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Abstract. In boundary element analysis, first order function derivatives, e.g., boundary poten-
tial gradient or stress tensor, can be accurately computed by evaluating the hypersingular integral
equation for these quantities. However, this approach requires a complete integration over the bound-
ary and is therefore computationally quite expensive. Herein it is shown that this method can be
significantly simplified: only local singular integrals need to be evaluated. The procedure is based
upon defining the singular integrals as a limit to the boundary and exploiting the ability to use both
interior and exterior boundary limits. Test calculations for two- and three-dimensional problems
demonstrate the accuracy of the method.
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1. Introduction. One class of applications for which the boundary integral
method can be particularly effective is moving boundary problems, wherein the task
is to simulate the evolution of the domain. The excellent review article [30] con-
tains extensive references on two-dimensional applications in fluids and solids; fluid
motion studies in three dimensions have been considered in [11, 25]. In particular,
recent breaking wave [18] and interface evolution [44] calculations have employed the
gradient evaluation method that is the subject of this paper.

In addition, two somewhat different but related problems are contact analysis
[31, 36] and shape optimization [9]. The goal in these analyses is to find the (static)
geometry, either the contact region or the optimal shape. Thus, as in a moving
boundary problem, the domain will evolve during the course of the nonlinear iteration.

With these problems, an obvious advantage that a boundary-only approach has
is that remeshing is easier than when using a volume method. Equally important is
that determining the primary quantity of interest, the normal velocity of the surface,
generally requires knowing the surface gradient of the primary function, e.g., potential
gradient or stress tensor on the surface. Similarly, in contact or shape optimization
problems, the algorithm for updating the geometry can depend upon knowledge of
the surface stress [1, 36, 48]. Integral equations employ a direct representation of the
surface and can work directly with derivatives, as opposed to a numerical differentia-
tion of the initial solution; thus, for equivalent computational effort, a more accurate
calculation of surface derivatives should be possible. These derivatives will also be
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referred to here as tangential derivatives, as the normal derivative or traction is known
from the initial boundary integral solution.

Although tangential derivatives can be expressed as boundary integrals of known
quantities [27], direct numerical evaluation is complicated by well-known issues as-
sociated with the collocation of hypersingular integrals [20, 39, 40, 41]. Moreover,
hypersingular collocation at a corner is especially difficult, though it can be accom-
plished with special interpolation [52]. A survey of previous collocation algorithms for
gradient evaluation, most of which is focused on surface stress, is given in [23, 42, 52].
Recent methods include smoothing techniques [19, 37, 38, 53] and direct collocation
methods [10, 52]; a comparison of several gradient procedures is presented in [54].

Unlike collocation, Galerkin approximation effectively handles hypersingular in-
tegrals and corners without special techniques [8, 16, 17, 22, 29, 33], and a Galerkin
approach for tangential derivative evaluation has been presented in [23]. A more ambi-
tious Galerkin-based technique for computing all derivatives at or near the boundary
has also been described in [47]. The algorithm in [23] leads to a system of equa-
tions for the gradient everywhere on the boundary. Although it produces accurate
results, notably at boundary corners/edges, this approach does have one significant
drawback. While the coefficient matrix is quite simple—namely, sparse, symmetric
positive definite, and trivial to compute—the evaluation of the right-hand-side vector
is computationally quite expensive. It requires a complete Galerkin double integration
over the entire boundary. The purpose of this paper is to show that almost all of the
effort to compute the right-hand side can be avoided, making the Galerkin approach
both accurate and efficient.

The new algorithm is based upon the definition of the hypersingular integral as
a limit to the boundary [24] and the ability to effectively compute these limits [22].
By taking the difference of the interior and exterior limit equations, the necessary
quadrature is reduced to a few singular integrations. This limit process and the
modified Galerkin algorithm are described in the next section, while the subsequent
section provides the necessary details concerning the evaluation of the hypersingular
integrals. Numerical results providing evidence of the accuracy of the method are
presented in section 4. Section 5 briefly discusses the advantages and disadvantages of
a collocation implementation of the limit-difference equation, while section 6 considers
the implementation of the method for a crack surface.

2. Surface gradient. The discussion below is in the context of the three-dimen-
sional Laplace equation ∇2φ = 0, with linear interpolation. It should be clear that
the method is applicable in two dimensions and carries over to higher order inter-
polation [21], but it is not obvious that any equation (i.e., Green’s function) can be
accommodated. This will depend upon the ability to analytically evaluate the limit
and the singular integrals. While it is likely that these processes can be made to work
in general, the techniques may need to be tailored to the specific Green’s function.

