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Elastic constants of silicon using Monte Carlo simulations
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Elastic constants of a bulk silicon crystal are calculated using the Monte Carlo~MC! technique in conjunc-
tion with an isoenthalpic-isotension-isobaric ensemble~HtN ensemble! and the Stillinger-Weber~SW! poten-
tial or one of the Tersoff potentials. This MC method is the counterpart of the Parrinello-Rahman HtN
molecular dynamics. We present HtN MC calculations of the adiabatic elastic constants of a crystalline silicon
at three different temperatures, using an HtN ensemble fluctuation formula, and compare with the correspond-
ing results from EhN ensemble molecular dynamics~MD! simulation. Calculation of the elastic constants of
SW silicon using HtN MC simulation is a superior technique when compared to a corresponding HtN MD
simulation that failed to produce accurate results. The calculation of the elastic constants using the HtN
ensemble is, in general, slower in convergence than the corresponding calculation using the EhN ensemble. It
is still a useful technique for the calculation of elastic constants, because it does not require any knowledge of
the derivatives of the potential, which could be nontrivial for potentials with terms beyond two body. In order
to investigate the convergence of another potential, elastic constants of the latest silicon Tersoff potential were
calculated at a nonzero temperature. The zero-temperature elastic constants of Si SW and Si Tersoff potentials
were also calculated using a direct method and extrapolation of HtN MC results to zero temperature.
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I. INTRODUCTION

An efficient way of calculating elastic constants is impo
tant, because these constants are directly employed in p
tical uses of materials. Calculation of the elastic constant
given temperatures can also serve as a measure of the
ability of the interatomic potential at those temperatur
This is generally true, since often potentials are fit to
extrapolation of experimental data at zero temperature.

There are several ways of calculating elastic consta
The direct or traditional method is to apply a tension on
sample and calculate the corresponding strain and ela
constants from the tension-strain relationship.1,2 The tradi-
tional method is inconvenient, because for the calculation
all elastic constants several tensions need to be applie
several times. Elastic constants can also be calculated u
EhN molecular dynamics~MD! or Monte Carlo ~MC!
simulations.1,3 In the EhN MD or MC method, elastic con
stants are directly related to the microscopic stress tensor
first and second derivatives of the potential.1,3 Although EhN
MD or MC calculations of the elastic constants are very
curate and converge rather quickly, they are often not u
because they require derivatives of the potential. The der
tives of a potential can be nontrivial for potentials that ha
terms beyond pair interactions. Formulas for the elastic c
stants in the EhN ensemble have been developed for
Stillinger-Weber1 and the embedded atom method~EAM!
~Ref. 3! potentials. The zero-temperature limit of the Eh
elastic constants was also calculated and applied to
PRB 580163-1829/98/58~10!/6019~7!/$15.00
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Stillinger-Weber silicon~SW Si! potential.1,4 Finally, elastic
constants can be calculated using HtN MD or M
simulation.1,2 There are several fluctuation formulas for th
calculations of elastic constants and other thermodynam
quantities in the HtN ensemble.1,2,5,6The elastic constants o
Lennard-Jones~LJ! solids were calculated using the fluctu
tion formulas in the HtN ensemble. The elastic constant v
ues calculated from the HtN MD method are, in general, l
accurate and converge much slower than the correspon
values from the EhN MD method.1 For some potentials, one
may obtain reasonable results using the HtN MD method7,8

but it would be expected that the results would be m
accurate and efficient using the HtN MC method.9 However,
there is evidence to believe that the relative convergenc
the elastic constants using EhN or HtN depends on the in
atomic potential, as well as the simulation technique use
the calculation.1,2,9 In fact, convergence of the elastic con
stants of a LJ solid using the HtN MD method was on
marginally satisfactory2 and was unsatisfactory when applie
to the SW solid.10 On the other hand, it was shown by Fa
and Ray9 that the HtN MC calculation of the elastic con
stants of a LJ solid converges much faster than the co
sponding HtN MD results. In the HtN ensemble, the elas
constants are related to the strain-strain fluctuation, while
the EhN ensemble they are directly related to the first a
second derivatives of the potential. For complicated ma
body potentials,11,12 calculation of the derivatives could b
nontrivial1 and the Parrinello-Rahman fluctuation formu
for the calculation of elastic constants could be very use
6019 © 1998 The American Physical Society
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for such cases. Note that the fluctuation calculation of ela
constants presented here includes all the anharmonic eff
Other approximate methods such as quasiharmonic la
dynamics13 can sometimes provide similar results.

