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1.   INTRODUCTION 
 

     The capability of National Weather Service (NWS) 
WSR-88D radar to estimate rainfall in real time makes it 
an attractive tool for use in NWS flash flood hydrology 
forecast and warning operations.  Using radar rainfall 
data as the primary input, the Multisensor Precipitation 
Nowcaster (MPN) algorithm produces very short-term 
(0-1 hour), deterministic, regional, 4-km-gridded, 
precipitation forecasts (nowcasts) with computational 
efficiency to provide NWS Weather Forecast Offices 
(WFO) with additional automated forecast guidance and 
lead-time for issuance of flash flood warnings. These 
short term forecast periods are currently not well 
predicted by atmospheric forecast models, and thus 
forecasts at these short lead times depend primarily on 
automated extrapolation of current rainfall observations 
into the future. For lead times near and beyond an hour, 
nowcast algorithms should preferably include additional 
information and use more sophisticated forecasting 
techniques (see Wilson et al. 1998), but they come at a 
cost of greater computer and data requirements and 
associated complexity.  Our goal is to implement a 
relatively simple rainfall nowcast system that has future 
expansion capability and that builds upon NWS 
operational rainfall estimation algorithms already 
existing in all our forecast offices. 

In contrast to many existing nowcast algorithms that 
are single-radar-based, MPN integrates and mosaics 
data from multiple radars to provide seamless regional 
gridded rainfall nowcast products that alleviate known 
problems in estimating and nowcasting rainfall resulting 
from the limited scanning region of a single radar and 
range-related degradation of rainfall estimates due to 
vertical reflectivity gradients and bright bands. Even for 
local forecasting operations, forecasters can benefit 
from MPN by viewing multiple radars simultaneously to 
evaluate possible upstream features which are distant 
from the local radar.  Current NWS plans call for 
implementing MPN using just the 2-3 WSR-88D radars 
that cover each WFO’s designated area of forecast and 
warning responsibility, but it could be extended to much 
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larger areas depending on the prerequisite central data 
collection and computer resources and defined NWS 
requirements for nationwide operation if necessary. 

Nowcast algorithms presently used by the NWS 
have limited applicability to flash flood warning 
operations.  A radar-based 0-1 h extrapolative-statistical 
nowcast algorithm (Kitzmiller et al., 1999) is available in 
AWIPS, but it produces output in probabilistic form not 
applicable to the automated Flash Flood Monitoring and 
Prediction (FFMP) system (Smith et al. 2000)  A 
conceptually-similar 0-3 h multisensor advective- 
statistical forecast system which produces output for the 
conterminous United States twice per hour has also 
been in operation for several years (Kitzmiller et al. 
2001).  However, its forecast fields are based on a 
40-km grid too coarse to permit interpretation for 
individual stream basins. 

The purpose of this paper is to evaluate the 
accuracy of nowcast products from a scaled-down 
version of MPN and the effects of smoothing and 
growth/decay accounting on its performance. In this 
analysis, we extend the validation work reported in 
Fulton and Seo (2000) using a larger number of case 
studies but focus here just on single radar cases for 
events not experiencing range degradation and not 
using rain gauge data as an input data source in order 
to establish a baseline of performance.  Future 
validation work will address the other important issues. 

 
2. DESCRIPTION OF MPN  
 
 The MPN is an extension of an existing 60-minute 
rainfall nowcasting algorithm developed initially in the 
1980’s for NEXRAD implementation by the Hydrology 
Laboratory (HL) called the Flash Flood Potential (FFP) 
algorithm (Walton et al. 1985, Walton and Johnson 
1986, Walton et al. 1987).  Since then MPN has been 
enhanced and improved from both science and software 
perspectives and integrated together with the NWS’s 
Multisensor Precipitation Estimator (MPE) algorithm.  
The MPE itself is currently operational at WFOs and 
River Forecast Centers.  Online reference material for 
MPE is available at: 
(http://www.nws.noaa.gov/oh/hrl/papers/papers.htm#wsr
88d). 
 