In three dimensions there is not a unique tangent vector, and thus it is convenient
to use a fixed coordinate system, computing the gradient

∇φ =

(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
,(2.1)

rather than a tangential derivative. Moreover, the gradient components are continuous
at corners/edges, and thus it is only necessary to solve for a single value. (However,
if tangential derivatives are desired, they can be calculated in the same manner, and
with appropriate Galerkin weight functions [14], corners do not present a problem.)
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In the following the notation ∂φ/∂Ek, k = 1, 2, 3, is used to denote the directional
derivative with respect to one of the unit coordinate vectors.

The boundary integral equation for the potential φ(P ), in a domain D having
boundary Σ, is

φ(P ) +

∫
Σ

[
φ(Q)

∂G

∂n
(P,Q) −G(P,Q)

∂φ

∂n
(Q)

]
dQ = 0 .(2.2)

Here n = n(Q) denotes the unit outward normal on the boundary surface, and as
usual the Green’s function is

G(P,Q) =
1

4πr
.(2.3)

This equation is valid for P ∈ D, and for P ∈ Σ it is usually written with a solid
angle coefficient c(P ) multiplying the leading term [4, 6],

c(P )φ(P ) +

∫
Σ

[
φ(Q)

∂G

∂n
(P,Q) −G(P,Q)

∂φ

∂n
(Q)

]
dQ = 0 .(2.4)

and the singular integral involving ∂G/∂n interpreted as a Cauchy principal value
(CPV) [26]. Herein, however, (2.2) is taken as valid for P ∈ D ∪ Σ, with the un-
derstanding that for P ∈ Σ this singular integral is defined as a limit, the point P
approaching the boundary from the interior of the domain [34]. To be completely
explicit, write (2.2) as

φ(P ) + lim
PI→P

∫
Σ

[
φ(Q)

∂G

∂n
(PI , Q) −G(PI , Q)

∂φ

∂n
(Q)

]
dQ = 0 ,(2.5)

where PI ∈ D. Moreover, approaching the boundary from outside the domain, PE ∈
Dc, is equally valid, in which case there is no free term,

lim
PE→P

∫
Σ

[
φ(Q)

∂G

∂n
(PE , Q) −G(PE , Q)

∂φ

∂n
(Q)

]
dQ = 0 .(2.6)

Note that while (2.5) and (2.6) appear to be different, they are in fact precisely the
same equation: the jump in the CPV integral as one crosses the boundary accounts
for the free term difference. This will not be the case for the corresponding tangential
derivative equations, and it is this observation that will be exploited in the new
algorithm.

From (2.5) a gradient component can be expressed as

∂φ(P )

∂Ek
= lim

PI→P

∫
Σ

[
∂G

∂Ek
(PI , Q)

∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n
(PI , Q)

]
dQ .(2.7)

Once the boundary value problem has been solved, all quantities on the right-hand
side are known: a direct evaluation of nodal derivatives would therefore be easy were
it not for difficulties with the hypersingular integral. As described in [23], a Galerkin
approximation of this equation,∫

Σ

ψ̂k(P )
∂φ(P )

∂Ek
dP(2.8)

= lim
PI→P

∫
Σ

ψ̂k(P )

∫
Σ

[
∂G

∂Ek
(PI , Q)

∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n
(PI , Q)

]
dQdP,
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allows a treatment of the hypersingular integral using standard continuous elements.
The weight function ψ̂k(P ) denotes all shape functions which are nonzero at a particu-
lar node Pk. Interpolating ∂φ(P )/∂Ek as a linear combination of the shape functions
results in a simple system of linear equations for nodal values of the derivative every-
where on Σ; the coefficient matrix is obtained by simply integrating products of two
shape functions. Nevertheless, the advantages of this method come at a high price,
as the complete boundary integrations required to compute the right-hand side are
quite expensive.

The computational cost of this procedure can be significantly reduced by exploit-
ing the exterior limit equation, (2.6). It appears to be useless for computing tangential
derivatives for, lacking the free term, the corresponding derivative equation takes the
form

0 = lim
PE→P

∫
Σ

[
∂G

∂Ek
(PE , Q)

∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n
(PE , Q)

]
dQ ,(2.9)

and the derivatives obviously do not appear. However, subtracting this equation from
(2.7) yields (with shorthand notation)

∂φ(P )

∂Ek
=

{
lim

PI→P
− lim

PE→P

}∫
Σ

[
∂G

∂Ek

∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n

]
dQ .(2.10)

The advantage of this formulation is that now only the terms that are discontinuous
crossing the boundary contribute to the integral. In the Galerkin implementation of
(2.10), the integrations that are nonzero are solely the coincident integral and the hy-
persingular edge-adjacent integral. All nonsingular (by far the most time consuming)
and vertex singular integrals drop out. Moreover, for the integrals that do survive, the
integrations simplify in that higher order terms from the polynomial shape functions
are continuous at the boundary and hence also vanish.

