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The free-space Green function for a two-dimensional exponentially graded elastic
medium is derived. The shear modulus µ is assumed to be an exponential func-
tion of the Cartesian coordinates (x, y), i.e. µ ≡ µ(x, y) = µ0e2(β1x+β2y), where µ0,
β1, and β2 are material constants, and the Poisson ratio is assumed constant. The
Green function is shown to consist of a singular part, involving modified Bessel func-
tions, and a non-singular term. The non-singular component is expressed in terms
of one-dimensional Fourier-type integrals that can be computed by the fast Fourier
transform.
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1. Introduction

The goal in this paper is to obtain the Green function for a class of functionally
graded materials (FGMs) in two dimensions. Specifically, it is assumed that the
Poisson ratio ν of the medium is constant and that the Lamé moduli λ and µ of the
material are exponentially graded,

µ(x) = µ(x, y) = µ0e2(β1x+β2y) = µ0e2β·x, λ(x) = λ0e2β·x, (1.1)

where µ0, λ0, and β = (β1, β2) are material constants. Martin et al . (2002) employed
a Fourier transform method to solve this problem in three dimensions and found that
the Green function, G3, is the sum (Martin et al . 2002, eqn (2.12))

G3(x; x′) = e−β·(x+x′)[G0
3(x; x′) + Gg

3(x; x′)], (1.2)

where G0
3 is the well-known three-dimensional (3D) Kelvin solution (Mukherjee 1982;

Mura 1987) for a homogeneous solid, and the grading term Gg
3 is a bounded well-

behaved function of the distance between the field point x and the source point x′,
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|r| = |x − x′|. It might therefore be reasonably expected that the Green function in
two dimensions would be of the form

G2(x; x′) = e−β·(x+x′)[G0
2(x; x′) + Gg

2(x; x′)], (1.3)

where G0
2 is the two-dimensional (2D) Kelvin’s solution, and Gg

2 is a corresponding
grading term. However, if G2 is written in this form, Gg

2 is not bounded (see § 5 d). It
turns out that in order to correctly split off the singularity, G2 should be decomposed
as the sum

G2(x; x′) = e−β·(x+x′)[Gs
2(|β||r|) + Gns

2 (x; x′)], (1.4)

where Gs
2 and Gns

2 stand for the singular and non-singular parts, respectively,

β = |β| =
√

β2
1 + β2

2 ,

and |r| = |x − x′|. As both singular and non-singular parts contain the grading
parameter β, naming either one of them as a grading term is no longer appropri-
ate. The singular part, Gs

2, contains the modified Bessel functions K0(|β||r|) and
K1(|β||r|), and the appearance of Bessel functions is consistent with the Green func-
tion for the 2D heat equation found by Gray et al . (2003) for graded materials.

As the 2D situation is of interest herein, the subscript in equation (1.4) is dropped
and it will be shown that

G(x; x′) = e−β·(x+x′)[K0(|β||r|)C0 + K1(|β||r|)C1 + Gns(x; x′)], (1.5)

where (κ = 3 − 4ν for plane strain),

C0 =
κ

2πµ0(κ + 1)

[
1 0
0 1

]
, C1 =

D(β,x,x′)
4πµ0(κ + 1)

[
1 0
0 −1

]
, (1.6)

and

D(β,x,x′) = |β|(x1 − x′
1)

2 − (x2 − x′
2)

2

|r| − β2
1 − β2

2

|β| |r|.

It is worth noting that while K0(|β||r|) shares with the 2D Kelvin solution the
necessary logarithmic singularity as |r| → 0, it also dies off exponentially as |r| → ∞.
A scalar analogue is the graded Laplace equation (Gray et al . 2003)(

∇2 + β1
∂

∂x
+ β2

∂

∂y

)
φ = 0, (1.7)

and the corresponding Green function

Φ(x; x′) =
eβ·(x−x′)

2π
K0(|β||r|) (1.8)

also decays exponentially at infinity. The exponential decay of the modified Bessel
function K0 at infinity (see Appendix B) will make the Fourier analysis straightfor-
ward.

The paper is organized as follows. The motivation for investigating this problem
and a discussion of related work is given in § 2. The governing partial differential
equations for the exponentially graded FGM and the definition of the Green function
are presented in § 3. A Fourier transform method is used in § 4 to translate the partial
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differential equations into a system of algebraic equations. The solution of the Green
function for a normal (diagonal) term is obtained in § 5; the shear (off-diagonal) term
is considered in § 6. In addition, an analysis of the singularity of the derived Green
function is provided in § 5; in both § 5 and § 6, numerical evaluation of the non-
singular terms using the fast Fourier transform algorithm is considered. A summary
of the formulae for all components of the Green function is presented in § 7 and the
last section contains some concluding remarks. Two appendixes, providing useful
double Fourier transform formulae and asymptotics of the modified Bessel functions,
supplement the paper.

2. Motivation and brief literature review

Many applications (e.g. coatings) involve dissimilar materials jointed at an interface.
However, it is well known (Erdogan 1995) that stress concentration near the inter-
face may result. FGMs are of interest in the materials community primarily because
a continuous change in the material composition may avoid these local stress con-
centrations. Moreover, by controlling the gradation, the material performance can
possibly be tailored and optimized to fulfil particular service requirements. FGMs
have been investigated for many applications: thermal barrier coatings for aerospace
applications, graded refractive index materials in optical devices, and biomaterials
for dental and other implants. Good introductions to the general field of FGMs are
found in the review articles by Hirai (1996) and Paulino et al . (2003), and the books
by Suresh & Mortensen (1998) and Miyamoto et al . (1999). Erdogan (1995) pro-
vides a good review of fracture mechanics in FGMs, and Eischen (1987) discusses
the crack-tip fields in FGMs.

