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Defect-unbinding transitions and inherent structures in two dimensions
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We present a large-scale~36 000-particle! computational study of the ‘‘inherent structures’’~IS! associated
with equilibrium, two-dimensional, one-component Lennard-Jones systems. Our results provide strong support
both for the inherent-structures theory of classical fluids, and for the Kosterlitz-Thouless-Halperin-Nelson-
Young theory of two-stage melting in two dimensions. This support comes from the observation ofthree
qualitatively distinct ‘‘phases’’ of inherent structures: a crystal, a ‘‘hexatic glass,’’ and a ‘‘liquid glass.’’ We
also directly observe, in the IS, analogs of the two defect-unbinding transitions~respectively, of dislocations
and disclinations! believed to mediate the two equilibrium phase transitions. Each transition shows up in the
inherent structures, although the free disclinations in the ‘‘liquid glass’’ are embedded in a percolating network
of grain boundaries. The bond-orientational correlation functions of the inherent structures show the same
progressive loss of order as do the three equilibrium phases: long-range→ quasi-long-range→ short-range.
@S1063-651X~98!13209-9#

PACS number~s!: 61.20.Gy, 64.70.Dv, 61.72.Bb, 61.43.Fs
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I. INTRODUCTION

Some years ago, Stillinger and Weber@1# introduced a
theory of liquids, based on the partitioning of the configu
tion space into potential-energy~PE! basins. Each of these
basins contains a single PE minimum, to which all oth
points within the basin are connected via steepest-des
paths. The PE minima were coined ‘‘inherent structure
~ISs!; all other configurations are taken to be vibrational e
citations of them. This approach allows for the decompo
tion of the configurational partition function into a sum, ov
PE basins, of intrabasin terms. The resulting partition fu
tion may be approximated as follows:

Q5(
a

Qa'E G~p!Qpdp;G~p* !Qp* . ~1.1!

In the first step of this transformation, one splits the partit
function into a sum over ‘‘basin partition functions’’~the
usual Boltzmann integral, limited to configurations within
given basin!, a being the basin index. This step is exact
principle. The second step transforms this sum into an in
gral, via the introduction of the~generally vector-valued!
structural parameterp, characterizing the ISs. Typically
this parameter would include such information as aver
coordination numbers, densities and spatial distributions
defects, etc.G(p) is a density-of-states function, enumera
ing the basins having a given value ofp; Qp is then the
corresponding constrained partition function. This step in
transformation inevitably loses some information through
necessity to makep finite-dimensional. The final step of th
transformation is a result of the fact that, in the thermod
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namic limit, the density-of-states function is essentially e
ponential in the number of particles:

G~N,p!;exp@Ng~p!#, ~1.2!

which permits a maximum-integrand evaluation of the in
gral overp. p* is the value ofp that maximizes the inte-
grand for a given set of thermodynamic conditions~e.g., vol-
ume and temperature!.

The partition function may be further transformed b
writing the potential energy as

F~r !5Fa1DaF~r !, ~1.3!

whereFa is the ‘‘structural energy’’~the PE of the IS of the
occupied basin! and DaF(r ) is the ‘‘vibrational energy’’
~the difference between the total PE and the structural
ergy!. This allows the generic basin partition function to b
written as

Qa5exp~2Fa /kBT!Qa
v ib , ~1.4!

where

Qa
v ib5E

R~a!
exp~2DaF/kBT!dr . ~1.5!

Here,R(a) limits the integration to basina, andkB is Bolt-
zmann’s constant. Hence, the total partition function,
given by Eq.~1.1!, becomes

Q5Qp*
structQp*

v ib , ~1.6!

where

Qp*
struct

5G~p* !exp~2Fp* /kBT!. ~1.7!

Phase transitions are defined by singularities in the free
ergy,Fcon f52kBTlnQ. Thus, in order for a phase transitio
to occur, there must be singularities inQp*

struct , Qp*
v ib , or

both. The evident unlikelihood of such singularities, witho
discontinuities inp* ~that is to say, in the types of basin

ia
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occupied!, implies that the existence of marked differenc
between the IS associated with different phases is a prac
requirement for the applicability of the inherent-structur
theory ~IST! to systems exhibiting phase transitions. Th
requirement has been shown to be satisfied for certain th
dimensional~3D! systems@2#. Also, some limited results@3#
have been obtained for 2D systems.