Thus, the calculation of the right-hand side in (2.10) reduces to a few “local” sin-
gular integrations. This is intuitively pleasing, as it says that ∂φ/∂Ek at a particular
point P is determined entirely by neighboring values of potential and flux (though
in the Galerkin approach derivative values are coupled through the linear equations).
Note that when Ek happens to be the normal at a particular point, the hypersingular
integral is continuous crossing the boundary; it therefore drops out, appropriately
leaving only contributions from the ∂φ/∂n(Q) term. Similarly, if Ek is a tangent
vector, then the ∂φ/∂n(Q) integral will be zero.

Note that subtracting the interior and exterior potential equations, or for that
matter, interior and exterior normal derivative equations, would yield no information,
simply 0 = 0. This is not the case for any nonnormal directional derivative: the
integrand only contains potential and flux, and thus cancellation of the free term
cannot occur. Thus, (2.9) does in fact provide useful information.

Necessary to implementing the Galerkin approximation of (2.10) is the ability to
evaluate the limits. Hybrid analytical/numerical limit evaluation algorithms, for the
flux (normal derivative) equation, have been described in [22]. However, for a general
directional derivative, the analysis of the coincident hypersingular kernel requires an
additional step, and this modification will be discussed in the next section.
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3. Limit evaluation. The Galerkin form of (2.9) is∫
Σ

ψk(P )
∂φ(P )

∂Ek
dP(3.1)

=

{
lim

PI→P
− lim

PE→P

}∫
Σ

ψ̂k(P )

∫
Σ

[
∂G

∂Ek

∂φ

∂n
(Q) − φ(Q)

∂2G

∂Ek∂n

]
dQdP .

The most notable difference between this equation and the normal derivative equation
relates to the divergences in the integrals. For the flux equation, using either an
exterior or interior limit, the coincident and edge-adjacent hypersingular integrals are
not separately finite [22]. The divergent terms that arise are of the form α log(|ε|),
ε being the distance from the boundary, and it is necessary to prove cancellation of
these terms. However, the divergent quantities are in fact independent of the sign of
ε (i.e., limit direction), and therefore cancel out in (3.1). Thus, the coincident and
edge-adjacent hypersingular integrals are independently finite quantities, and in this
sense (3.1) is simpler to deal with than the normal derivative equation.

As noted above, the difference of the limits wipes out all contributions except the
coincident and adjacent edge singular integrals, and in the latter case, only the hyper-
singular integral contributes. The singular integration algorithms for implementing
these remaining terms are almost entirely the same as presented in [22]. The one
key difference is, not surprisingly, with the coincident hypersingular integration. The
discussion here will therefore be confined to this integral; complete algorithms can be
constructed based upon the details provided in [22]. For simplicity of notation, the
limPI→P − limPE→P will be omitted, it being understood that the integrals are thus
defined.

For this discussion, linear shape functions for a three-noded triangle are em-
ployed. Higher order interpolation would add some additional steps to the analysis,
but presents no essential difficulty: the general procedure is to split off a singular
term that can be integrated analytically (similar to terms from the linear element
analysis), plus a nonsingular remainder [21]. For gradient evaluation, the nonsingular
terms are continuous crossing the boundary and will therefore disappear in the limit.

The linear shape functions

ψ1(η, ξ) =

√
3(1 − η) − ξ

2
√

3
, ψ2(η, ξ) =

√
3(1 + η) − ξ

2
√

3
, ψ3(η, ξ) =

ξ√
3

(3.2)

are defined on the equilateral parameter space −1 ≤ η ≤ 1, 0 ≤ ξ ≤
√

3(1 − |η|), and
the potential φ(Q) is interpolated as

φ(η∗, ξ∗) =

3∑
j=1

φ(Qj)ψj(η
∗, ξ∗) .(3.3)

({η, ξ} will denote the parameter space for the P integration, {η∗, ξ∗} for Q.) For a
particular element E, the coincident hypersingular integral is

3∑
j=1

φ(Qj)

∫
E

ψk(P )