As the study of FGMs is relatively new, it is not surprising that the literature
on computational fracture analysis in these materials is not extensive, especially in
regards to the boundary-element method (BEM). Using a singular integral-equation
method, Konda & Erdogan (1994) have solved the mixed-mode plane elasticity crack
problem. Kim & Paulino (2002a) have proposed graded elements for modelling bulk
FGMs by the finite-element method (FEM) and have also employed this idea to
evaluate mixed-mode stress intensity factors and T-stress in FGMs (Kim & Paulino
2002b, 2003). Although singular integral-equation methods can capture the crack-
tip singularity for crack problems and provide accurate numerical results (Erdogan
1995), the extension to general boundary-value problems is very limited. For the
FEM, the task of re-meshing for problems involving moving boundaries such as crack
propagation is, in general, substantial. Thus, a specific motivation of the present work
is to develop the 2D Green function for exponentially graded materials, which will
allow boundary-integral fracture-analysis simulations using boundary-only meshing
and discretization.

The boundary-integral approach can have advantages in treating FGMs, and espe-
cially fracture problems. The required mesh is for a lower-order dimensional sur-
face, and the stress singularity at the crack tips can be easily captured in the

√
|r|

behaviour of the displacements on the crack surfaces (Cruse 1988). The Green func-
tion is essential for formulating boundary-integral equations, and the ability to do 2D
simulations is important. Two-dimensional analyses are commonly used in engineer-
ing practice and they are often a good starting point for many practical applications.
Previous works on Green’s functions for non-homogeneous materials can be found
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in Gray et al . (2003), Martin et al . (2002) and Sutradhar et al . (2002, 2003). The
books by Banerjee (1994) and Bonnet (1995) give access to the extensive references
on boundary-integral-equation methods.

3. Green’s function equations

In classical linear elasticity, if the Lamé moduli λ and µ are functions of x = (x, y, z),
the equilibrium equations (in the absence of body forces) are

µ(x)∇2u + [λ(x) + µ(x)]∇∇ · u + (∇u + ∇uT)∇µ(x) + (∇ · u)∇λ(x) = 0, (3.1)

where u is the displacement vector, ∇, ∇·, and ∇2 are the gradient, divergence, and
Laplacian operators, respectively, and ∇uT is the transpose of ∇u. If a 2D plane
problem is considered and the Lamé moduli µ and λ are assumed to be exponential
functions of (x, y), as in equation (1.1), then (3.1) can be written as the following
system of partial differential equations (Konda & Erdogan 1994):

L
[
u
v

]
= (L0 + Lg)

[
u
v

]
= 0, (3.2)

where the linear differential operator L has been split as a sum of the operator for
homogeneous materials,

L0 =
µ0

κ − 1

[
(κ + 1)∂2

x + (κ − 1)∂2
y 2∂x∂y

2∂x∂y (κ − 1)∂2
x + (κ + 1)∂2

y

]
, (3.3)

and the operator for the grading part,

Lg =
2µ0

κ − 1

[
β1(κ + 1)∂x + β2(κ − 1)∂y β2(κ − 1)∂x + β1(3 − κ)∂y

β2(3 − κ)∂x + β1(κ − 1)∂y β1(κ − 1)∂x + β2(κ + 1)∂y

]
, (3.4)

with ∂x = ∂/∂x, ∂y = ∂/∂y. From equation (1.1), we have assumed that the ratio

λ

µ
=

λ0

µ0
=

3 − κ

κ − 1

is constant. Moreover, κ = 3−4ν if plane strain is considered, and κ = (3−ν)/(1+ν)
for a plane stress problem. A constant Poisson ratio, ν, is widely invoked in the FGM
literature, and appears to be physically reasonable (Erdogan 1995). In particular, for
a crack problem, ν may not have significant effect on the stress intensity factor (Delale
& Erdogan 1983; Konda & Erdogan 1994). Finally, if β1 and β2 are set to 0, then the
system of partial differential equations (3.2) becomes the standard Navier–Cauchy
equations for homogeneous elastic materials.

The free-space Green function is obtained by solving the above partial differential
equations in the plane x = (x, y) under a concentrated point force, at x′ = (x′, y′).
Let

G =
[
u1 u2
v1 v2

]
,

where uα and vα, α = 1, 2, denote the first and second displacement components,
respectively, at the point x due to a force in the α-direction at point x′. The Green
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function components uα and vα satisfy

L
[
u1
v1

]
= −e−2β·x

[
δ(x − x′)

0

]
, L

[
u2
v2

]
= −e−2β·x

[
0

δ(x − x′)

]
, (3.5)

where δ(x) denotes the 2D Dirac delta, and we have moved the common factor e2β·x

from the left-hand side of the equals sign to the right. Clearly, in case of homogeneous
materials, by setting β1 = β2 = 0, the equations (3.5) reduce to

L0

[
u0

1

v0
1

]
= −

[
δ(x − x′)

0

]
, L0

[
u0

2

v0
2

]
= −

[
0

δ(x − x′)

]
, (3.6)

and the corresponding Green’s function components u0
α and v0

α (α = 1, 2) are Kelvin’s
solution.