The FFP algorithm was originally designed as a 
single-radar, single-sensor algorithm that utilizes radar-



derived rainfall data from the WSR-88D’s Precipitation 
Processing System (PPS; Fulton et al. 1998) as its input 
out to 230 km range on the 4-km HRAP (Hydrologic 
Rainfall Analysis Project) grid (a polar stereographic 
projection), but the new MPN algorithm expands upon 
that paradigm with capability for multiple radar data 
input.  And instead of using radar-only rainfall estimates 
from PPS, it will use rainrate estimates from the MPE 
algorithm that have been adjusted for possible biases 
using recent antecedent rain gauge data.  The gauge-
adjusted rainrate estimates output by MPE are input to 
MPN. Since much rain gauge data is available only after 
an operationally-significant time lag, we envision its use 
primarily in terms of bias adjustment rather than direct 
input to the multisensor analysis. 

Our vision is an operational, integrated MPE/MPN 
rainfall analysis and nowcast package for use in flash 
flood monitoring and warning at the WFOs once it is 
integrated with the existing WFO FFMP algorithm. 

The algorithm logic is described more fully in Fulton 
and Seo (2000), but a brief summary is provided here.  
Fundamentally, the most recent HRAP gridded radar 
rain rate field (computed using a chosen Z-R 
relationship) is compared with the one about 15 minutes 
earlier to estimate the local motion of areas of echoes 
on a 20 km grid scale using a standard local pattern-
matching scheme. 

The gridded rain rates are then projected forward in 
time using the most-recent estimated gridded motion 
vectors at a timestep small enough to prevent pixel 
jumping (aliasing) of the echoes (about a 3 minute 
timestep is necessary for the 4 km grid scale).   The 
algorithm then computes smoothed forecasted rain rate 
fields by spatially smoothing them using various square 
spatial filters that increase in area with increasing lead 
time.  MPN provides the user with three options for this 
progressive spatial smoothing of each of these 
forecasted rain rate fields:  1) no progressive smoothing, 
2) adaptable smoothing  using the FFP method, or 3) 
fixed smoothing using a method proposed by Bellon and 
Zawadski (1994) (hereafter called BZ94). They  
demonstrated that empirically-based progressive 
(increasing in area) smoothing of forecasted rain rates  
with increasing forecast lead time results in improved 
forecast performance and lower root mean square error.  
The BZ94 technique uses an empirically-derived, fixed 
relationship between smoothing area and lead time.  
The FFP method for smoothing (Walton et al. 1985) is 
conceptually similar, but it computes a variable, 
adaptable rate of smoothing with time that is calculated 
based on the current observed rain rate fields that 
accounts for observed changes in echo structure over 
the past 15 minutes.  These three methods are 
compared for their impact on MPN’s rainfall forecast 
performance. More sophisticated techniques that 
account for normally-degraded rainfall predictability with 
time from observation-driven nowcasts have been 
tested elsewhere (e.g., Seed 2003). 

Additionally, MPN allows the user to choose whether 
local storm motion vectors (at 20 km spacing) are used 
or whether a single spatially mean storm motion vector 
is used during the forecast generation.  Both methods 

utilize estimated storm motion vectors over the past 
hour to aid in computing reliable gridded vectors.  In 
either case, the forecasted rain rate fields during the 
forecast period are then added up to form a one-hour 
rainfall forecast.  This process is repeated every volume 
scan (every 5 or so minutes) as new radar data is 
received so that the one-hour forecasts are updated 
every 5 minutes. 

Growth and decay of local rain rates can be 
accounted for if desired.   The algorithm compares the 
rain rates averaged over local 20 km boxes with those 
computed upstream using the scan 15 minutes 
previously to estimate the local lagrangian growth or 
decay of the storms on a 20 km grid scale.  This rate of 
rain rate change is applied linearly to the future one-
hour forecast period if desired based on an input 
parameter setting.  The simple method, however, will 
not create new storms if they did not already exist in the 
most recent scan, and there are upper limits on how 
high the forecasted rain rates can get. 

Our aim in this study was to demonstrate the impact 
of the various temporal and spatial smoothing methods, 
select optimal smoothing methods, and define a 
baseline performance level in critical heavy rainfall 
situations.  Investigation of the effects of input from 
multiple radars and direct application of rain gauge data 
is now underway. 

The legacy FFP has been running at the HL in real-
time 24 hours a day for over five years in evaluation and 
test mode, using Sterling, VA WSR-88D (KLWX) data.  
Likewise, the MPN and Enhanced MPE algorithms have 
been running in tandem in real time for several years at 
HL for a 5-radar test region in the mid-Atlantic area. 
These MPE and nowcast products are available to NWS 
staff for real-time examination through a internal web 
site.  
 