Comparison of the results of zero-temperature elastic c
stants using various methods to be described in this pape
well as analytical values of the SW silicon elastic constan
can serve as a measure of the accuracy of the models.

The main objective of doing this work is to extend th
application of the elastic constants using the HtN M
method to more complicated systems. To follow this obj
tive, we have studied the convergence of the elastic const
of the SW Si potential,11 as well as one of the Tersoff silico
potentials12 ~T2 Si! using the HtN MC simulations, and w
compare the corresponding results for the SW Si case
the ones from the EhN MD case and experiment. Furth
more, the elastic constants of the SW Si and T2 Si poten
at zero temperature are calculated using various method
Sec. II, we describe highlights of the theory. In Sec. III, w
present the simulation results. In Sec. IV, we summarize
present conclusions.

II. OUTLINE OF THE THEORY

In this section, we describe briefly the interatomic pote
tials employed in this study and summarize highlights of
HtN molecular dynamics and Monte Carlo simulations.

In this study, we employed Stillinger-Weber11 and
Tersoff12 potentials of silicon. The SW potential is a sum
two- and three-body terms. The two-body term is a sph
cally symmetric function, while the three-body term is ang
dependent. Parameters of the SW potential were determ
by fitting to the zero-temperature experimental values of
lattice constant and cohesive energy, with the constraint
the melting point and liquid structure of silicon be calculat
correctly. The Tersoff potentials are the sum of repulsive a
attractive interactions. The repulsive part of the potential
decreasing exponential pair term, and the attractive par
the potential depends on the local environment throug
many-body angle-dependent term. Two different parame
zations of the silicon potential were developed by Terso
These potentials are referred to in this publication as Ter
silicon potential 1~T1 Si! and silicon Tersoff potential 2~T2
Si!. The T2 Si potential, which is an improvement over t
T1 Si potential, was used in this study. The T1 Si potentia
silicon suffered from two problems. First, it predicted the b
structure to be the lowest-energy structure, rather than
mond. The second problem was that the elastic const
predicted by the potential were, in general, too different th
those of the experimental values. In fact, theC44 value pre-
dicted by the potential was about a factor of 8 smaller th
the corresponding experimental value. The parameters o
T1 Si potential were obtained by fitting to a database incl
ing the lattice constant, cohesive energy, and bulk modu
The parameters of the T2 Si potential were obtained by
ting to a database similar to the one used for the T1 Si
tential, except that a constraint was imposed to produce
three independent elastic constants to within 20%.12

In the Parrinello-Rahman form of molecula
dynamics,14,15 the computational box is described by a
33 matrix h whose three columns are three vectors rep
ic
ts.
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senting the edges of the box. The equation of motion desc
ing the box has the following form:

Wḧ5~P2Pex!A2hG, ~1!

whereW is the mass associated with the box coordinatesP
is the microscopic stress tensor,Pex is the external pressure
A5Vh̃21 is the area tensor,h̃21 is the inverse of the trans
pose of matrixh, andG is related to the tension applied to th
system.W in Eq. ~1! couples the box variablesh and the
particle variables in the extended variable method
Andersen.16 The equations of motion describing the particl
have the form

mas̈ai5hi j
21Fa j2ma~G21Ġṡa! i , ~2!

wherema is the mass of particlea, sai is the i th component
of the scaled coordinate of particlea, one overdot represent
the first time derivative of that quantity, and two overdo
represent the second time derivative of that quantity,hi j

21 is
the ij component of the inverseh matrix, Fa j is the j th com-
ponent of force on atoma, G5hh̃ is the metric tensor where
the tilde means matrix transpose, and the real coordinat
an atom is related to its scaled coordinate byr 5hs or s
5h21r . In the HtN ensemble, the enthalpy of the system
defined as

H5K1U1PexV1V0tr~ t«!, ~3!

whereK is the kinetic energy,U is the potential energy,V0 is
the reference volume,t is the tension tensor,« is the strain
tensor, and ‘‘tr’’ denotes trace of a matrix. The enthalpy
conserved during an HtN simulation. It should be mention
that in Eq.~3!, K is the total kinetic energy of the box an
particles inside the box. There are 3N degrees of freedom in
the formula for the kinetic energy of the particles and ni
degrees of freedom in the formula for the kinetic energy
the box. However, for a system of several hundred partic
one may neglect the kinetic energy of the box with a neg
gible error of the order 3/N. Solutions of Eqs.~1! and ~2!
provide instantaneous values ofh and sai , a51,N and i
51,3, at successive time steps. The phase space config
tions generated by the HtN MD simulation govern the det
ministic evolution of system.