4. Fourier transform

The Green function equations in (3.5) will be solved by using the method of Fourier
transforms (Sneddon 1972). The Fourier transform is defined by

F(f)(ξ1, ξ2) = f̂(ξ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)ei(xξ1+yξ2) dxdy, (4.1)

and the inverse Fourier theorem by

F−1(f̂)(x, y) = f(x) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
f̂(ξ1, ξ2)e−i(xξ1+yξ2) dξ1 dξ2. (4.2)

Taking the Fourier transform of equation (3.5), one obtains

µ0

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

q11 q12 0 0
q21 q22 0 0
0 0 q33 q34

0 0 q43 q44

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

b11 b12 0 0
b21 b22 0 0
0 0 b33 b34

0 0 b43 b44

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠
⎡
⎢⎢⎣

û1
v̂1
û2
v̂2

⎤
⎥⎥⎦ = e−2β·x′

⎡
⎢⎢⎣

eiξ·x′

0
0

eiξ·x′

⎤
⎥⎥⎦ ,

(4.3)
where

q11 = q33 =
(

κ + 1
κ − 1

)
ξ2
1 + ξ2

2 , q22 = q44 = ξ2
1 +

(
κ + 1
κ − 1

)
ξ2
2 ,

q12 = q21 = q34 = q43 =
2ξ1ξ2

κ − 1
;

b11 = b33 = 2i
[
β1

(
κ + 1
κ − 1

)
ξ1 + β2ξ2

]
, b12 = b34 = 2i

[
β2ξ1 + β1

(
3 − κ

κ − 1

)
ξ2

]
,

b21 = b43 = 2i
[
β2

(
3 − κ

κ − 1

)
ξ1 + β1ξ2

]
, b22 = b44 = 2i

[
β1ξ1 + β2

(
κ + 1
κ − 1

)
ξ2

]
.

The equations for (u1, v1) are of course independent of those for (u2, v2), and thus
the 4×4 matrices in equation (4.3) have a diagonal block structure; instead of solving
a 4 × 4 linear system, it suffices to consider the 2 × 2 subsystem.
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Denoting

Q =
[
q11 q12
q21 q22

]
=
[
q33 q34
q43 q44

]
, B =

[
b11 b12
b21 b22

]
=
[
b33 b34
b43 b44

]
,

S = Q + B,

⎫⎪⎬
⎪⎭ (4.4)

we observe that matrix Q is symmetric, while matrices B and S are not symmetric.
Thus, it is not clear at this point if the symmetry

v1(x; x′) = u2(x′; x), (4.5)

which holds for G0, still holds for the graded Green function G. Martin et al . (2002)
have proposed a neat way to verify the symmetry by rewriting the right-hand side
of equation (3.5) as

e−2β·xδ(x − x′) = e−β·(x+x′)δ(x − x′), (4.6)

so that the non-singular term of G is symmetric after decomposition as in equa-
tion (1.3). The proof of equation (4.5) for an anisotropic inhomogeneous elastic
medium can be found in Ben-Menahem & Singh (1981); the re-formulation (4.6)
is easily justified by the integral rules for the Dirac delta function. The symmetry is
important in the numerical implementation of the symmetric Galerkin approxima-
tion in boundary-element methods.

Substituting (4.6) into equations in (3.5), and also recalling that it suffices to
handle only the 2 × 2 subsystem, we obtain

(LII + LI)

[
ug

1

vg
1

]
= −LI

[
u0

1

v0
1

]
, (LII + LI)

[
ug

2

vg
2

]
= −LI

[
u0

2

v0
2

]
, (4.7)

where the second-order linear differential operator is

LII =
1

κ − 1

[
(κ + 1)∂2

x + (κ − 1)∂2
y 2∂x∂y

2∂x∂y (κ − 1)∂2
x + (κ + 1)∂2

y

]
, (4.8)

and the first-order operator is

LI =
2

κ − 1

[
−1

2 [β2
1(κ + 1) + β2

2(κ − 1)] (κ − 2)(β2∂x − β1∂y) − β1β2

(κ − 2)(β1∂y − β2∂x) − β1β2 −1
2 [β2

1(κ − 1) + β2
2(κ + 1)]

]
. (4.9)

From this point on, only the details of deriving ug
1 and vg

1 will be given, as finding ug
2

and vg
2 follows exactly the same route. Taking the Fourier transform of equation (4.7),

we get

(L̂II + L̂I)

[
ûg

1

v̂g
1

]
= −L̂I

[
û0

1

v̂0
1

]
, (4.10)

where
L̂II = Q,

and

L̂I =

⎡
⎢⎢⎣

β2
1
κ + 1
κ − 1

+ β2
2

2[i(κ − 2)(β2ξ1 − β1ξ2) + β1β2]
κ − 1

2[i(κ − 2)(β1ξ2 − β2ξ1) + β1β2]
κ − 1

β2
1 + β2

2
κ + 1
κ − 1

⎤
⎥⎥⎦ .
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Equation (4.10) combined with [
û0

1

v̂0
1

]
= Q−1

[
eiξ·x′

0

]

leads to the following system of algebraic equations[
ûg

1

v̂g
1

]
=
{
−(Q + L̂I)−1L̂IQ

−1
} [eiξ·x′

0

]
, (4.11)

which is the same equation as that derived for the 3D case (Martin et al . 2002,
eqn (3.2)).

It is worth pointing out that the matrix in the curly brackets in equation (4.11) is
actually the difference between matrices (Q + L̂I)−1 and Q−1, that is,

−(Q + L̂I)−1L̂IQ
−1 = (Q + L̂I)−1 − Q−1. (4.12)

Thus, equation (4.11) can be viewed as the general Green function equation for an
exponentially graded medium from which the Kelvin solution is taken away. Although
splitting off the singularity of the Green function for the 3D case according to equa-
tion (4.12) is appropriate, such is not the case for 2D Green function.