3.  ANALYSIS METHOD 
 

In this study, we focus on validation of seven warm 
season events in Maryland, Virginia, and Pennsylvania.  
Each of the seven cases produced flash flooding 
documented by the NWS. The dates of the events are 
presented in Table 1. Because of our case selection 
criteria, our analyses are necessarily conditioned on the 
actual occurrence of a flash flood in some part of the 
radar umbrella.  This was done because the algorithm is 
specifically designed for flash flood monitoring and 
nowcasting and performs best for convective situations 
where it is recognized that life and property are at an 
elevated risk.  We are currently examining performance 
for all rainfall events for the mid-Atlantic region for a 
whole year.  

We compared forecasted rain rates at arbitrary 10 
minute intervals in the forecast period out to 60 minutes 
with those from actual observed radar-derived rain rates 
for those same times.  We have not yet attempted to 
verify the forecasts against observed rain gauge data.  
Comparisons of one-hour forecasts vs. observed 
accumulations are on-going but not described here.   

As introduced in the previous section, three MPN 
parameter setting options are tested here for their 



impact on the forecasted rain rates (other less important 
input parameters exist within the algorithm): 1) use or 
non-use of storm growth/decay accounting, 2) type of 
progressive smoothing (none, FFP method, BZ94 
method), 3) use of local vs. area-averaged storm motion 
vectors.   Thus there are twelve possible parameter 
permutations that have been examined here (see the 3-
letter abbreviations defined in Table 2).  Additionally we 
also tested the typical case of persistence, in which the 
storms are assumed stationary, to serve as a baseline 
of performance.  The MPN algorithm has been run for 
these 7 cases for all the 13 possible algorithm 
configurations.  We desire to determine the value 
added, if any, by incorporating these various 
techniques. 

Six statistics are used to evaluate and compare the 
accuracy of the parameter tests. They are the 
probability of detection (POD), the false-alarm rate 
(FAR), the critical success index (CSI), correlation 
coefficient (COR), the root mean square error (RMSE), 
and bias. The bias is the sum of the forecasted rain 
rates divided by the sum of radar-observed rain rates 
over the radar domain (230 km range) during the rain 
event. COR and RMSE are also calculated using all 
pixels over the radar domain during the rain event. The 
performance of MPN for the 60 minute forecast is 
discussed first, and variations of these statistics during 
the interim 10-60 minute forecast period are then 
investigated.  
 
4.  RESULTS 
 

Table 1 lists the average conditional rain rate, 
percent areal echo coverage, raining duration, and 
number of volume scans to verify at 60 minute forecasts 
for each of the 7 flash flood cases. The average 
conditional rain rate is computed over all raining (greater 
than zero) HRAP pixels (nominally 4-km on a side) in 
the domain during a rain event. The number of possible 
pixels within 230 km range is 9750 in our cases.  The 
average rain rates vary widely from 2 to 9 mm/hr.  
Figure 1 shows typical examples of pairs of observed 
and forecasted 60-minute rain rate and one-hour 
accumulation images for each of the seven cases.  
Cases 1, 2, and 3 are scattered cellular convection. In 
case 4, heavy rainfall occurred at the edge of the 
Sterling radar umbrella. Cases 5 and 6 are linear 
mesoscale convective systems MCS (MCS). Case 7 is a 
stationary convection zone over the northern 
Chesapeake Bay. 

Table 3 is the forecast rain rate bias at 60 min. for all 
tests and cases.  When considering averaged results for 
all events (see right-most column), tests NBL and NFL 
have the best bias (0.99), following by PRS, NBA, and 
NFA (1.03). All of the above 5 tests achieve excellent 
bias (0.99 to 1.03).  Simple advection extrapolations 
with no smoothing and no accounting for growth/decay 
using a single average vector (NNA) or the local vectors 
(NNL) overestimate rain rate by 11%. However, tests 
which turn on the growth/decay option cause forecasted 
rain rate to increase to 63-84% over the observed rain 
rates.  Clearly the implemented growth/decay method 

adds no value to the forecasts, much as Wilson et al. 
(1998) and others have concluded. 