Recently, we@4,5# have performed extensive numeric
studies of inherent structures in simple, single-compon
fluids in 2D. An early study@4# extended the range of suc
studies toN54096 particles, but found~as expected! only
evidence for two phases~solid and liquid!. More recently@5#
we extended these studies toN536 864 particles. This
choice of system size was motivated by earlier molecu
dynamics studies@6,7# giving strong, but not conclusive, ev
dence for an intermediate, hexatic phase for systems of
size and larger~see also Ref.@8#!. Reference@5# gave a brief
report of the principal results reported here. In this paper,
offer a detailed discussion of our computational methods
results. We also provide a clear picture of the disclinatio
unbinding ‘‘transition’’ in the IS—a result that was not cle
in @5#—and some calculations of the disclination charg
charge correlation function in the equilibrium fluids. The
latter calculations provide further evidence for disclinati
unbinding at the hexatic/liquid transition.

Roughly contemporaneously with the development
IST, Halperin and Nelson~HN! @9#, following work on the
melting of 2D solids by Kosterlitz and Thouless@10#, pre-
dicted a two-stage melting mechanism for 2D systems
number of results on the first stage of melting were obtai
independently by Young@11# ~see also Nelson@12#!. In the
resulting picture of two-stage melting, commonly called t
KTHNY theory, each successive phase~in order of increas-
ing energy! is characterized by the presence of an additio
type of defect: the solid contains only dislocations, bound
pairs; the intermediate,hexaticphase adds unbound disloc
tions; and the liquid further adds unbound disclinations.
tendant to this progression of defects are differences in
bond-orientational correlation function, which exhibits lon
range order, power-law decay, and exponential decay for
solid, hexatic, and liquid phases, respectively.~For a detailed
review of the KTHNY theory and the defects involved, s
the review of Strandburg@13#.! Since KTHNY predicts the
existence ofthreecondensed phases, for which IST requir
an equal number of distinct classes of IS, 2D would seem
offer an ideal testing ground for IST. Furthermore, it see
that a study of the ISs underlying the different phases in
systems might provide novel and useful microscopic e
dence for the defect-unbinding transitions expected from
theory—assuming that such defects can be ‘‘trapped’’ by
quenching procedure~which yields the mechanically stabl
inherent structure from a snapshot configuration at ther
equilibrium!. Indeed, the defects present in each equilibri
phase should also show up in the IS underlying that phas
but much more clearly, due to the attendant removal of
vibrational distortions present at equilibrium—if these de-
fects are mechanically stable. Before discussing our num
cal results, then, we will discuss the question of the mech
cal stability of the defects—dislocations and disclinations

The interaction energies of the defects are typically c
culated by well known methods of linear elasticity theo
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@14#. To make an elastic defect, one takes an unstrained e
tic medium and introduces one or more topologic
changes—yielding one or more topological defects—by c
ting, shifting, and gluing. The next step is to invoke th
‘‘equations of equilibrium’’—which require that there be n
net force at any point in the medium—at constant topology.
This then gives the strain field, which, in turn, gives t
self-energies and energies of interaction for the defects.
assumption of constant topology is crucial, because it is
topology that defines the elastic problem to be solved. Ho
ever, it is important to note that this canonly be an assump-
tion in the continuum theory: in the absence of a microsco
atomic structure in the fluid, there is no reason to expect
dislocation to be pinned~against the calculated forces of a
traction or repulsion! at any point in the medium, except ‘‘by
hand.’’

Thus we cannot expect to see such structures as free
locations in anymechanically stableconfiguration, unless
some justification can be given for this assumption of co
stant topology. For the case of dislocations, this justificat
comes in the form of the Peierls-Nabarro potential@14#. This
is a periodic ‘‘corrugation’’ in the interdislocation potentia
arising from the underlying microscopic structure of the m
terial. This potential is well known to be capable of pinnin
dislocations, such that arrays of dislocations may be rende
mechanically stable. This leads us to anticipate that the c
figurations of dislocations trapped in our numerically o
tained IS may in fact provide useful insight into the equili
rium defect structures,without the almost overwhelming
‘‘noise’’ associated with the vibrations about the IS, occu
ring in thermal equilibrium.