5. Green’s function solution for u1

The solution of u1 will be obtained as

u1(x; x′) =
e−β·(x+x′)

4πµ0(κ + 1)
[us

1(x; x′) + uns
1 (x; x′)], (5.1)

where the singular part

us
1(x; x′)
= 2κK0(|β||r|)

+
[
|β|(x1 − x′

1)
2 − (x2 − x′

2)
2

|r| − κ|β||r| +
(κ − 1)β2

1 + (κ + 1)β2
2√

β2
1 + β2

2

|r|
]
K1(|β||r|)

contains the modified Bessel functions K0(x) and K1(x), and the non-singular part
uns

1 (x; x′) can be expressed as the linear combinations of single Fourier-type integrals
(see § 5 b). We shall give a detailed derivation of (5.1) and also discuss the numerical
evaluation of uns

1 (x; x′) (see § 5 c).

(a) Splitting-off the modified Bessel function

By inverting the Fourier transform of (4.3), and after somewhat lengthy algebra,
we obtain

u1(x; x′) =
e−β·(x+x′)

4π2µ0(κ + 1)

×
∫ ∞

−∞

∫ ∞

−∞

(κ − 1)(ξ2
1 + β2

1) + (κ + 1)(ξ2
2 + β2

2)
∆

e−iξ·(x−x′) dξ1 dξ2,

(5.2)
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where

∆ = (|ξ|2 + |β|2)2 +
4(3 − κ)
κ + 1

(β2ξ1 − β1ξ2)2, |ξ|2 = ξ2
1 + ξ2

2 , |β|2 = β2
1 + β2

2 .

Gray et al . (2003) suggest that instead of subtracting the Kelvin solution, one should
split off a modified Bessel function, and this can be accomplished by decomposing
the fraction of the integrand in equation (5.2):

(κ − 1)(ξ2
1 + β2

1) + (κ + 1)(ξ2
2 + β2

2)
∆

= U s
1 + Uns

1 , (5.3)

where the singular term is

U s
1 =

(κ − 1)(ξ2
1 + β2

1) + (κ + 1)(ξ2
2 + β2

2)
(|ξ|2 + |β|2)2 , (5.4)

and the remaining term (which will be seen to be non-singular) is

Uns
1 =

(κ − 1)(ξ2
1 + β2

1) + (κ + 1)(ξ2
2 + β2

2)
∆

− (κ − 1)(ξ2
1 + β2

1) + (κ + 1)(ξ2
2 + β2

2)
(|ξ|2 + |β|2)2 .

(5.5)
By the formulae provided in Appendix A, we obtain

1
π

∫ ∞

−∞

∫ ∞

−∞
U s

1(ξ1, ξ2)e−iξ·(x−x′)dξ1dξ2

= 2κK0(|β||r|) − κ|β||r|K1(|β||r|) + |β|(x1 − x′
1)

2 − (x2 − x′
2)

2

|r| K1(|β||r|)

+
(κ − 1)β2

1 + (κ + 1)β2
2√

β2
1 + β2

2

|r|K1(|β||r|), (5.6)

the term us
1(x; x′) in equation (5.1). Note that K0(|β||r|) has the desired logarithmic

singularity as |r| → 0.

(b) Contour integral for the non-singular part

The next step is to show that

uns
1 (x; x′) =

1
π

∫ ∞

−∞

∫ ∞

−∞
Uns

1 (ξ1, ξ2)e−iξ·(x−x′) dξ1 dξ2 (5.7)

is well behaved, and to obtain a better form for numerical computation. By using
contour integration to integrate out one of the variables, ξ1, the double Fourier trans-
form can be reduced to a single Fourier integral. For simplicity, it can be assumed
that β2 = 0; otherwise, by a simple change of variables (a rotation of arctan(β2/β1))

ξ1 =
β1

|β|s1 − β2

|β|s2, ξ2 =
β2

|β|s1 +
β1

|β|s2,

and thus the term (β2ξ1 − β1ξ2)2 becomes |β|2s2
2, equivalent to letting β2 = 0.

At β2 = 0, the double Fourier integral in equation (5.7) can be written as∫ ∞

−∞

∫ ∞

−∞

−ηβ2
1ξ2

2 [(κ − 1)(ξ2
1 + β2

1) + (κ + 1)(ξ2
2)]

[(ξ2
1 + ξ2

2 + β2
1)2 + ηβ2

1ξ2
2 ](ξ2

1 + ξ2
2 + β2

1)2
e−iξ·r dξ1 dξ2, (5.8)
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where η = 4(3 − κ)/(κ + 1), and we have abbreviated (x − x′) as r = (r1, r2).
We choose to integrate with respect to ξ1 first, and, as ξ2 is fixed, the fraction in
equation (5.8) has three poles located in the upper half-plane: they are two simple
poles

p1 = 1
2

√
2(P + iQ), p2 = 1

2

√
2(iQ − P),

and one pole of order 2,

p3 = i
√

ξ2
2 + β2

1 ,

with

P =

√√
(ξ2

2 + β2
1)2 + ηβ2

1ξ2
2 − ξ2

2 − β2
1 , (5.9)

Q =

√√
(ξ2

2 + β2
1)2 + ηβ2

1ξ2
2 + ξ2

2 + β2
1 . (5.10)

As a function of ξ2, P has the following asymptotics as |ξ2| → 0:

P =

√√
(ξ2

2 + β2
1)2 + ηβ2

1ξ2
2 − ξ2

2 − β2
1

∼
√

2η

2
|ξ2| −

√
2η(4 + η)

β2
1

|ξ2|3 + O(|ξ2|5). (5.11)

The numerator in equation (5.8) is the linear combination of terms ξ2
2 , ξ2

1ξ2
2 and

ξ4
2 , and the individual integrals are

∫ ∞

−∞

∫ ∞

−∞

ξ2
2e−iξ·r

[(ξ2
1 + ξ2

2 + β2
1)2 + ηβ2

1ξ2
2 ](ξ2

1 + ξ2
2 + β2

1)2
dξ1 dξ2

= − π

2ηβ2
1

∫ ∞

−∞

{√
2e

√
2r1Q/2[P cos(1

2

√
2r1P) − Q sin(1

2

√
2r1P)]

2
√

η|β1||ξ2|
√

(ξ2
2 + β2

1)2 + ηβ2
1ξ2

2

+
er1

√
ξ2
2+β2

1 [r1(ξ2
2 + β2

1) −
√

ξ2
2 + β2

1 ]
(ξ2

2 + β2
1)2

}
e−ir2ξ2 dξ2, (5.12)

∫ ∞

−∞

∫ ∞

−∞

ξ4
2e−iξ·r

[(ξ2
1 + ξ2

2 + β2
1)2 + ηβ2

1ξ2
2 ](ξ2

1 + ξ2
2 + β2

1)2
dξ1 dξ2

= − π

2ηβ2
1

∫ ∞

−∞

{√
2|ξ2|e

√
2r1Q/2[P cos(1

2

√
2r1P) − Q sin(1

2

√
2r1P)]

2
√

η|β1|
√

(ξ2
2 + β2

1)2 + ηβ2
1ξ2

2

+
ξ2
2er1

√
ξ2
2+β2

1 [r1(ξ2
2 + β2

1) −
√

ξ2
2 + β2

1 ]
(ξ2

2 + β2
1)2

}
e−ir2ξ2 dξ2, (5.13)
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−∞

∫ ∞

−∞

ξ2
1ξ2

2e−iξ·r

[(ξ2
1 + ξ2

2 + β2
1)2 + ηβ2

1ξ2
2 ](ξ2

1 + ξ2
2 + β2

1)2
dξ1dξ2

= − π

ηβ2
1

∫ ∞

−∞

{√
2e

√
2r1Q/2[P cos(1

2

√
2r1P) − Q sin(1

2

√
2r1P)]

2
√

η|β1||ξ2|

− er1

√
ξ2
2+β2

1 [r1(ξ2
2 + β2

1) +
√

ξ2
2 + β2

1 ]
2(ξ2

2 + β2
1)

}
e−ir2ξ2 dξ2. (5.14)

Examining each single Fourier integral in equations (5.12)–(5.14) together with the
asymptotics of P provided in (5.11), one readily sees that the double Fourier integral
in (5.7) is indeed non-singular.

(c) Numerical evaluation of uns
1

Implementing the FGM Green function in a boundary-integral analysis will obvi-
ously require computation of the integrals expressing the non-singular terms. The
purpose of this subsection is to illustrate that there is no fundamental difficulty in
achieving a reliable evaluation of uns

1 in equation (5.1). However, the important issue
of what is an efficient algorithm is left for future work.

The results of numerical integration of the non-singular term uns
1 using fast Fourier

transform algorithms (Brigham 1974; Walker 1991) are presented in this subsection.
In order to compute the Fourier-type integral

H(r) =
∫ ∞

0
h(ξ)e−iξr dξ

numerically, we approximate it by its discrete version,

H

(
2πk

L

)
≈

N−1∑
n=0

h

(
nL

N

)
e−i2πnk/N L

N
, k = 1, 2, . . . , N,

where [0, L] is some appropriate truncation interval and N is the number of consec-
utive sampled values. In practice, N is often chosen to be a power of 2, and this will
reduce the operation count from O(N2) to O(N log2 N) (Cooley & Tukey 1965).

As an example, the single integral in equation (5.12) is considered. By the sym-
metry of the integrand in the argument of ξ2, we can rewrite the single integral
as

f(r1, r2) =
∫ ∞

0

{√
2e

√
2r1Q/2[P cos(1

2

√
2r1P) − Q sin(1

2

√
2r1P)]

2
√

η|β1|ξ
√

(ξ2 + β2
1)2 + ηβ2

1ξ2

+
er1

√
ξ2+β2

1 [r1(ξ2 + β2
1) −

√
ξ2 + β2

1 ]
(ξ2 + β2

1)2

}
cos(r2ξ) dξ, (5.15)

where P and Q are defined in equations (5.9) and (5.10), respectively.
In figure 1, we plot a convergence test for f(r1 = 0.20, r2) as a function of r2,

where the parameters were chosen as β1 = 0.25, ν = 0.30. For the truncation interval
[0, L], L = 28, three sampled values N = 216, 217 and 218 were employed. Thus, the
integration interval sizes, ∆ξ = L/N , are set to be 1

256 , 1
512 , and 1

1024 . Figure 1 shows
the convergence of the numerical integrals evaluated by fast Fourier transform as ∆ξ
gets finer. In figure 2, a 3D surface plot is given for f(r1, r2) as a function of (r1, r2).
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Figure 1. Convergence of the numerical integration.
The parameters were chosen as β1 = 0.25, ν = 0.30.
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Figure 2. A three-dimensional plot of the function f(r1, r2)
defined in equation (5.15); β1 = 0.25 and ν = 0.30.
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(d) Splitting-off the Kelvin solution

