $r=0.7$ to get:

	Average Average per		
	Number of	income	capita
Number (h)	people (p)	deficit (m)	deficit (x)

Value for families in poverty	$7,854,000$	$26,564,000$	$\$ 7,775$	$\$ 2,299$
a parameter (a)	+0.000052	-0.000018	-	-
b parameter (b)	1,243	5,282	-	-
Correlation (r)				

The estimate of the average per capita deficit is calculated as
$x=\frac{7,854,000 \times 7,775}{26,564,000}=2,299$
and the estimate of the standard error is calculated as
$s_{x}=\frac{7,854,000 \times 7,775}{26,564,000} \sqrt{\left(\frac{66}{7,775}\right)^{2}+\left(\frac{357,000}{26,564,000}\right)^{2}+\left(\frac{114,000}{7,854,000}\right)^{2}-2 \times 0.7 \times\left(\frac{357,000}{26,564,000}\right) \times\left(\frac{114,000}{7,854,000}\right)}=32$

The 90-percent confidence interval is calculated as $\$ 2,299 \pm 1.645 \times \$ 32$.

Accuracy of State Estimates. The redesign of the CPS following the 1980 census provided an opportunity to increase efficiency and accuracy of state data. All

Table 9.
Factors for State Standard Errors and Parameters and State Populations: 2004

State	Factor	Population	State	Factor	Population
Alabama	1.05	4,466,174	Montana	0.24	916,118
Alaska	0.18	636,883	Nebraska	0.46	1,721,885
Arizona	1.23	5,761,249	Nevada	0.67	2,365,581
Arkansas	0.68	2,715,843	New Hampshire	0.34	1,292,238
California	1.25	35,631,764	New Jersey	1.12	8,623,446
Colorado	1.20	4,554,409	New Mexico	0.58	1,892,325
Connecticut	0.88	3,450,873	New York	1.17	18,959,323
Delaware	0.22	823,736	North Carolina	1.11	8,404,121
District of Columbia	0.18	537,389	North Dakota	0.16	618,710
Florida	1.12	17,346,628	Ohio	1.09	11,295,607
Georgia	1.08	8,710,318	Oklahoma	0.91	3,442,293
Hawaii	0.29	1,220,364	Oregon	1.01	3,569,000
Idaho	0.36	1,385,557	Pennsylvania.	1.09	12,211,801
Illinois	1.13	12,562,462	Rhode Island	0.30	1,062,288
Indiana	1.08	6,170,284	South Carolina	1.06	4,130,837
lowa	0.77	2,912,156	South Dakota	0.17	757,465
Kansas	0.73	2,680,682	Tennessee	1.08	5,835,713
Kentucky	1.05	4,079,404	Texas	1.28	22,259,461
Louisiana	1.05	4,418,278	Utah	0.54	2,387,483
Maine	0.39	1,304,185	Vermont	0.18	616,496
Maryland	1.13	5,493,445	Virginia	1.08	7,281,902
Massachusetts	1.06	6,327,181	Washington	1.15	6,143,200
Michigan	1.09	10,000,053	West Virginia	0.39	1,790,339
Minnesota	1.07	5,060,337	Wisconsin	1.10	5,448,669
Mississippi	0.71	2,842,620	Wyoming	0.15	500,516
Missouri	1.11	5,667,256			

Source: U.S. Census Bureau, Demographic Statistical Methods Division.
strata are now defined within state boundaries. The sample is allocated among the states to produce state and national estimates with the required accuracy while keeping total sample size to a minimum. Improved accuracy of state data was achieved with about the same sample size as in the 1970 design.

Since the CPS is designed to produce both state and national estimates, the proportion of the total population sampled and the sampling rates differ among the states. In general, the smaller the population of the state, the larger the sampling proportion. For example, in Vermont approximately 1 in every 250 households is sampled each month. In New York the sample is about 1 in every 2,000 households. Nevertheless, the size of the sample in New York is four times larger than in Vermont because New York has a larger population.