There is less justification for this assumption, as appl
to disclinations. In fact, there is reason to doubt the mech
cal stability, and hence the presence in IS, of free discli
tions @14#. The question is then, can the inherent-structu
idea, invoking as it does a qualitative difference in IS b
tween different thermodynamic phases, be reconciled w
the KTHNY picture of melting~hexatic→ liquid! by the
unbinding of disclinations—even when there is good rea
to expect that no free disclinations can be seen in mechan
equilibrium ~i.e., in any IS!? We provide a conclusive
~‘‘yes’’ ! answer to this question, below, while at the sam
time failing to find any evidence for mechanical stability
free disclinations.

Our results reveal an extremely clean correspondence
tween the predictions of the KTHNY theory of two-stag
melting and the inherent structures associated with each t
modynamic phase. Previously, the principal barrier to t
sort of study has been the difficulty associated with find
the hexatic phase in simulations@15#, in part due to limita-
tions in system size. Boundary conditions and equilibrat
methods may also play an important role. The simulations
Refs. @6# (N.100 000) and@8# (N;65 000) gave some
compelling evidence for the hexatic phase. However, t
phase was found to be onlymetastablethermodynamically in
@6#; and the differences in method and boundary conditio
in the two studies leave some room for controversy. Our o
studies use a system size (N;36 000) for which a meta-
stable hexatic phase appeared in the study of Ref.@6#, with
quenches from the ‘‘equilibrium’’ hexatic phase being tak
from snapshots in this metastable thermodynamic state.
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believe that our results, revealing as they do three cla
~one clearly ‘‘hexatic’’! of IS for these fluids—classes tha
are expected to persist in the thermodynamic limit—prov
further support for the hypothesis that the hexatic phas
thermodynamically stable, in some region of the phase
gram, forN→`. This evidence is distinct from, and compl
mentary to, that obtained from equilibrium studies. Our
sults also further strengthen the basic premise of inher
structures theory: that distinct thermodynamic phases
characterized by qualitatively distinct inherent structur
such that singularities in thermodynamic functions may
ascribed to discontinuities in the occupation probabilities
potential-energy basins, at a phase boundary.

II. COMPUTATIONAL PROCEDURE

In order to study inherent structures, one first needs s
ing configurations, taken as snapshots from thermal equ
rium. In the present study, these were obtained directly fr
the molecular-dynamics~MD! simulations described in Ref
@6#, which made use of a computational framework describ
by Melchionna, Ciccotti, and Holian~MCH! @16#—
specifically, a constant-NPT molecular dynamics simulation
using the Parrinello-Rahman@17# shape-varying box with
periodic boundary conditions~BCs!. Let us, then, give a
brief summary of those aspects of this framework that
most relevant to the present study, the details being avail
in Ref. @16#.

For the sake of simplicity, we will outline the method fo
the case of isotropic volume fluctuations and then state
changes necessary to account for the shape-varying box.
MCH equations of motion, for the case of isotropic volum
fluctuations, are

ṙ i5
pi

mi
1h~r i2R0!,

ṗi5Fi2~h1z!pi ,

ż5nT
2FT~ t !

Text
21G , ~2.1!

ḣ5
nP

2

NkBText
V@P~ t !2Pext#,

V̇5dVh.

Here,r i , pi , andmi are the position, momentum, and mas
respectively, of particlei. Fi is the instantaneous force actin
on particlei, andR0 is the center of mass of the system.h is
a barostating factor that tends to restore the instantan
pressureP(t) to the preset valuePext . It is modulated by the
adjustable parameternP , which is termed the ‘‘barostating
rate.’’ Similarly, z serves to equilibrate the temperature a
is tuned by way of the ‘‘thermostating rate’’nT . V is the
volume andd is the dimensionality. The main alterations
Eq. ~2.1!, needed to accommodate a shape-varying box,
the change in the scalarsh andP to tensors and the replace
ment ofV with a ‘‘box matrix’’ whose columns are the bas
vectors of the box. The basic form of the equations rema
that of Eq. ~2.1!. The potential used was of the shifte
Lennard-Jones form,
es
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V~r !5H 4e@~s/r !122~s/r !6#1Vc , r ,r c ,

0, r>r c ,
~2.2!

wheree ands are parameters,r is the interatomic distance
r c is the cutoff radius, and

Vc524e@~s/r c!
122~s/r c!

