You are using tackle number 12 to lift a weight of $\mathbf{3 0 0} \mathbf{l b s}$. If you include $\mathbf{1 0}$ percent of the weight for each sheave for friction, what is the pull on the hauling part required to lift the weight?

12
A. 80 lbs . Incorrect
B. 69 lbs

Correct
C. 55 lbs Incorrect
D. 50 lbs

Incorrect

See Solution on the next page

```
F/W = 1 + ((1/10 x number of sheaves) / T.M.A.)
    from Merchant Marine Officers' Handbook
\(\mathbf{F}\) = force (in pounds or tons) to be applied at the hauling end of the block
\(\mathbf{W}=\) weight to be lifted
```

T.M.A. = theoretical mechanical advantage, the ratio of W to F , assuming no friction

F/300 lbs. $=1+((1 / 10 \times 6) / 7) \quad{ }^{* * *}$ T.M.A. $=7$ since there are six lines between the two blocks AND the tackle is reeved to advantage (through a moving block)
$\mathbf{F}=300 \times(1+0.6) / 7$
$\mathbf{F}=68.57 \mathrm{lbs}$.