∫
E

ψj(Q)
∂2G

∂Ek∂n
dQdP ,(3.4)

and the kernel function is given by

∂2G

∂Ek∂n
(P,Q) =

1

4π

(
n •Ek

r3
− 3

(n •R)(Ek
•R)

r5

)
.(3.5)
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Here R = Q− (P ± εN), r = ‖R‖ is the distance between Q and the shifted P , and
N is the unit outward normal on the P element. Thus, the plus (resp., minus) sign
corresponds to an exterior (resp., interior) limit. The difference between normal and
tangential derivative analysis is that for the flux equation, N • R is simply ±ε; for
tangential, Ek

•R is obviously the kth component of R.
Transferring to parameter spaces, (3.4) becomes the four-dimensional integral

3∑
j=1

φ(Qj)

∫ 1

−1

∫ √
3(1−|η|)

0

ψk(η, ξ)

∫ 1

−1

∫ √
3(1−|η∗|)

0

ψj(η
∗, ξ∗)

J2
P∂

2G

∂Ek∂n
dξ∗dη∗ dξdη .

(3.6)
As discussed in [22], evaluation of this integral involves two polar coordinate trans-
formations and analytic integration of the radial variables. The first step is to replace
{η∗, ξ∗} with a polar coordinate system centered at (η, ξ),

η∗ − η = ρ cos(θ) ,(3.7)

ξ∗ − ξ = ρ sin(θ) ,

and integrate ρ analytically. Note that 0 < ρ < QR and that writing a formula
for QR = QR(η, ξ, θ) necessitates decomposing the Q parameter space into three
subtriangles; as in [22], it suffices to examine the lower subtriangle defined by η∗ = 0.
With this transformation,

R = ( a1ρ±N1ε, a2ρ±N2ε, a3ρ±N3ε ) ,(3.8)

and thus, independent of limit direction, r2 = (a2ρ2 + ε2), with a2 = ‖ (a1, a2, a3) ‖.
It is important to note that the coefficients in R are of the form

ak = ak(θ) = ak,c cos(θ) + ak,s sin(θ) ,(3.9)

where ak,c and ak,s are functions only of the nodal coordinates of E.
The shape function ψj(Q) is a linear function of ρ. However, only the most

singular term, namely, ψj(η
∗, ξ∗), evaluated at ρ = 0 (equal to ψj(η, ξ)) causes any

problem. This is a constant as far as the ρ integration is concerned, and thus this
coefficient will be dropped from subsequent formulas. The integrand, the difference
of the interior and exterior kernel functions, is then

−6
ε J2

P ak ρ

(ε2 + a2 ρ2)
5/2

,(3.10)

and integrating 0 < ρ < QR yields

−2
1

ε

J2
PQ

3
R ak

( ε2 + a2 Q2
R )3/2

.(3.11)

This quantity behaves as ε−1 as ε → 0 and is clearly a problem. A term of this
form does not show up in the integration of the normal derivative kernel, and thus
the treatment of this apparently divergent quantity is the new aspect of the analysis.
Fortunately, as will now be shown, this divergence cancels on its own. Note that
the limiting form of (3.11), obtained by replacing ( ε2 + a2 Q2

R )−3/2 with a−3 Q−3
R ,

satisfies ∫ 2π

0

−2J2
Pak
a3ε

dθ = −2J2
P

ε

∫ 2π

0

ak
a3

dθ = 0 .(3.12)
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This follows from (3.9), noting that ak(θ+π) = −ak(θ) and a(θ+π) = a(θ) (in hyper-
singular integration, divergences cancel out after integrating completely around the
singular point [24], and this is the origin of the difficulties with collocation mentioned
in the introduction). It is therefore permissible to subtract this limiting quantity from
(3.11), resulting in

−2
1

ε

J2
Pak

(
Q3

R a3 − ( ε2 + a2 Q2
R )3/2

)
a3 ( ε2 + a2 Q2

R )3/2
.(3.13)

The Taylor series expansion of the numerator is a function of ε2, and would seem to
indicate that this quantity vanishes in the limit. However, during the course of the P
integration, P will come close to the element edges, in which case QR also becomes
small. Thus, the Taylor expansion is not applicable, and (3.13) is not a viable form
for examining the limit ε → 0. Nevertheless, progress has been made, and it is clear
that this quantity is less singular at ε = 0 than its predecessor (3.11).