6#. ~2.3!

In units in whiche, s, kB , andm ~the atomic mass! are all
equal to 1—units which we use throughout this paper—
parameters used in the equilibrations were as follows:

N536 864,

Pext520,

TextH <2.15 ~crystal!,

52.154 ~hexatic!,

>2.17 ~ liquid!,

~2.4!

r c54,

Dt50.0005,

whereN is, of course, the number of particles.
Having obtained an equilibrium configuration~in the

hexatic case, this is only a thermodynamicallymetastable
equilibrium @6#!, in order to find the associated IS one mu
perform a steepest-descent minimization of the total poten
energy, which, for the current constant-P case, consists of the
total interparticle potential plusPextV. In practice, this is too
time consuming to be practical@2# for the large system size
of the current study—indeed, it is impractical for all but th
smallest systems. Instead, we make use of the above-out
MD method. Beginning with an equilibrium configuration
we first zero all particle velocities and the velocities of t
‘‘box walls.’’ We then run the MD simulation at very low
temperature (Text something like 1026 to 1024 of the equi-
librium temperature!, carefully adjusting the thermostatin
and barostating rates, such that the instantaneous temper
remains very close toText and the PE smoothly decreas
with the time. Furthermore, the PE is checked at each t
step, and if an increase is found, we go back to a previ
configuration~saved before the occurrence of the increas!,
rezero the velocities, and restart the simulation. This proc
is continued until the duration of the MD runs~i.e., before a
PE increase occurs! becomes only a few time steps. At th
point, we run the MD simulation at the same, very low te
perature~and without, of course, the requirement of a stric
decreasing PE!, long enough~typically something like 105

time steps! to ensure that the system is, indeed, vibrati
about a PE minimum. If this test is successful, we have
IS. ~At such low temperatures, the vibrations are of sm
enough amplitude to be negligible for structural consid
ations.! Otherwise, we continue the minimization procedu
until a minimum is found that does pass our test.

Of course, the structures obtained from the above-outli
minimization procedure~hereafter referred to as ‘‘quench
ing’’ ! will, in general, differ from the ‘‘true’’ IS, connected
by a steepest-descent path to the starting equilibrium c
figuration. However, the very low temperatures—which is
say very small particle momenta—maintained throughout
quenching process ensure that the system trajectory ne
@18# follows the steepest-descent path prescribed by I
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FIG. 1. ~a! A snapshot configuration taken from the solid phase in thermal equilibrium; the particle number isN536 864 and the
~dimensionless! snapshot temperature isTs51.988. Only the positions of atoms that are not sixfold coordinated are shown. The
parallelogram shows the periodic boundaries of the deformable 2D box in which the MD simulations take place.~b! The inherent structure
obtained from~a! by ‘‘quenching’’; i.e.,~nearly! steepest-descent minimization of the potential energyU1PextV @whereU is the interaction
energy,Pext520 the external pressure, andV the ~variable, two-dimensional! volume#. The reduction in defect number from~a! is dramatic.
Although it is not possible here, close examination of the defects in~b! shows that there are no dislocations that are not closely bound
neutral composites.
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Also, according to IST, fluid systems at equilibrium tran
frequently andexclusively~at least forN→`) betweenther-
modynamically equivalentPE basins@19# ~i.e., basins having
the same value of the structural parameterp). Hence we
believe that the structures obtained by our quenching pro
dure will be thermodynamically equivalent to the actual IS
the starting configuration. That is, they should be repres
tative of the set of IS associated with the thermodynam
conditions of the equilibrium configuration.

III. RESULTS

In earlier work @4# we performed a large number o
quenches of equilibrium systems atN54096. In the presen
work we increaseN to 36 864 particles, in order to be able
quench from all three thermal phases: solid, hexatic, and
uid. At this system size the quenches are very intensive c
putationally. We have performed three quenches, follow
the procedure outlined above, for each phase, and se
additional quenches that did not strictly enforce the requ
ment of monotonic decrease of the PE. The results w
qualitatively the same for all quenches derived from
same starting phase.