Standard Errors for State Estimates. The standard error for a state may be obtained by determining new state-level a and b parameters and then using these adjusted parameters in the standard error formulas mentioned previously. To determine a new state-level b parameter ($b_{\text {state }}$), multiply the b parameter from Table 3 or 4 by the state factor from Table 9. To
determine a new state-level a parameter ($a_{\text {state }}$), use the following:
(1) If the a parameter from Table 3 or 4 is positive, multiply the a parameter by the state factor from Table 9.
(2) If the a parameter in Table 3 or 4 is negative, calculate the new state-level a parameter as follows:

$$
\begin{equation*}
a_{\text {state }}=\frac{-b_{\text {state }}}{\text { StatePopulation }} \tag{12}
\end{equation*}
$$

The state population is found in Table 9.
Note: The Census Bureau recommends the use of 3-year averages to compare estimates across states and 2-year averages to evaluate changes in state estimates over time. See "Standard Errors of Data for Combined Years" and "Standard Errors of 2-Year Moving Averages."

Illustration No. 8

Suppose you want to calculate the standard error for the number of people living in the state of New York who did not have health insurance coverage
$(2,705,000)$. Use the appropriate parameters, factors, and populations from Tables 3 and 9 and Formulas (1) and (12) to get:

Number of people in NY

without health insurance (x)	$2,705,000$
a parameter (a)	-0.000009
b parameter (b)	2,652
New York state factor	1.17
State population	$18,959,323$
State a parameter $\left(a_{\text {state }}\right)$	-0.000164
State b parameter $\left(b_{\text {state }}\right)$	3,103
Standard error	85,000

Obtain the state-level b parameter by multiplying the b parameter, 2,652 , by the state factor, 1.17. This gives $b_{\text {state }}=2,652 \times 1.17=3,103$. Obtain the needed state-level a parameter by

$$
a_{\text {state }}=\frac{-3,103}{18,959,323}=-0.000164
$$

The standard error of the estimate of the percentage of people in New York state who did not have health insurance coverage can then be found by using Formula (1) and the new state-level a and b parameters, -0.000164 and 3,103 , respectively. The standard error is given by
$s_{x}=\sqrt{-0.000164 \times 2,705,000^{2}+3,103 \times 2,705,000}=85,000$

Standard Errors for Regional Estimates. To compute standard errors for regional estimates, follow the steps for computing standard errors for state estimates found in "Standard Errors for State Estimates" using the regional factors and populations found in Table 10.

Table 10.
Factors for Regional Standard Errors and Parameters and Regional Populations: 2004

Region	Factor	Population
Midwest $\ldots \ldots \ldots \ldots$	1.03	$64,895,566$
Northeast $\ldots \ldots \ldots \ldots$	1.05	$53,847,831$
South $\ldots \ldots \ldots \ldots \ldots$	1.08	$104,578,501$
West $\ldots \ldots \ldots \ldots \ldots$	1.10	$66,964,449$

[^6] Division.

Standard Errors of Groups of States. The standard error calculation for a group of states is similar to the standard error calculation for a single state. First, calculate a new state group factor for the group of states. Then, determine new state group a and b parameters. Finally, use these adjusted parameters in the standard error formulas mentioned previously.

Use the following formula to determine a new state group factor:
state group factor $=\frac{\sum_{i=1}^{n} \text { POP }_{i} \times \text { state factor }}{i}$
where $P O P_{i}$ (the state population for state i) and the state factors are from Table 9.

To obtain a new state group b parameter ($b_{\text {state }}$ group), multiply the b parameter from Table 3 or 4 by the state factor obtained by Formula (13). To determine a new state group a parameter ($a_{\text {state }}$ group), use the following:
(1) If the a parameter from Table 3 or 4 is positive, multiply the a parameter by the state group factor determined by Formula (13).
(2) If the a parameter in Table 3 or 4 is negative, calculate the new state group a parameter as follows:

$$
\begin{equation*}
a_{\text {state group }}=\frac{-b_{\text {state group }}}{\sum_{i=1}^{n} P O P_{i}} \tag{14}
\end{equation*}
$$

Illustration No. 9

Suppose the state group factor for the state group Illinois-Indiana-Michigan was required. The appropriate factor would be
stategroupfactor $=\frac{12,562,462 \times 1.13+6,170,284 \times 1.08+10,000,053 \times 1.09}{12,562,462+6,170,284+10,000,053}=1.11$

Standard Errors of Data for Combined Years.