As discussed in [22], the necessary second analytic integration proceeds by first
replacing θ with t,

θ = −π

2
+ tan−1

(
t− η

ξ

)
,(3.14)

and then employing a second polar coordinate transformation {Λ,Ψ},

t = Λ cos(Ψ) + η ,

ξ = Λ sin(Ψ) .(3.15)

Analytic integration with respect to Λ of (3.13), and then letting ε → 0, finally yields

4J2
Pak sin(Ψ)

a4
.(3.16)

(This is the result for the lowest order term in Λ; higher order terms follow similarly.)
This quantity is perfectly well behaved as a function of the remaining variables η
and Ψ, and can be integrated numerically. Thus, it is important to note that even
though there are no log(ε) divergences in the coincident integral, the limit process
is effective in (exactly) removing potentially divergent quantities that could cause
numerical problems.

4. Test calculations. For the test examples, symmetric-Galerkin approxima-
tion, based upon linear triangular elements described above, is employed to solve
several initial boundary value problems. These solutions are then used to compute
the surface gradient.

The first test is a simple mixed boundary value problem inside the unit square
0 < {x, y, z } < 1. The boundary conditions are φ(x, y, z) = x on x = 0 and x = 1, and
zero flux elsewhere, and thus the exact solution is φ(x, y, z) = x, ∂φ/∂y = ∂φ/∂z = 0,
and ∂φ/∂x = 1. A crude discretization having 48 uniform elements and 56 nodes is
employed. The purpose of this example is primarily to check that the adjacent edge
contributions are correctly handled at boundary edges and corners. The computed
normal derivative and gradient at the cube corners are listed in Table 1. Note that
the errors in the gradient are no worse than in the computed normal derivative.

The second test problem has prescribed potential φ(x, y, z) = x for the (interior)
unit sphere, discretized using 896 nonuniform linear triangular elements, comprising
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Table 1

Computed normal derivative and gradient at the corners of the unit cube.

Point φ,n φ,x φ,y φ,z

(0, 0, 0) −1.02372 1.00488 −0.00181 −0.00181
(0, 1, 0) −1.00617 1.00210 0.00113 −0.00127
(0, 1, 1) −1.02418 1.00379 0.00187 0.00187
(0, 0, 1) −1.00617 1.00210 0.00127 −0.00113
(1, 0, 0) 0.97234 0.98426 0.00192 0.00192
(1, 1, 0) 1.00122 0.99667 −0.00111 0.00121
(1, 1, 1) 0.97355 0.99035 −0.00104 −0.00104
(1, 0, 1) 1.00122 0.99667 0.00121 0.00111

0 50 100 150
Node

–0.25

–0.15

–0.05

0.05

0.15

0.25

R
el

at
iv

e 
E

rr
or

Flux
x derivative

Fig. 1. Relative error in the flux solution and the x-component of the surface gradient for the
interior Dirichlet problem on the unit sphere.

450 nodes. The gradient on the boundary is therefore (1, 0, 0), and since n = (x, y, z),
the computed flux should also be ∂φ/∂n = x. As these functions are linear, the only
errors come from the linear approximation of the spherical surface and the numerical
quadratures, and thus accurate answers are expected. Figure 1 displays the relative
error in the computed flux, together with the error (absolute and relative being the
same in this case) in the x-component of the gradient (for clarity, only the first 150
nodes are shown; the remainder of the curves look quite similar). The spikes in the
flux error correspond to nodes for which the exact solution is small; the absolute
errors at these nodes are comparable to the rest of the sphere. This is born out by
the accurate results for ∂φ/∂x. As the remaining components of the gradient should
be zero, Figure 2 plots the absolute error in the y- and z-components. These figures
show that, roughly speaking, the gradient is computed with the same level of accuracy
as the flux, which is the best that can be hoped for.

Note that in this example the potential is known exactly, and thus no error is
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0.0025
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rr
or

y derivative
z derivative

Fig. 2. Absolute error in the y- and z-components of the surface gradient.

introduced into the hypersingular integral from the coefficient function. To test what
happens for the reverse situation, consider a Neumann problem posed on the exterior
of the unit sphere. The exact solution sought is

φ(x, y, z) =
x

(x2 + y2 + z2)3/2
,(4.1)

and thus the surface gradient is

∇φ(x, y, z) =
(
1 − 3x2,−3xy,−3xz

)
,(4.2)

applied surface flux (n = −(x, y, z)) is

∂φ

∂n
(x, y, z) = 2x .(4.3)

Note that the gradient is a quadratic function, and consequently larger errors (due
to the linear interpolation) should result. Figure 3 displays the relative error in
the computed gradient. Again, the spikes correspond to regions for which the exact
solution is small. This is corroborated by Figure 4, which plots the absolute error
in the initial potential solution and in the x-component of the gradient (the worst
offender in Figure 3). The larger errors in the gradient are due to the fact that the
exact solution in this case is a quadratic, and thus the linear approximation should
introduce more error.