Figure 1~a! shows an equilibrium snapshot for the so
phase. We plot only those atoms that are not sixfold coo
nated according to a Voronoi construction, labeling all su
t

e-
f
n-
c

-
-

g
ral
-

re
e

i-
h

atoms by their coordination number~mostly 5 or 7!. Figure
1~b! then shows the configuration of Fig. 1~a!, when relaxed
to mechanicalequilibrium by our quenching procedure. A
though Fig. 1~b! is mostly white space~i.e., sixfold coordi-
nated atoms!, we include it here to illustrate the dramat
reduction in defect number as a result of quenching fr
thermal equilibrium to mechanical equilibrium. It is appare
to the eye that there are no free dislocations in the so
derived IS: every dislocation is closely bound in
~vector-!charge-neutral composite. We have also compu
the bond-orientational correlation functions~BOCFs! for the
various quenches. Obviously, for the solid-derived IS,
BOCF has long-ranged order.

On quenching from the~metastable! equilibrium hexatic
phase, we obtain structures such as that shown in Fig. 2.~We
do not show the equilibrium defect configuration as the
fects are very dense.! Clearly, there is a large density o
defects,even in mechanical equilibrium, for this case. Of
course, there are still some bound dislocations, some
which compose large-angle grain boundaries identifiable
chains of very closely spaced dislocations. In addition
these—and in contrast to the crystal IS—there are many
locations that do not have any ‘‘canceling’’ dislocation
within several lattice spacings, some of which show a cl
tendency@20# to arrange themselves into small-angle gra
boundaries. We term these the ‘‘free’’ dislocations for the
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5752 PRE 58SOMER, CANRIGHT, AND KAPLAN
reasoning from the existence of the Peierls-Nabarro po
tial, we argued above that free dislocations,if present in the
equilibrium snapshot, will survive the quench and thus
pear in the IS. Here, we claim that a comparison of Figs
and 2 graphically reveals the dislocation-unbinding transit
in the inherent structures.

We can also test this idea with the BOCF. While netwo
of large-angle grain boundaries are capable of destroying
quasi-long-range orientational order characteristic of
hexatic phase, those present in our hexatic quenches are
tively small and isolated, so that this order is in fact p
served. Log-log plots of the BOCF@g6(r )# for a typical
hexatic ‘‘MD snapshot’’ @6# and its associated quenche
structure@5# reveal that both obey a power-law behavio
with the IS showing a smaller exponent~i.e., a slower rate of
algebraic decay of the orientational order!. This may be at-
tributed to the removal, on quenching, of long-wavelen
torsional phonons, which are supported by the hex
phase’s finite Frank constant.

An IS of this nature has not been seen in any sma
system. In fact, if we use the word ‘‘glass’’ as shorthand
structural glass, i.e., an atomic configuration in mechan
~but not thermal! equilibrium, then Fig. 2 shows a hexat
glass. Two-dimensional glasses have mostly been studie
ing two or more atomic species@21–23#, since the ‘‘frustra-
tion’’ in 2D monatomic fluids is very small~it is zero for the
2D packing problem! @24#. Hexatic glasses have, to ou

FIG. 2. ~a! Inherent structure for 36 864 particles with period
BCs, obtained by relaxing a configuration from a hexatic phas
~metastable! equilibrium. The relaxation is done at constant pre
surePext520, from an equilibrium snapshot atTs52.154. Again,
only those atoms that are not sixfold coordinated are marked.~b!
Enlargement of the boxed-in section of~a!. Free dislocations appea
as 5-7 pairs, which are neither bound into neutral composites, n
large-angle grain boundaries.
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knowledge, only been seen before in two-compon
systems—in simulations@21# and in ball-bearing experi-
ments@23#.

With the isotropic liquid as the starting point, our quenc
ing procedure results in structures such as that shown in
3. The two-stage melting theory predicts that the transit
from hexatic to isotropic liquid takes place via the unbindi
of disclinations~our 5’s, 7’s, etc.!. However, there are no
free disclinations in any of our liquid-derived IS. Rather, t
only additional defects, as compared to the hexatic ph
are, as is clear from Fig. 3, percolating networks of larg
angle grain boundaries. These in themselves can destro
quasi-long-ranged orientational ordering, as may be veri
by calculating the BOCF for the IS of Fig. 3. In fact, both th
equilibrium snapshot and its IS show an exponential deca
orientational order, with roughly the same exponent@5#.