In this subsection we show that if the 2D Kelvin solution is subtracted from u1,
according to equation (1.3), then the remaining term ug

1 is not bounded at infinity.
The expression for ug

1 can be derived directly by inverting the Fourier transform of
(4.11):

ug
1(x; x′) =

1
4π2

∫ ∞

−∞

∫ ∞

−∞
Ug

1 (ξ1, ξ2)e−iξ·(x−x′) dξ1 dξ2, (5.16)

where

Ug
1 (ξ1, ξ2) =

1
µ0(κ + 1)

×
[
(κ − 1)(ξ2

1 + β2
1) + (κ + 1)(ξ2

2 + β2
2)

∆
− (κ − 1)ξ2

1 + (κ + 1)ξ2
2

|ξ|4

]
.

(5.17)

To show that the double Fourier integral (5.17) is unbounded, express Ug
1 as

Ug
1 (ξ1, ξ2) =

−|β|2
µ0(|ξ|2 + |β|2)|ξ|2

+
2

µ0(κ + 1)

[
ξ2
1

|ξ|4 − ξ2
1 + β2

1

∆
− 2(3 − κ)(β2ξ1 − β1ξ2)2

(|ξ|2 + |β|2)∆

]
, (5.18)

and evaluate each integral in the expression. By using formulae (A 1) and (A 5) in
Appendix A, the first fraction on the right-hand side of equation (5.18) has logarith-
mic unboundedness at infinity after the double Fourier integral,

1
2πµ0

∫ ∞

−∞

∫ ∞

−∞

(
1

|ξ|2 + |β|2 − 1
|ξ|2

)
e−iξ·r dξ1 dξ2 =

1
µ0

[K0(|β||r|)+ log |r|]. (5.19)

The first fraction inside the square brackets on the right-hand side of equation (5.18)
becomes

1
πµ0(κ + 1)

∫ ∞

−∞

∫ ∞

−∞

ξ2
1

|ξ|4 e−iξ·(x−x′)dξ1dξ2 = − 1
µ0(κ + 1)

[
log |r| +

(x1 − x′
1)

2

|r|2

]
,

(5.20)
where we have used formula (A 3). The remaining fractions inside the brackets on
the right-hand side of equation (5.18) can be shown to have finite double Fourier
integrals by using residue calculus to evaluate the integral with respect to ξ1 (see
§ 5 b).

Summarizing all the above, we conclude that ug
1 is not bounded at infinity. As

indicated in the previous subsections, the key point is to take away a modified Bessel
function K0(|β||r|), instead of the Kelvin solution.

6. The Green function solution for v1

The shear term

v0
1(x; x′) =

1
2πµ0(κ + 1)

[
(x1 − x′

1)(x2 − x′
2)

|r|2

]
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of the 2D Kelvin solution is not singular. It is therefore expected that the Green
function solution v1 for the exponentially graded materials can be written as

v1(x; x′) = e−β·(x+x′)[v0
1(x; x′) + vg

1(x; x′)], (6.1)

where the grading part vg
1 is a linear combination of single Fourier-type integrals (see

§ 6 b).

(a) Double Fourier integral

By inverting the Fourier transform of equation (4.3), and after some algebra, we
obtain

v1(x; x′) =
e−β·(x+x′)

2π2µ0(κ + 1)

×
∫ ∞

−∞

∫ ∞

−∞

i(2 − κ)(β2ξ1 − β1ξ2) − (ξ1ξ2 + β1β2)
∆

e−iξ·(x−x′) dξ1 dξ2.

(6.2)

If equation (4.11) is chosen to derive the Green function solution, then, after inverting
the Fourier transform, we obtain

vg
1(x; x′) =

1
2π2µ0(κ + 1)

∫ ∞

−∞

∫ ∞

−∞
V g

1 (ξ1, ξ2)e−iξ·(x−x′) dξ1 dξ2, (6.3)

where
V g

1 (ξ1, ξ2) =
ξ1ξ2

|ξ|4 − ξ1ξ2 + β1β2

∆
+ i

(2 − κ)(β2ξ1 − β1ξ2)
∆

. (6.4)

The difference between the integrands in equations (6.2) and (6.3) yields the Kelvin
solution v0

1 exactly, i.e.

1
2π2µ0(κ + 1)

∫ ∞

−∞

∫ ∞

−∞
−ξ1ξ2

|ξ|4 e−iξ·(x−x′) dξ1 dξ2 =
1

2πµ0(κ + 1)
(x1 − x′

1)(x2 − x′
2)

|r|2 .

(6.5)
We have used equation (A 2) in Appendix A for deriving the above double integral
(Mura 1987, p. 17). It will be shown in the next subsection that the double Fourier
integral (6.2) is finite.