Finally, a simple two-dimensional calculation is considered, an interior Dirichlet
problem on the unit disk. The boundary condition is φ(x, y) = x2 − y2, and the
solution for the surface flux is obtained using a linear element Galerkin method. The
postprocessing of the surface gradient is again computed using linear interpolation.
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Fig. 3. Relative error in the gradient components for the exterior Neumann problem.
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Fig. 4. Absolute error in the computed potential and the x-component of the gradient.
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Table 2

L2 errors for the gradient for the two-dimensional problem on the unit disk.

Elements L2 error
25 0.1731E−1
50 0.4207E−2
100 0.1044E−2
150 0.4632E−3
200 0.2604E−3
250 0.1666E−3
300 0.1157E−3
350 0.8498E−4
400 0.6506E−4

0 100 200 300 400
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0

0.005

0.01

0.015

0.02

L2
 e

rr
or

Fig. 5. Convergence of the computed gradient for the Dirichlet problem on the unit disk.

Table 2 lists the L2 errors in the x-component of the gradient (the y-component is
similar) for various uniform discretizations of the unit circle, and these data are plotted
in Figure 5. It can be seen that the convergence obtained with linear interpolation is
approximately quadratic.

5. Collocation. In section 3, it was demonstrated that, by taking the difference
of the interior and exterior limits, the divergences present in the coincident and edge-
adjacent integrals vanish. One might then ask if the log(ε) terms that arise from
collocating the interior limit equation, (2.7), will also disappear in (2.10). If this were
to happen, the difficult C1 interpolation constraint discussed in the introduction would
no longer apply, and a simple gradient collocation algorithm could be constructed.
Note that the important advantage of this approach would be that individual nodal
gradients could be computed; i.e., there is no system of equations to solve. In this
section it is shown that the log(ε) contributions do indeed self-cancel in collocating
(2.10). However, analogous to (3.11), a 1/ε singularity remains, and disposing of this
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term, as in (3.12) for Galerkin, is not as easy. Thus, while collocation may be useful,
there are aspects of this algorithm that are less than satisfactory.

As in the Galerkin formulation, all nonsingular integrals in (2.7) vanish, and
thus to obtain the gradient at a particular node P0, only those elements containing
P0 need be considered. It also suffices to examine the hypersingular kernel; the
integral involving the first derivative of G is handled similarly and moreover causes
no problems. Thus, the following discussion considers the evaluation of{

− lim
PI→P0

− lim
PE→P0

}∫
Σ

φ(Q)
∂2G

∂Ek∂n
(P{I,E}, Q) dQ .(5.1)

Note that there must be a fixed limit direction for P0, and thus it cannot be assumed
that the approach is normal to the element. Even if the surface is smooth, the linear
element interpolation will produce a faceted approximation. Thus, a general direction
(unit vector) L = (L1, L2, L3) is assumed; one possible algorithm for choosing L is to
average the normals of the elements containing P0.

To evaluate the integral, assume that P0 corresponds to the point η∗ = −1, ξ∗ = 0
in the equilateral parameter space, and introduce polar coordinates

η∗ = ρ cos(θ) − 1 ,(5.2)

ξ∗ = ρ sin(θ) ,

where 0 ≤ ρ ≤ QR =
√

3/(
√

3 cos(θ) + sin(θ)) and 0 ≤ θ ≤ π/3. As before, ρ will be
integrated analytically, and θ numerically. As in (3.8),

R = ( a1ρ± L1ε, a2ρ± L2ε, a3ρ± L3ε ) ,(5.3)

but now

r2 = (a2ρ2 ± b1ερ + ε2) .(5.4)

Note that the shape functions (3.2) become

ψ1(η
∗, ξ∗) = 1 − 1

2
√

3
ρ
(√

3 cos(θ) + sin(θ)
)
,

ψ2(η
∗, ξ∗) =

1

2
√

3
ρ
(√

3 cos(θ) − sin(θ)
)
,(5.5)

ψ3(η
∗, ξ∗) = ρ

sin(θ)√
3

.