It is thus tempting to suppose that the equilibrium liquid
also characterized by percolation of grain boundaries;
that the hexatic→ liquid transition takes place by grain
boundary melting@25#. Certainly@compare Figs. 2~a! and 3#
the transition appears in the IS as a percolation of gr
boundaries. However, we believe that wecansee the unbind-
ing of disclinations in our IS, with a bit more effort.

In Fig. 4 we show the quenching of an artificial startin
condition whose only defects are four widely spaced dis
nations~two positive and two negative!. The corresponding
quenched~mechanically stable! structure is a roughly squar
grain-boundary network, whose nodes correspond closel
the positions of the original disclinations. The ‘‘free’’ discl
nations of Fig. 4~a! are ~as expected! not mechanically
stable; and they relax upon quenching to a network of gr
boundaries, which serves as a ‘‘fossil relic’’ of the free d
clinations in the starting configuration. This suggests t
there should be a strong correlation between the ave
separation of free disclinations in an equilibrium configu
tion, and the average grain size in the correspond
quenched structure. We find further support for this id
from other quenches like that shown in Fig. 4: above
threshold separation distance, the grain size in the quenc
structure closely reflects the spacing of the original discli
tions. ~For disclinations closer than the threshold distan
the relaxed structure is a single grain.! Thus, the fact that the

in
-

in

FIG. 3. Inherent structure obtained by relaxing an equilibriu
liquid configuration. The parameters are as in Figs. 1 and 2, ex
Ts52.17. The large-angle grain boundaries, isolated in Fig. 2, s
the sample here, and in all other liquid quenches we have d
Examination at finer scale shows no free disclinations~which would
appear here as isolated 5’s and 7’s!.
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FIG. 4. ~a! An artificial starting configuration for 4096 particles, constructed with four widely spaced disclinations of zero net sca
vector charge. Again we use periodic BCs.~b! The relaxed structure for~a! ~defects only!. The free disclinations have vanished; wh
remains is a network of grain boundaries that closely marks the original positions of the disclinations.
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equilibrium and quenched configurations have nearly ide
cal orientational correlation lengths@5# is consistent with the
presence of free disclinations in the equilibrium liquid.

It is also interesting to note that, while the transformati
shown in Fig. 4 is quite dramatic, the final configurati
@Fig. 4~b!# still, in a sense, contains ‘‘free’’ disclinations
These are at the nodes of the grain-boundary network, w
are near the positions of the original disclinations of F
4~a!. Disclinations are defined as centers of lattice rotati
that is, tracking the local lattice orientation, while making
closed circuit around a disclination, will show a net rotatio
For the present case, this means that if we track the orie
tion of six-coordinated cells, as we make a closed circ
around a disclination, we will find a net rotation of som
integral multiple ofp/3. The disclinations centered on th
five- and seven-coordinated atoms of Fig. 4~a! give rotations
of 1p/3 and 2p/3, respectively. Similarly, on making
circuit enclosing a set (A) of atoms whose average coord
nation number is different from six, we will find a net lattic
rotation—specifically,

u rot5
p

3
qA ,

qA5(
i PA

~62zi !. ~3.1!

Here,qA is the net ‘‘disclination charge’’ inA, andzi is the
coordination number of atomi. Of course, in order to prop
erly define this lattice rotation, we need a circuit consist
solely of ‘‘good crystal’’ ~i.e., six-coordinated cells!. Such
circuits do exist around the grain-boundary nodes of F
4~b! ~as shown in the closeup in Fig. 5!. Hence we see tha
there are, indeed, ‘‘net sevens’’ (qA521) and ‘‘net fives’’
(qA51) at the grain boundary nodes, near the positions
the original negative and positive disclinations, respective

We next examine the distribution of such ‘‘net disclini
ity’’ in our IS. In doing this, the disclinations are identifie
i-

ch
.
;

.
ta-
it

g

.

f
.