Choice of smoothing options can also impact the 
bias. Using local vectors has a small advantage over 
using a single average vector when averaged over 
these case studies, though there are some exceptions 
on a case-by-case basis. For example, the two simple 
advection extrapolations (NNL and NNA) are the top 2 
performers for case 3 while persistence gives the best 
performance for cases 5 and 7.  

Root mean square errors (RMSE) of 60 minute 
forecasted rain rates for all tests and cases are shown 
in Table 4. Test NBL achieves again the best 
performance for all cases. It reduces RMSE by 22.7% 
on average compared to the best performance of the 
two simple advection extrapolations and persistence. 
The smoothing option in MPN has a crucial role in 
reducing RMSE.  Employing smoothing using either the 
FFP or BZ94 methods decreases RMSE for 60 minute 
forecasted rain rates at least 17% for our cases. In 
general, turning off growth/decay option, using local 
vectors, and BZ94 smoothing scheme improve 
performance in RMSE. 

Table 5 shows the correlation coefficients of 60 
minute forecasted rain rates for all tests and cases. Test 
NBL has again the highest correlation for all cases 
although the advantage is small compared to several 
other test configurations. As in RMSE, the smoothing 
has the most impact on increasing correlation. Using 
local vectors can improve it as well. The effect of turning 
on growth/decay is mixed, but it increases correlation for 
most cases. Persistence has the lowest correlation for 
all cases. 

As pointed by Wilson et al. (1998), evaluation and 
comparison of the accuracy of nowcasts is very difficult. 
Statistics such as POD and FAR do not always 
adequately represent performance. For example, no 
credit is given for correctly forecasting a nonevent or 
slightly missing a forecast in either time or space. 
However, these statistics are useful for comparing 
performance of parameter options in MPN since they 
are evaluated precisely in the same manner.  

Average POD, FAR, and CSI for forecasted rain 
rates > 5 mm/hr at 60 minute are presented in Table 6. 
They are averaged over 7 flash flood cases. Turning on 
growth/decay option increases POD for all cases (not 
shown). Smoothing generally improves POD. Using 
local vector or average vector motion has an minor 
effect on POD. However, turning on growth/decay 
option also results in higher FAR. The range of average 
FAR is only from 0.69 to 0.79. It is the general tendency 
that smoothing and using local vector motion decreases 
FAR. CSI also has a narrow range from 0.16 to 0.21 for 
12 tests (persistence test has a much lower CSI at 
0.12). It is difficult to analyze the effect of the parameter 
options in MPN on CSI . However, the inclination is that 
smoothing and using local vector motion improves CSI 
and that growth/decay option has small minor effects on 
CSI. Test persistence, on average, possesses the worst 
performance with the lowest POD and CSI as well as 
the highest FAR. Test NBL gives the best performance 



on FAR and CSI, though the gain is negligible compared 
to several other test configurations.    

Fig. 2 shows the forecast lead time variations of the 
above six statistics for 4 test configurations: NNL, NFL, 
GNL, GFL. The statistics are averages over 7 flash flood 
cases listed in Table 1. The effects of the growth/decay 
option can be found by comparing tests NNL with GNL, 
or NFL with GFL. The differences between tests NNL 
and NFL, or between GNL and GFL are due to the 
beneficial influence of progressive spatial smoothing 
during the forecast period. The growth/decay option 
overestimates rain rate bias significantly, and the 
smoothing option improves the bias during the 60 
minute forecast period (Fig.2a). The smoothing reduces 
RMSE substantially during the forecast period, and 
turning off growth/decay option results a perceptible 
improvement on RMSE after the 30 minute forecast 
(Fig. 2b). The correlations for two tests with smoothing 
are about the same and are higher than those without 
smoothing (Fig. 2c). The smoothing option increases 
correlation 

Turning off the growth/decay option has negligible 
improvement on correlation.  POD in Fig. 2d clearly 
illustrates that turning on the growth/decay option and 
smoothing option improve POD. As forecast lead time 
increases, the influence of the growth/decay option is  
magnified. The effect of the growth/decay option is 
much larger than that of the smoothing option at 60 
minutes into the forecast. However, turning on the 
growth/decay option increases FAR, and two tests using 
the growth/decay option result in higher FAR during 60 
minute forecasts (Fig. 2e). The smoothing produces 
notable improvement on FAR after the 30 minute 
forecast. The difference in CSI in Fig. 2f among the 4 
tests is very small.  It is clear that the smoothing 
improves CSI.  The growth/decay option has small 
mixed effect on CSI. It improves CSI a little if comparing 
test NNL with GNL and reduces CSI if comparing NFL 
with GFL. In summary, test NFL has the best 
performance among the 4 tests for five of six statistics 
during the 0-60 minute forecast period. POD is the only 
exception in which NFL is second best during the 0-30 
minute period and third best during the 40-60 minute 
period. This is understandable since tests with the 
growth/decay overestimate rain rate significantly and 
thus produce higher POD.  