Thus, dropping the interior/exterior limits once again, the two integrals to consider
are

−jq

∫ π/3

0

∫ QR

0

ρk
∂2G

∂Ek∂n
(P,Q) dρdθ ,(5.6)

where jq is the Jacobian and k = 1, 2; the extra factor of ρ comes from the polar
transformation. For the interior limit alone, the k = 2 integral is responsible for
producing the log(ε) term. However, in the difference of the limits the divergent term
drops out of the ρ integration, leaving

−4jq
a2

(
8a2n •L(2ak + Lkb1)

(4a2 − b21)
2

− nkb1
(4a2 − b21)

)
(5.7)
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Fig. 6. The absolute errors, Galerkin and collocation, in the z-component of the gradient.

to be integrated with respect to θ. Thus, there is no C1 interpolation constraint for
φ(Q). For k = 0, however, we find

−1

ε

4jq
a(4a2 − b21)

2

(
n •L(8a2ak + 2akb

2
1 + 8a2Lkb1) − nka1(4a

2 − b21)
)
,(5.8)

which is clearly a problem at ε = 0. If, instead of the faceted approximation that
results from standard C0 elements, the surface were C1, then the coefficients {ak}
would have one value over the complete neighborhood of P0, and this term would
integrate to zero for precisely the same reason as (3.12). However, interpolating and
integrating each element individually, there is a different set of {ak} for each element.
Thus, with standard (faceted surface) boundary integral approximations, it is not at
all clear that cancellation will occur. The limit-difference therefore removes the C1

condition on φ, but not on the boundary interpolation.
For Laplace (and elasticity) this difficulty can be side-stepped by noting that a

constant function satisfies the differential equation, and that shifting by a constant is
immaterial as far as the gradient calculation is concerned. From (5.5), the problematic
k = 0 integral only multiplies φ(P0), and thus replacing φ(Q) by φ(Q) − φ(P0) will
effectively kill off the 1/ε divergent term.

To test the algorithm, the exterior Neumann sphere problem solved by means of
the Galerkin algorithm has been investigated using the collocation method. Figure 6
plots the absolute error for the two approaches for the z-component of the gradient
(the remaining two are similar). The L2 error for Galerkin is 0.6910 × 10−3 and
0.1177 × 10−2 for collocation. Thus, while the collocation algorithm is successful, it
is less accurate than the Galerkin method. The Galerkin method is of course more
expensive, but in general for moving boundary applications, one would prefer to pay
the price and get a more accurate result for the critical surface velocity.
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This collocation gradient algorithm therefore has two major drawbacks. It is
less accurate than Galerkin, and it does not appear to be applicable if a constant
function is not a solution of the differential equation (e.g., Helmholtz equation). In
addition, the trick of shifting the potential will not work on a crack surface. As will
be discussed in the next section, the variable is the jump in potential across the crack,
and thus subtracting a constant from the potential accomplishes nothing. However,
one useful role for this method might be for truncating Galerkin equations. In many
applications, the gradient is only needed on a part of the boundary, and thus the ability
to truncate the Galerkin system of equations to a region of interest would be very
useful. This procedure might go as follows: somewhat outside and surrounding the
region of interest, use the collocation equations to compute individual gradient values.
As these quantities are not of interest for the subsequent analysis, the errors resulting
from ignoring the C1 interpolation constraint (and collocation method) should not
be a problem. When these somewhat inaccurate values can be used to terminate
the Galerkin equations, the errors should have little effect. An alternative to this
collocation termination is to use one of the “local” methods discussed in the literature
[13, 45, 51].

6. Cracks. It is often the case for boundary integral methods that a fracture
geometry requires special consideration, and the gradient algorithm is no exception.
Although the method is essentially the same as for a noncrack surface, it is not
immediately clear how to justify the interior/exterior limit process on a fracture. In
this section, the appropriate tangential derivative procedure is described and results of
a test calculation are presented. One example where the ability to calculate gradients
on a crack is useful is rock mechanics [3, 35].

P-

P-

P+

P+

C-

C+

Fig. 7. Schematic view of a crack as the limiting case of a thin inclusion.

As shown in Figure 7, a crack can be thought of as the limit of a thin ellipsoidal
inclusion where the thickness goes to zero; i.e., the opposing faces of the inclusion C+

and C− merge and become the same surface. In a displacement discontinuity [12, 49]
or symmetric-Galerkin [5, 7, 33, 50] approximation, the fracture is treated as a single
surface, the appropriate variables being the jump in potential and the sum of the
fluxes:

[φ] = φ(P+) − φ(P−) ,(6.1)
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∂φ

∂n

]
=

∂φ

∂n
(P+) +

∂φ

∂n
(P−) .

Here P+ and P− represent the corresponding points on C+ and C−. In the initial
boundary integral solution, the normal derivative equation is employed on the crack
surface. It is worth noting that there is a problem with this equation at the crack
front: an element having an edge along the front is missing an adjacent element,
which, as discussed above, is necessary to insure that the hypersingular integral is
finite. However, this affects only nodes on the crack front, and for these nodes [φ] = 0.
Thus, fortunately, no equations are written for these nodes.