as outlined above, by identifying groups of atoms who
average coordination number is different from six, and wh
can be enclosed by a path consisting entirely of s
coordinated atoms. If, for a given disclination, the small
such path encloses more than one atom, the location of
disclination is somewhat arbitrary~except, of course, that i
should be somewhere within the enclosed area!. For the pur-
pose of illustration in the present work, we have used
following rule: if the disclination is near a grain-bounda
node, we assign it to the appropriately coordinated atomz
55 for a positive disclination orz57 for a negative discli-
nation! nearest the node; otherwise, we assign it to the
propriately coordinated atom nearest to the closest, oppo
signed disclination. Application of this procedure to th
quenched structures of Figs. 2 and 3 results in the discl
tion arrays shown in Fig. 6. Comparison of these arrays w
the structures from which they were obtained reveals that
presence ofnet disclinations is restricted to the vicinity o
large-angle grain boundaries. That is, Figs. 2, 3, and 6, c
sidered together, are entirely consistent with the notion
tained from Fig. 4: that free disclinations, upon quenchin
relax to mechanically stable ISs in which a network of gra
boundaries marks the extent, and even positions, of the o
nal distribution of free disclinations. In this view, then, th
grain-boundary-percolation transition seen in our ISs is
direct analog of the disclination-unbinding transition in eq
librium. In other words, if the disclinations unbind, the gra
boundaries in the ISmustpercolate; and, on the other han
bound disclinicity appears in the IS as localized~or no! grain
boundaries. Our net-disclination algorithm then simp
erases the grain-boundary network, revealing bound discl
tions in our hexatic IS@Fig. 6~a!# and unbound disclinations
in the liquid IS @Fig. 6~b!#.

Thus we believe that we have seenbothdefect-unbinding
transitions reflected in our IS. However, this conclusion
quires a chain of reasoning that is not airtight. Hence, a
further test of the hypothesis that disclination unbinding m
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diates the hexatic→ liquid transition, we have analyzed th
disclination distribution of the twoequilibriumphases, using
the disclination ‘‘charge-charge’’ correlation functio
~CCF!:

gq~r !5(
iÞ j

d~r 2r i j !qiqj ,

r i j 5ur i2r j u, ~3.2!

qi562zi ,

FIG. 5. Enlargements of the~a! upper-left and~b! lower-left
grain-boundary nodes of the quenched structure of Fig. 4~b!, corre-
sponding to positive and negative disclinations, respectively. S
coordinated atoms are marked by asterisks, while non-
coordinated atoms are marked by their coordination numbers.
arrows are an aid to the eye, showing the lattice rotation on ma
a circuit around the clusters having a net disclination charge.
where the sum is over all pairs of atoms. According to H
perin @26#, the absolute value of this function should exhib
~asymptotically! a power-law decay when the disclination
are bound~but interacting with a logarithmic potential, as i
the hexatic phase!, and an exponential decay for the case
unbound disclinations. As suggested by Fig. 6, typical eq
librium configurations contain relatively few candidates f
free disclinations. Additionally, at equilibrium there are ve
many non-sixfold-coordinated atoms that do not compr
unbound disclinations—they are components of dislocatio
both stable and ‘‘virtual’’—so that the disclination CC
must be extracted from the considerable noise resulting f
these other defects. For these reasons, the elucidation o
asymptotic behavior of the CCF requires long-time aver
ing over very many equilibrium configurations. This is a
extremely time consuming process. We have obtained res
which, we believe, offer some evidence for the unbinding
disclinations in the liquid phase. However, even after mu
time averaging, our CCFs show meaningful behavior o
over a single decade of distance; hence we cannot claim
this evidence itself is conclusive.

Our CCF results for 36 000 particles are presented in F
7 ~hexatic phase! and Fig. 8~liquid!. The severe noise in
these data is clearly evident. However, we also believe
there is clear visual support in these data for the hypoth

-
-

he
g

FIG. 6. The structures of~a! Fig. 2~a! and ~b! Fig. 3, showing
only the ‘‘net’’ disclinations, as indicated in Fig. 5, and located
the method described in the text. Each positive disclination
marked by a ‘‘5,’’ and each negative disclination is marked by
‘‘7.’’ ~a! We see that net disclinicity in the inherent structure
confined to the region of large-angle grain boundaries. For
hexatic IS this region does not span the sample.~b! For the liquid
IS, both the grain boundaries~Fig. 3! and the net disclinations
~shown here! span the system. Hence~a! and ~b! here show the
inherent-structures analog of disclination unbinding.
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that the hexatic CCF is better fit by a power-law or sub
ponential form, while the liquid CCF is better fit by an e
ponential. Obviously one can only draw very tentative co
clusions from these data. However, from our experience
believe that further time averaging will not significantly r
duce the noise in these data; instead, larger systems~with
larger numbers of defects! need to be examined.