On the other hand, configurations generated by the H
MC simulation are probabilistic in nature and are genera
by the Metropolis Monte Carlo procedure.17 The h matrix
and particle variables are disturbed by the following tra
formations:

hi j8 5hi j 1Dh~2R21!, ~4a!

sai8 5sai1Ds~2R21!, ~4b!

where the primes represent the disturbed coordinates~new!,
hi j is the i j th element of theh matrix, sai is the i th compo-
nent of theath particle scaled coordinate,Dh is the ampli-
tude of the disturbance of theh matrix, Ds is the amplitude
of the disturbance of particles, andR is a random number
between 0 and 1. It is important to mention thatDh andDs
control the acceptance ofh ands moves. In particular, ifDh
is zero, all theh moves are accepted. On the other hand,
theh moves are rejected whenDh is very large. In the simu-
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PRB 58 6021ELASTIC CONSTANTS OF SILICON USING MONTE . . .
lations we have done here, we have adjustedDh andDs so
that there is an approximately 50% acceptance inh and s.
The HtN transition probability functions developed by Ray18

have the following forms for thes andh moves:

P~r N8 ,h!

P~r N ,h!
5

@H2PexV82U~r N8 !#~3N/221!

@H2PexV2U~r N!#~3N/221! , ~5a!

P~r N8 ,h8!

P~r N ,h!
5S V8

V D N @H2PexV2U~r N8 !#~3N/221!

@H2PexV2U~r N!#~3N/221! , ~5b!

whereH is the constant enthalpy of the system,Pex is the
external pressure,N is the total number of particles, an
U(r N) andU(r N8 ) are the total potential energies of the sy
tem in the old and new configurations. It is important
notice that theh move not only changesh, but also the real
coordinates of the atomsr through r 5hs. The other point
that is worth mentioning is that moving all particles at o
time can be implemented by the same transition probab
as in Eq.~5a!, except that all the scaled coordinates of t
atoms are disturbed at the same time thath is disturbed.
Configurational movesr N→r N8 and box movesh→h8 are
accepted based on the Metropolis algorithm. In the Metro
lis algorithm, a move is accepted if the transition probabil
of that move is greater than or equal to 1. If the transit
probability is less than 1, then a random number is gener
between 0 and 1. If the transition probability is greater th
that random number, the move is accepted. Otherwise,
rejected and the old configuration is retained again. Fr
Eqs.~5a! and ~5b!, one can also note that moves that low
the potential energy are accepted and the system, in p
ciple, should evolve into equilibrium after a long time. O
obvious advantage of the HtN MC over the HtN MD meth
is that the fictitious massW is no longer involved.

In MC or MD simulations, various thermodynamics qua
tities are related to the average values of other quant
when the system has reached equilibrium. Several fluctua
formulas have been developed in the HtN ensemble. In
ticular, Parrinello and Rahman~PR! developed a formula~5!
in the HtN ensemble that relates the average of the str
strain fluctuations to the elastic constants of the system:

^« i j «km&2^« i j &^«km&5Si jkl kBT/V0 , ~6!

where«5 1
2 (h̃0

21Gh0
2121) is the strain,h0 is the reference

state for zero strain,h̃0
21 is the inverse of the transpose

matrix h0 , Si jkm is the adiabatic compliance matrix,T is the
temperature, andV0 is the reference volume,V05det(h0).
The adiabatic elastic constant matrixC is the inverse of the
compliance matrixS. Using the Voigt notation, 11→1, 22
→2, 33→3, 23→4, 13→5, and 12→6, and the prescription
described in Ref. 19,Si jkl , can be converted into an equiva
lent 636 Smn matrix:

Si jkl 5
1
1 Smn when m<3 and n<3,

Si jkl 5
1
2 Smn

when m.3 and n<3 or m<3 and n.3,

Si jkl 5
1
4 Smn when m.3 and n.3. ~7!
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The reason for multiplyingSi jkl by 1/2 and 1/4 is to keep
the tension-strain relationship in a compact form« i5Si j t j
without the presence of factors of 1/2 and 1/4. Other fluct
tion formulas have been developed in the HtN ensemble
the calculation of adiabatic compressibility, constant tens
specific heat, constant strain specific heat, and constant
sion linear coefficient of thermal expansion.5,6

The elastic constants of silicon can also be calculated
K using the HtN ensemble and molecular statics. We refer
to this approach as the direct method in the Introduction
this method, one applies a constant tension and the co
sponding strain is obtained using molecular statics. The e
tic constants can then be calculated from the compliance
trix elements and the tension-strain relationship.
particular, a constant tension is applied along the 11→1 di-
rection, and the resulting strains«1 and «2 are determined
from the molecular statics calculations. Similarly, all the o
diagonal elements of the external tension matrix are m
equal and all the main diagonal elements are made equ
zero. From the strain-tension relationships«15S11t1 , «2
5S12t1 , and«65S44t6 , one can calculateS11, S12, andS44.
The elastic constants are then calculated from the follow
relationships:1

C115~S111S12!/@~S112S12!~S1112S12!#, ~8a!

C1252S12/@~S112S12!~S1112S12!#, ~8b!

C4451/S44. ~8c!

The 0 K elastic constants can also be calculated in
EhN ensemble using either the direct method or a relati
ship between the elastic constants and the first and se
derivatives of the potential.3 In the direct method, one simply
applies two different strains«1 and«2 at two different times,
and the resulting tensions are determined from molec
statics calculations. The elastic constants are then calcul
directly from the tension-strain relationshipst15C11«1 , t2
5C12«1 , and t65C44«6 . The elastic constants can also b
calculated in the EhN ensemble using the energy meth
Here we summarize the energy method:~a! The unstrained
lattice is relaxed using the EhN molecular statics to calcu
E0 , ~b! the strained lattice is relaxed using the EhN molec
lar statics to calculateE0s , and ~c! the elastic constants ar
then calculated using the relationships20

U5 1
2 C11~«11

2 1«22
2 1«33

2 ! 1
2 C44~«121«131«23!

1C12~«11«221«11«331«22«33!, ~9a!

C1152U/«11, C125U/~«11«22!, C4452U/«12,
~9b!

U5~E0s2E0!/V, ~9c!

whereU is the elastic energy density andV is the conserved
volume of the computational box. Finally, the elastic co
stants of silicon at zero temperature can be determined e
by a direct relationship to the first and second derivatives
the potential3 ~in the EhN ensemble! or by extrapolation of
nonzero-temperature HtN or EhN results.1 It should be noted
that the calculation of elastic constants using the dir
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method requires that the tension-strain relationship be lin
Therefore, caution must be taken in applying an appropr
level of strain or tension on the sample. Too large of a t
sion or strain can make the relationship between the
nonlinear. On the other hand, too small of a tension or st
may not be enough to differentiate from their reference v
ues.

III. HTN ENSEMBLE SIMULATION RESULTS

We employed the Stillinger-Weber silicon potential. T
main reasons for adopting this potential are that the HtN M
calculation of the elastic constants of this potential failed
produce satisfactory convergence and that some EhN
results for the elastic constants are available.1