 
5. CONCLUSIONS 
 

The performance of MPN has been investigated 
based on seven flash flood cases in the MD-VA-PA 
region. In particular, the effects of smoothing, 
growth/decay, and storm motion vectors on MPN 
performance have been examined. Our studies show 
that MPN produces very good 0-60 minute rain rate 
forecasts.  MPN substantially improves all six statistics 
relative to the simple advection extrapolation (NNA and 
NNL) and persistence methods.  MPN reduces RMSE 
by 22.7% compared to the two simple advection 
extrapolations or persistence.  The smoothing creates 
major improvement for all six statistics we examined, in 
agreement with Bellon and Zawadski (1994). The 

growth/decay of rain storms is a very complicated 
process.  More physical mechanisms should be 
considered beyond the simple method tested here, 
though achieving routine and significant success is 
challenging even for more advanced physically-based 
techniques such as NCAR’s AutoNowcaster (Mueller et 
al. 2003). Results from our simple approach in MPN 
indicate that the growth/decay option has mixed effects 
that are not particularly positive. Using local vectors has 
small but noticeable improvement over single average 
vectors, though improvements for individual storms in 
individual case studies is expected to be higher if 
focusing just on those rare but high-impact events. 

The study cases included here feature instances of 
various common flash-flood scenarios, such as slow-
moving MCS’s, multiple convection cells, and quasi-
stationary convergence lines.  Therefore it is likely that 
these results would be duplicated in forecasts for most 
critical rainfall situations over much of the United States.  
The results obtained here will be applied toward defining 
default parameters for the operational version of MPN, 
though in some locations the parameters may be 
modified by local users. 
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Table 1.  Date, average conditional rain rate (mm/h) from radar observations, average raining area coverage, 
raining duration (hour), and number of volume scans to verify at 60 minute forecasts for 7 flash flood cases. 

Case 1 2 3 4 5 6 7 
Date 27 Jun 95 18 Jun 96 14 Jul 00 11 Sep 00 22 Jun 01 13 Jun 03 15 Sep 03 
Avg rain rate  3.07 2.64 8.83 1.95 5.89 3.69 3.33 
Coverage(%) 17.6 24.3 24.7 3.9 9.1 18.1 11.4 
Duration(hr) 8.1 16.0 15.5 13.6 18.8 9.1 22.2 
No. of scans  75 156 161 124 175 101 208 
 
 

Table 2. Test names and their input parameters. 

Growth/decay No No No No No No No Yes Yes Yes Yes Yes Yes 
Smoothing No No No FFP FFP BZ94 BZ94 No No FFP FFP BZ94 BZ94 
Motion  No Avg Loc Avg Loc Avg Loc Avg Loc Avg Loc Avg Loc 
Test name PRS NNA NNL NFA NFL NBA NBL YNA YNL YFA YFL YBA YBL 
 
 
Table 3. Forecast rain rate bias at 60 minute. The bias is ∑(forecasted rain rate)/ ∑(observed rain rate). 
 
Case 1 2 3 4 5 6 7 Avg 
PRS 1.08 0.99 0.89 1.28 1.00 0.95 1.00 1.03
NNA 1.12 1.07 0.93 1.41 1.10 1.07 1.04 1.11
NNL 1.11 1.05 0.94 1.49 1.10 1.06 1.05 1.11
NFA 1.07 1.01 0.89 1.27 1.01 0.97 0.97 1.03
NFL 1.02 0.96 0.87 1.24 0.96 0.93 0.95 0.99
NBA 1.07 1.01 0.89 1.28 1.01 0.97 0.98 1.03
NBL 1.02 0.97 0.87 1.24 0.96 0.92 0.96 0.99
GNA 1.58 1.65 1.52 2.53 2.05 1.92 1.67 1.84
GNL 1.56 1.63 1.52 2.54 2.04 1.89 1.68 1.84
GFA 1.47 1.53 1.44 2.32 1.89 1.76 1.54 1.71
GFL 1.43 1.49 1.42 2.28 1.83 1.71 1.53 1.67
GBA 1.42 1.51 1.41 2.26 1.84 1.71 1.51 1.67
GBL 1.38 1.47 1.39 2.19 1.78 1.66 1.50 1.63
 
 

Table 4. Root mean square error (mm/h) for 60 minute forecasted rain rate. 