IV. DISCUSSION

Our principal conclusion from these studies is that
basic premise of inherent-structures theory is well confirm
for 2D simple fluids. That is, inherent structures obtain
from differing equilibrium phases differ from one another
qualitative and reproducible ways. Our own results exte
those from previous IS studies of 2D fluids@3# in two ways.

FIG. 7. The disclination charge-charge correlation funct
@gq(r ), or ‘‘CCF,’’ as defined in the text#, obtained for the equilib-
rium hexatic phase~36 000 particles! at T52.154; ~a! semilog;~b!
log-log plot. The distancer is in units of the Lennard-Jones param
eters, in this figure and in Fig. 8. There is a range, approximat
2,r ,20, which is not completely dominated by finite-size ar
facts. In this range, the hexatic CCF is roughly linear on the log-
plot ~b!, and hence concave upwards in~a!.
-

-
e

e
d
d

d

We have studied system sizes 1–2 orders of magnitude
yond those of previous studies. This increase in size
enabled us to obtain convincing differences amongthreedis-
tinct phases in 2D.

In particular, we find unambiguous evidence for the ex
tence ofhexatic inherent structures, which are also hexa
~structural! glasses. Such structures do not appear at the l
N54000@4#, but are found atN536 000—at which size the
equilibrium hexatic phase is thermodynamically metasta
@6#. It is certain that the hexatic IS will persist for all large
N. The question is then~in the language of IST!, can these IS
reach a balance of entropy and energy~with increasingN!
such that the hexatic phase becomes a true minimum of
free energy, in some part of the phase diagram? Beyond
minimal criterion of showing the existence of such ISs, o
present results do not answer this question. However, m
detailed studies of the ISs reported here may allow furt
progress.

y

g

FIG. 8. The disclination CCF obtained for the liquid atT
52.327; ~a! semilog;~b! log-log. Again there is approximately on
decade~in r! of data not dominated by noise. Here the CCF
roughly linear on the semilog plot~a!, and so convex upwards o
the log-log plot~b!.
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Our results are also relevant to the KTHNY theory
two-stage melting. Besides the fact that we have shown th
‘‘phases’’ of inherent structures—with the same types
bond-orientational order as the corresponding equilibri
phases—we have also obtained graphic evidence for
defect-unbinding transitions. The unbinding of dislocatio
as one moves from solid-derived to hexatic-derived ISs
apparent. In contrast, free disclinations are~apparently! not
mechanically stable@Fig. 4#, and so hidden in the liquid
derived ISs. However, we have used a simple, determin
algorithm that identifies and reveals net disclinicity~i.e., that
not canceled by neighboring atoms! in any IS. This rule,
applied to our hexatic- and liquid-derived ISs, yields co
figurations of defects showing a clear disclination-unbind
transition. This latter transition shows up as a percolat
transition for grain boundaries in the untransformed ISs;
net disclinations are then~typically! found at the nodes of the
grain-boundary network. We have also obtained some
ther evidence for disclination unbinding by studying the d
clination charge-charge correlation function for the equil
rium fluids.

Finally, we reiterate that inherent structures are, in pr
ciple, structural glasses: nonequilibrium~and disordered!
configurations trapped away from the equilibrium state
en

et
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y

potential-energy barriers. Hence we find that there aretwo
distinct types of structural glasses for one-componen
Lennard-Jones fluids in 2D. These two types might be
perimentally observable, although it seems likely that
required quench rates are too high. The idea however
considerable interest. Just as the novel phases found in
equilibrium phase diagrams have enhanced our knowledg
the phases of fluid matter in general, so may unusual st
ture in a 2D ‘‘glassy phase diagram’’ be expected to of
new insights into our general understanding of glassy ma
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