Analogously to (6.1), the sum of the gradients across the crack[
∂φ

∂Ek

]
=

∂φ

∂Ek
(P+) +

∂φ

∂Ek
(P−)(6.2)

is sought. However, as is well known, near the crack front the potential along the
surface behaves as

√
rf , rf being the distance to the front. Thus, the tangential

derivatives will not exist at rf = 0. In the calculation presented below, we simply
allow the algorithm to try to compute the nonexistent derivatives, recognizing that
this will produce significant errors near the front. Accurate results should nevertheless
be obtainable near the center of the crack.

To derive an appropriate gradient algorithm, it is convenient to go back to Figure 7
and view the fracture as having a nonzero thickness. The algorithm described above
therefore applies: for a point (say on C+), only the local singular integrals contribute,
e.g., C− does not enter into the calculation. By not allowing the Galerkin weight
functions at the crack front to straddle the front, the gradient equations on C+ and
C− can be written independently, these equations involving the potential and flux
on their respective surfaces. Moreover, the Galerkin coefficient matrix depends solely
upon the shape functions, and thus this matrix is the same for both sides of the
crack. The C+ and C− equations can therefore be combined to produce an equation
for sum of gradients across the crack. Not surprisingly, this equation is precisely the
result that would be obtained by treating the crack as a single surface, using the jump
variables in (6.1) instead of φ and ∂φ/∂n, and then applying the noncrack algorithm.

Although the above discussion has tacitly assumed an embedded crack, an edge
crack can be handled in precisely the same fashion. At the junction between a crack
and an outer boundary, simply define the Galerkin weight functions so that they do
not span both the crack and the outer boundary. As far as the gradient equations are
concerned, the crack then appears to be an embedded crack.

As a simple test, consider the “penny-shaped crack” x2+y2 ≤ R0 =
√

2/10, z = 0,
in an infinite medium, with boundary condition [ ∂φ/∂n ] = 1. This “pressurized
crack” has the exact solution [32, p. 144]

[φ] =
2R0

π

(
1 − r2

R2
0

)1/2

,(6.3)

where r2 = x2 + y2. The discretization employed 214 nodes and 382 elements. More
importantly, a special crack tip element [2, 43, 28] to capture the

√
rf behavior has

not been employed, and thus some error near the front is expected. Figure 8 compares
the exact potential in (6.3) with the computed solution, and while the inappropriate
linear element at the front causes some error, this initial solution is generally quite
accurate.
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Fig. 8. The solution for [φ ] for the pressurized penny-shaped crack.

The z-component of the gradient is in this case just the applied boundary condi-
tion, and thus for this component there is no singularity at the front. The gradient
algorithm returned accurate values, the maximum absolute error being 0.0014. This
is not surprising: there are no divergences in either the coincident or adjacent edge
integrals, and thus as long as the quantity being computed is finite, valid equations
can be written at the crack front. To examine the {x, y}-components, Figure 9 plots
the exact solution for the gradient length (ignoring the z-component)

([
∂φ

∂x

]2

+

[
∂φ

∂y

]2
)(1/2)

=
2

πR0

r

1 − r2/R2
0

.(6.4)

As expected, the solution is quite good near the center of the crack and deteriorates
as the crack front is approached: without special approximations, the method would
not be able to compute a singular function. The oscillation above and below the exact
curve is typical behavior when confronting a divergent solution.

7. Conclusions. Galerkin postprocessing evaluation of tangential derivatives is
now both accurate and efficient. This method should be highly useful for moving
boundary problems, as the surface velocity is usually a function of these derivatives.
The key to the efficiency is to rewrite the derivative equation as a difference of interior
and exterior limits, as it is then only necessary to compute the few integrals that are
discontinuous crossing the boundary. This modified Galerkin algorithm obviously
retains the other advantages of its predecessor, namely, that nodal derivative values
are obtained directly, the hypersingular evaluation is accomplished with standard C0

boundary interpolations, and accurate results are obtained at boundary corners and
edges.
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Fig. 9. A comparison of the exact and computed values for the length of the gradient for the
pressurized penny-shaped crack.

A boundary limit definition of the singular and hypersingular integrals is essential
for this new algorithm. This is therefore one application where other techniques for
hypersingular evaluation, e.g., Stokes’ theorem [16, 33], Hadamard finite part [46], or
Duffy transformations [15], are simply not available.

A corresponding collocation algorithm for evaluating the limit-difference equation
was found to be less accurate than Galerkin and, moreover, apparently not generally
applicable. It could possibly prove useful as a means of truncating the Galerkin
equations to a region of interest.
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