Sometimes estimates for multiple years are combined to improve precision. For example, suppose \bar{x} is an average derived from n consecutive years' data, i.e.,
$\bar{x}=\sum_{i=1}^{n} \frac{x_{i}}{n} \quad \begin{aligned} & \text {, where the } x_{i} \text { are the estimates for the } \\ & \text { individual years. Use the formulas }\end{aligned}$ described previously to estimate the
standard error, s_{X}, of each year's estimate. Then the standard error of is

$$
\begin{equation*}
s_{\bar{x}}=\frac{s_{x}}{n} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{x}=\sqrt{\sum_{i=1}^{n} s_{x_{i}}^{2}+2 r \sum_{i=1}^{n-1} s_{x_{i}} s_{x_{i+1}}} \tag{16}
\end{equation*}
$$

and $s_{x i}$ are the standard errors of the estimates x_{i} over multiple years i. Tables 6 and 7 contain the correlation coefficient, r, for the correlation between consecutive years i and $i+1$. Correlation between nonconsecutive years is zero. The correlations were derived for income and poverty estimates but they can be used for other types of estimates where the year-to-year correlation between identical households is high. The Income, Poverty, and Health Insurance Coverage in the United States: 2004 report uses 3-year-average estimates for state-to-state comparisons and also for certain race/ethnicity groups. ${ }^{4}$ The report uses 2 -yearaverage estimates to compare state and certain race estimates across years with a 2 -year moving average. See "Standard Errors of 2-Year Moving Averages."

Illustration No. 10

In Income, Poverty, and Health Insurance Coverage in the United States: 2004, Table 10 shows that the 2002-2004 3-year-average poverty rate of California is 13.2. The poverty rates and standard errors for 2002, 2003, and 2004 are 13.1, 13.1, and 13.3 percent and $0.53,0.53$, and 0.46 , respectively. Use the appropriate correlation coefficients from Table 6 and Formulas (15) and (16) to get:
$2002-$
2004
avg

[^7]The standard error of the 3-year average is calculated as
$s_{\bar{x}}=\frac{1.12}{3}=0.37$
where
$s_{x}=\sqrt{0.53^{2}+0.53^{2}+0.46^{2}+(2 \times 0.45 \times 0.53 \times 0.53)+(2 \times 0.45 \times 0.53 \times 0.46)}=1.12$

The 90-percent confidence interval for the 3-year-average poverty rate of California is $13.2 \pm 1.645 \times 0.37$.

Note: To calculate the standard errors of single-year state estimates, see "Standard Errors of State Estimates."

Standard Errors of 2-Year Moving Averages. Twoyear moving averages also improve precision for comparing across years by using 2-year averages that overlap by a year. Use the formulas described previously to estimate the standard error, s_{X}, of each year's estimate. Then the standard error of the difference of the overlapping, or moving, averages is, $\bar{x}_{1,2}-\bar{x}_{2,3}$, is
$s_{\bar{x}_{1,2}-\bar{x}_{2,3}}=\frac{1}{2} \sqrt{s_{x_{1}}^{2}+s_{x_{3}}^{2}}$

Illustration No. 11

Suppose that you want to calculate the standard error of the moving average of the percent of American Indians and Alaska Natives (AIAN) without health insurance. Table 8 in Income, Poverty, and Health Insurance Coverage in the United States: 2004 shows that the average for 2002-2003 was 28.3 and the average for 2003-2004 was 29.1. The standard error for 2002 was 1.8 and the standard error for 2004 was 1.9. Use these values and Formula (17) to get

	2002, 2003 average	2003, average	avg(2002,2003)- avg(2003,2004)
Percent of			
AIAN without			
health insurance (x)	28.3	29.1	0.8
Standard error	1.8	1.9	1.3

90-percent
confidence
interval
-1.3 to 2.9

The standard error of the 2-year moving average is calculated as

$$
S_{\bar{x}_{1,2}-\bar{x}_{2,3}}=\frac{1}{2} \sqrt{1.8^{2}+1.9^{2}}=1.3
$$

and the 90 -percent confidence interval around the difference of the moving averages is calculated as $0.8 \pm$ 1.645×1.3. Since this interval includes zero, we cannot conclude with 90-percent confidence that the 2003-2004 average percent of American Indians and Alaska Natives without health insurance was different than the 2002-2003 average percent of American Indians and Alaska Natives without health insurance.