Case 1 2 3 4 5 6 7 Avg 
PRS 5.94 4.03 11.49 1.55 5.80 5.21 3.22 5.32 
NNA 5.91 3.87 10.94 1.54 5.72 5.00 3.13 5.16 
NNL 5.64 3.78 10.53 1.54 5.63 4.93 3.07 5.02 
NFA 4.81 3.01 9.08 1.17 4.51 3.97 2.47 4.15 
NFL 4.62 2.94 8.73 1.14 4.43 3.92 2.42 4.03 
NBA 4.57 2.88 8.59 1.09 4.31 3.80 2.39 3.95 
NBL 4.49 2.84 8.35 1.07 4.27 3.77 2.36 3.88 
GNA 5.94 4.05 11.41 1.75 6.07 5.31 3.28 5.40 
GNL 5.67 3.97 11.08 1.71 5.97 5.25 3.23 5.27 
GFA 4.87 3.26 9.84 1.43 4.99 4.34 2.65 4.48 
GFL 4.68 3.17 9.52 1.38 4.88 4.28 2.62 4.36 
GBA 4.66 3.13 9.40 1.36 4.80 4.17 2.58 4.30 
GBL 4.57 3.07 9.16 1.32 4.72 4.12 2.56 4.22 
 
 
 
 
 
 
 
 



Table 5. The correlation coefficients for 60 minute forecast rain rates. 
Case 1 2 3 4 5 6 7 Avg 
PRS 0.30 0.15 0.16 0.13 0.11 0.05 0.24 0.16
NNA 0.31 0.23 0.24 0.13 0.15 0.14 0.29 0.21
NNL 0.36 0.25 0.29 0.16 0.17 0.15 0.32 0.24
NFA 0.38 0.35 0.33 0.19 0.24 0.22 0.41 0.30
NFL 0.43 0.37 0.38 0.22 0.26 0.23 0.43 0.33
NBA 0.41 0.37 0.37 0.21 0.26 0.25 0.42 0.33
NBL 0.44 0.39 0.41 0.23 0.28 0.26 0.44 0.35
GNA 0.33 0.28 0.31 0.15 0.21 0.20 0.34 0.26
GNL 0.38 0.30 0.34 0.19 0.23 0.21 0.36 0.29
GFA 0.40 0.36 0.36 0.18 0.27 0.27 0.41 0.32
GFL 0.44 0.38 0.40 0.20 0.28 0.28 0.43 0.34
GBA 0.40 0.37 0.38 0.17 0.27 0.28 0.41 0.32
GBL 0.42 0.38 0.41 0.19 0.28 0.28 0.42 0.34

 
 

Table 6. Average POD, FAR, and CSI of rain rate > 5 mm/h at 60 minute forecast.  These statistics are 
averaged over the 7 flash flood cases listed in Table 1. 

 Test POD FAR CSI 
PRS 0.21 0.79 0.12
NNA 0.28 0.74 0.16
NNL 0.29 0.73 0.17
NFA 0.36 0.71 0.19
NFL 0.36 0.70 0.20
NBA 0.37 0.71 0.20
NBL 0.37 0.69 0.21
GNA 0.43 0.78 0.17
GNL 0.44 0.77 0.18
GFA 0.47 0.77 0.19
GFL 0.48 0.76 0.19
GBA 0.48 0.77 0.19
GBL 0.48 0.76 0.19
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Figure  1. Examples of pairs of observed and forecasted 60-minute rain rate and one-hour accumulation 
images for each of the seven test cases. Subfigures (a-g) correspond to cases 1-7, respectively.  All 
forecasts are from test option NFL. 

 
 



 
Figure 2.  Forecast scores as a function of forecast lead time for 4 test configurations for all 7 rain events: (a) 
Bias, (b) RMSE, (c) COR, (d) POD, (e) FAR, and (f) CSI. 

 