(b) Contour integral for v1

Similarly to the previous contour integral analysis for u1, the double Fourier trans-
form will be reduced to a single Fourier integral by integrating out the variable ξ1.
In this case, the individual integrals that comprise equation (6.2) are∫ ∞

−∞

∫ ∞

−∞

e−iξ·x

(ξ2
1 + ξ2

2 + β2
1)2 + ηβ2

1ξ2
2

dξ1 dξ2

=
√

2π

2
√

η|β1|

∫ ∞

−∞

e
√

2x1Q/2[P cos(1
2

√
2x1P) − Q sin(1

2

√
2x1P)]

|ξ2|(ξ2
2 + β2

1)
e−ix2ξ2 dξ2,

(6.6)
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−∞

∫ ∞

−∞

ξ1e−iξ·x

(ξ2
1 + ξ2

2 + β2
1)2 + ηβ2

1ξ2
2
dξ1dξ2

=
πi

√
η|β1|

∫ ∞

−∞

e
√

2x1Q/2 sin(1
2

√
2x1P)

|ξ2|
e−ix2ξ2 dξ2, (6.7)

∫ ∞

−∞

∫ ∞

−∞

ξ2e−iξ·x

(ξ2
1 + ξ2

2 + β2
1)2 + ηβ2

1ξ2
2
dξ1dξ2

=
√

2π

2
√

η|β1|

∫ ∞

−∞

e
√

2x1Q/2[P cos(1
2

√
2x1P) − Q sin(1

2

√
2x1P)]

sgn(ξ2)(ξ2
2 + β2

1)
e−ix2ξ2 dξ2,

(6.8)∫ ∞

−∞

∫ ∞

−∞

ξ1ξ2e−iξ·x

(ξ2
1 + ξ2

2 + β2
1)2 + ηβ2

1ξ2
2

dξ1 dξ2

=
πi

√
η|β1|

∫ ∞

−∞

e
√

2x1Q/2 sin(1
2

√
2x1P)

sgn(ξ2)
e−ix2ξ2 dξ2. (6.9)

By inspecting each single Fourier integral, one can see that all the integrals are
non-singular. In these formulae sgn(x) denotes the signum function,

sgn(x) =

{
1, x > 0,

−1, x < 0.

7. Summary

We summarize the above discussion by listing each of the components of G which
are needed for a numerical implementation using the BEM.

u1(x; x′)

=
e−β·(x+x′)

4πµ0(κ + 1)

×
[
2κK0(|β||r|) + |β|(x1 − x′

1)
2 − (x2 − x′

2)
2

|r| K1(|β||r|)

− κ|β||r|K1(|β||r|) +
(κ − 1)β2

1 + (κ + 1)β2
2√

β2
1 + β2

2

|r|K1(|β||r|) + uns
1 (x; x′)

]
,

(7.1)

v1(x; x′) = e−β·(x+x′)
[

1
2πµ0(κ + 1)

(x1 − x′
1)(x2 − x′

2)
|r|2 + vg

1(x; x′)
]
, (7.2)

u2(x; x′) = e−β·(x+x′)
[

1
2πµ0(κ + 1)

(x1 − x′
1)(x2 − x′

2)
|r|2 + ug

2(x; x′)
]
, (7.3)
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v2(x; x′)

=
e−β·(x+x′)

4πµ0(κ + 1)

×
[
2κK0(|β||r|) + |β|(x2 − x′

2)
2 − (x1 − x′

1)
2

|r| K1(|β||r|)

− κ|β||r|K1(|β||r|) +
(κ + 1)β2

1 + (κ − 1)β2
2√

β2
1 + β2

2

|r|K1(|β||r|) + vns
2 (x; x′)

]
,

(7.4)

where the non-singular terms uns
1 , vg

1 , ug
2 and vns

2 , in the form of a double Fourier
integral, are listed in Appendix C. For numerical evaluation, those non-singular terms
can be expressed as the linear combinations of single Fourier-type integrals (see §§ 5 b
and 6 b). Moreover, it is easy to see that the classical 2D Kelvin solution is recovered
as β1 → 0 and β2 → 0.

8. Concluding remarks

Using a Fourier transform technique, the Green function for a 2D exponentially
graded elastic medium has been derived. The Green function can be decomposed
into a ‘modified Bessel function K0(|β||r|) + non-singular terms’, which is different
in form from that found in three dimensions. In three dimensions (Martin et al .
2002), the singularity in the Green function is confined in the Kelvin solution, 1/|r|,
and that singularity appears only as |r| → 0. In the 2D case, the Kelvin solution,
log |r|, possesses singularity at both |r| → 0 and |r| → ∞.

In the 3D case, the non-singular terms can be obtained as single integrals over
finite intervals of modified Bessel functions and double integrals over finite regions
of elementary functions (Martin et al . 2002). Here, the non-singular terms have been
expressed as single Fourier-type integrals which can be evaluated numerically by fast
Fourier transform algorithms. It is not clear however that this is the best approach,
and further work on numerical methods is required. Using the results in this paper
and those by Martin et al . (2002), a complete set of Green’s functions for both
two and three dimensions is available for boundary-integral solution of problems
for exponentially graded materials. With the availability of these Green’s functions,
the advantages that are inherent in boundary-integral methods can now be used in
treating crack propagation, and numerical implementation is currently under way.
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Appendix A. Some useful formulae for deriving Green’s function
for a 2D exponentially graded elastic medium

1
π

∫ ∞

−∞

∫ ∞

−∞

1
ξ2
1 + ξ2

2
eiξ·x dξ1 dξ2 = −2 log |x|, (A 1)

1
π

∫ ∞

−∞

∫ ∞

−∞

ξ1ξ2

(ξ2
1 + ξ2

2)2
eiξ·x dξ1 dξ2 = −x1x2

|x|2 , (A 2)

1
π

∫ ∞

−∞

∫ ∞

−∞

ξ2
1

(ξ2
1 + ξ2

2)2
eiξ·x dξ1 dξ2 = − log |x| − x2

1

|x|2 , (A 3)

1
π

∫ ∞

−∞

∫ ∞

−∞

ξ2
2

(ξ2
1 + ξ2

2)2
eiξ·x dξ1 dξ2 = − log |x| − x2

2

|x|2 , (A 4)