Other Standard Errors. In the report Income, Poverty, and Health Insurance Coverage in the United States: 2004, 11 tables provide confidence intervals for most of the estimates discussed in the text. For other estimates, the standard errors can be calculated using the formulas in this source and accuracy statement. For more information or questions on calculating standard errors, e-mail Jana Shepherd at dsmd.source.and.accuracy@census.gov.

[^0]: ${ }^{1}$ For detailed information on the 1990 sample redesign, see the U.S. Department of Labor, Bureau of Labor Statistics report,

 Employment and Earnings, Volume 41 Number 5, May 1994.
 ${ }^{2}$ The PSUs correspond to substate areas, counties, or groups of counties that are geographically contiguous.

[^1]: ${ }^{3}$ For further information on CATI and CAPI and the eligibility criteria, please see: Technical Paper 63RV, Current Population Survey: Design and Methodology, U.S. Census Bureau, U.S. Department of Commerce, 2002. <www.census.gov/prod/2002pubs/tp63rv.pdf>.

[^2]: ${ }^{1}$ The ASEC was referred to as the Annual Demographic Survey (ADS) until 2002.
 ${ }^{2}$ The Census Bureau redesigned the CPS following Census 2000. During phase-in of the new design, housing units from the new and old designs were in the sample.
 ${ }^{3}$ The Census Bureau redesigned the CPS following the 1980 Decennial Census of Population and Housing.
 ${ }^{4}$ The Census Bureau redesigned the CPS following the 1970 Decennial Census of Population and Housing. During phase-in of the new design, housing units from the new and old designs were in the sample.

 Source: U.S. Census Bureau, Demographic Statistical Methods Division.

[^3]: ${ }^{1}$ Hispanics may be any race.
 ${ }^{2}$ AIAN and NHOPI are American Indian and Alaska Native, and Native Hawaiian and Other Pacific Islander, respectively. Asian, AIAN, and NHOPI is the same population group as API, AIAN, NH \& OPI in Table 5 of the source and accuracy statement for Income, Poverty, and Health Insurance Coverage in the United States: 2003.

 Notes: To obtain parameters prior to 2004, multiply by the appropriate factor in Table 5. For nonmetropolitan residence categories, multiply the a and b parameters by 1.5. For foreign-born and noncitizen characteristics for Total or White, multiply the a and b parameters by 1.3. No adjustment is necessary for foreign-born and noncitizen characteristics for other race groups and Hispanics. The Total or White, Black, and Asian, AIAN, and NHOPI parameters are to be used for both alone and in-combination race group estimates.

[^4]: ${ }^{1}$ Due to a change in the population control definitions, the parameters published in the source and accuracy statements for the Income, Poverty, and Health Insurance Coverage in the United States reports from 2002 to 2003 may not be identical to the product of the 2004 parameters (Tables 3 and 4) and the 2002-2003 year factors in this table.
 ${ }^{2}$ Blacks have separate factors for the a and b parameter factors due to the new race definitions and how they affected the population control totals.
 ${ }^{3}$ Use this factor to get a parameters for all estimates of the Black population except those for Black families, households, and unrelated individuals in poverty.

 Note: For races not listed, use the factors for total.
 Source: U.S. Census Bureau, Demographic Statistical Methods Division.

[^5]: ${ }^{1}$ Correlation coefficients are not available for poverty estimates before 1970.
 ${ }^{2}$ Hispanics may be any race.
 Note: These correlations are for comparisons of consecutive years. For comparisons of nonconsecutive years, assume the correlations are zero.

[^6]: Source: U.S. Census Bureau, Demographic Statistical Methods

[^7]: ${ }^{4}$ Estimates of characteristics of the American Indian and Alaska Native (AIAN) and Native Hawaiian and Other Pacific Islander (NHOPI) populations based on a single-year sample would be unreliable due to the small size of the sample that can be drawn from either population. Accordingly, such estimates are based on multiyear averages.