1
2π

∫ ∞

−∞

∫ ∞

−∞

e−iξ·x

|ξ|2 + |β|2 dξ1 dξ2 = K0(|β||x|), (A 5)

1
π

∫ ∞

−∞

∫ ∞

−∞

e−iξ·x

(|ξ|2 + |β|2)2 dξ1 dξ2 =
1

|β| |x|K1(|β||x|), (A 6)

1
π

∫ ∞

−∞

∫ ∞

−∞

ξ2
1

(|ξ|2 + |β|2)2 e−iξ·x dξ1 dξ2 = K0(|β||x|) − |β| x
2
1

|x|K1(|β||x|), (A 7)

1
π

∫ ∞

−∞

∫ ∞

−∞

ξ2
2

(|ξ|2 + |β|2)2 e−iξ·x dξ1 dξ2 = K0(|β||x|) − |β| x
2
2

|x|K1(|β||x|), (A 8)

1
π

∫ ∞

−∞

∫ ∞

−∞

ξ2
1 + ξ2

2

(|ξ|2 + |β|2)2 e−iξ·x dξ1 dξ2 = 2K0(|β||x|) − |β||x|K1(|β||x|), (A 9)

1
π

∫ ∞

−∞

∫ ∞

−∞

ξ2
1 − ξ2

2

(|ξ|2 + |β|2)2 e−iξ·x dξ1 dξ2 = |β|x
2
2 − x2

1

|x| K1(|β||x|). (A 10)

Formulae (A 1)–(A 4) can be found on p. 17 of Mura (1987); formulae (A 5) and
(A 6) can be derived from the table, item (20), on p. 24 of Erdélyi (1954)†; formulae
(A 7) and (A 8) can be obtained by applying differential operators (−∂2/∂x2

1) and
(−∂2/∂x2

2), respectively, to both sides of formula (A 6). Clearly, equations (A 9) and
(A 10) are consequence of (A 7) and (A 8).

Appendix B. Asymptotic expansions of modified Bessel functions

For convenience in identifying singularities in the Green function, the well-known
asymptotic behaviour of the modified Bessel functions K0(x) and K1(x) (at both
x → 0 and x → ∞) is shown below. Note that the modified Bessel functions K0(x)
and K1(x) satisfy the identities (Olver 1972)

d
dx

K0(x) = −K1(x),
d
dx

K1(x) = −K0(x) − K1(x)
x

.

† Based, in part, on notes left by Harry Bateman, and compiled by the staff of the Bateman Manu-
script Project.
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(i) As x → 0,

K0(x) ∼ − log x + log 2 − γ + 1
4(1 + log 2 − γ − log x)x2 + O(x4); (B 1)

K1(x) ∼ 1
x

− 1
4(1 + 2 log 2 − 2γ − 2 log x)x

− 1
16(log 2 + 5

4 − γ − log x)x3 + O(x5), (B 2)

where γ (≈ 0.577 216) is Euler’s constant.

(ii) As x → ∞,

K0(x) ∼
√

2π

2
e−x

[
1√
x

− 1
8

1
x3/2 +

9
128

1
x5/2 + O

(
1

x7/2

)]
; (B 3)

K1(x) ∼
√

2π

2
e−x

[
1√
x

+
3
8

1
x3/2 − 15

128
1

x5/2 + O

(
1

x7/2

)]
. (B 4)

Appendix C. Non-singular terms

In this appendix we list the formulae for the non-singular components of the Green
function. They are given here as the original double Fourier integrals even though,
as shown above, they can be reduced to single integrals. The reason for this is that
it is not clear at this point what is the best way to numerically evaluate these terms.

uns
1 (x; x′) =

1
π

∫ ∞

−∞

∫ ∞

−∞
Uns

1 (ξ1, ξ2)e−iξ·(x−x′) dξ1 dξ2, (C 1)

where

Uns
1 =

(κ − 1)(ξ2
1 + β2

1) + (κ + 1)(ξ2
2 + β2

2)
∆

− (κ − 1)(ξ2
1 + β2

1) + (κ + 1)(ξ2
2 + β2

2)
(|ξ|2 + |β|2)2 ;

vg
1(x; x′) =

1
2π2µ0(κ + 1)

∫ ∞

−∞

∫ ∞

−∞
V g

1 (ξ1, ξ2)e−iξ·(x−x′) dξ1 dξ2, (C 2)

where
V g

1 =
ξ1ξ2

|ξ|4 − ξ1ξ2 + β1β2

∆
+ i

(2 − κ)(β2ξ1 − β1ξ2)
∆

;

ug
2(x; x′) =

1
2π2µ0(κ + 1)

∫ ∞

−∞

∫ ∞

−∞
Ug

2 (ξ1, ξ2)e−iξ·(x−x′) dξ1 dξ2, (C 3)

where
Ug

2 =
ξ1ξ2

|ξ|4 − ξ1ξ2 + β1β2

∆
− i

(2 − κ)(β2ξ1 − β1ξ2)
∆

;

vns
2 (x; x′) =

1
π

∫ ∞

−∞

∫ ∞

−∞
V ns

2 (ξ1, ξ2)e−iξ·(x−x′) dξ1 dξ2, (C 4)

where

V ns
2 =

(κ + 1)(ξ2
1 + β2

1) + (κ − 1)(ξ2
2 + β2

2)
∆

− (κ + 1)(ξ2
1 + β2

1) + (κ − 1)(ξ2
2 + β2

2)
(|ξ|2 + |β|2)2 .
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