We have performed HtN MC simulations of the elas
constants of crystalline Stillinger-Weber silicon using a l
tice of 216 silicon atoms in the diamond structure. The sim
lations were carried out at the same three temperatures
EhN MD results are available. Periodic boundary conditio
are employed in all three directions, and units of ener
length, and elastic constants are eV, Å, and eV/Å.3 We
present our results of the elastic constants at the three
peratures 888, 1164, and 1477 K with zero pressure. In
HtN MC results presented here, two kinds of trial moves
considered, particles and cell. During each MC step, all p
ticles are moved sequentially one particle at a time, and thh
matrix representing the box is moved once. We also tr
moving all particles at one time and obtained a similar c
vergence for the SW Si. The particle move is tried 3N times
on all particles degrees of freedom of theN-particle system.
The cell move is tried on nine elements of the 333 h matrix,
and only the symmetric part of this move is considered. T
antisymmetric part is related to the rotation of the cell a
produces no energy change, and the move is always
cepted. An alternate way to eliminate the rotation of the b
is to make theh matrix symmetric. Both methods of elimi
nating the box rotations produced results with nonconsp
ous differences. The temperature of the system is contro
by the enthalpyH. We first performed several HPN MC run
to equilibrate the system at the three temperatures 888, 1
and 1477 K. The corresponding total enthalpies for th
temperatures are2885.6,2870.0, and2851.0 eV, respec-
tively. Using the three enthalpies obtained from the HP
MC runs, we performed several HtN MC runs with ze
external pressure and tension to calculate the reference v
of h, i.e.,h0 , for the three temperatures. In particular, at ea
enthalpy, we ran the simulation for about 100 000 MC ste
which also serves to equilibrate the system. In the next ru
100 000 MC steps, we determined the average value oh
(h0). The h0 for each temperature is then used in conjun
tion with Eq. ~6! and a subsequent HtN MC run of 100 00
MC steps to calculate the elastic constants at that temp
ture. Our results for the elastic constants using HtN M
along with the EhN MD results of Ref. 1 and the experime
tal data21 are reported in Table I. We estimated the er
following a prescription employed by Fay and Ray.9 For a
cubic crystal, there are three independent elastic const
C11, C12, andC44. By symmetry,C11, C22, andC33 are all
equivalent and independent. Their average and standard
viation are measures of average value and error inC11.
r.
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Similarly, the average values and error inC12 andC44 were
calculated and reported in Table I. In order to further stu
the convergence of the elastic constants of SW Si gra
cally, we plotted in Fig. 1 all six elastic constantsC11, C22,
C33, C12, C13, C23, C44, C55, and C66 every 1000 MC
steps for the case of 1164 K. For the same average temp
ture, the main diagonal elementsh11, h22, andh33 of the h
matrix, the temperature of the system,T, and the volume of
the computational box,V, are plotted in Figs. 2–4 ever
1000 MC steps.

In order to further study the convergence of the elas
constants of another potential, we employed the T2 Si po
tial and calculated its adiabatic elastic constants using
~6!. We used the same conditions as we did for the SW
potential, except that the enthalpy of the system was set
different value and moving all particles at one time was co
sidered. The total enthalpy of the system was adjusted to
value of 2950 eV. This enthalpy equilibrated the avera
temperature of the system to about 874 K. The lattice w
equilibrated for about 500 000 MC steps, and the aver
value of h0 was calculated over a subsequent 500 000 M
steps. In order to study the convergence of the T2 Si po
tial graphically, we performed MC simulation withh5h0
and the original unequilibrated lattice file. The results of t
elastic constants from this run are plotted every 10 000 M
steps in Fig. 5. Because we replaced the instantaneous v
of h with h0 for the MC runs that were used to generate F
5, the elastic constant values diverged at the first MC s
and therefore were not included in the graph.

In order to further study the zero-temperature behavior
the elastic constants of the SW Si and T2 Si potentials,
calculated their values using various methods outlined
Sec. II. In particular, the 0 K elastic constants of the SW S
and T2 Si potentials were calculated in the HtN and E
ensembles and are tabulated in Table II, along with

TABLE I. Adiabatic elastic constants of silicon SW and Terso
potentials in units of eV/Å3. Upper values are the results of our Ht
MC simulation, middle values are the results of Ray~Ref. 1! using
EhN MD simulation, and lower values are the experimental~Ref.
21!. The last row of values are the results of our HtN MC simu
tion using the Tersoff potential. The total enthalpy of the syst
~216 Si atoms! at the three temperatures is2885.6,2870.0, and
2851.0 eV for the SW and2950 eV for Tersoff potentials, and th
pressure is zero. Note that the SW potential is not directly fitted
the elastic constants, and so a close match is not expected bet
the theory and experimental values of the elastic constants.

Potential T ~K! C11 (eV/Å3) C12 (eV/Å3) C44 (eV/Å3)

Si SW 888 0.88360.007 0.47060.008 0.32060.006
Si SW 888 0.87060.000 0.47060.000 0.33060.052

888 0.983 0.378 0.470
Si SW 1164 0.85660.018 0.46660.010 0.29660.006
Si SW 1164 0.85760.002 0.46460.000 0.28560.071

1164 0.952 0.368 0.457
Si SW 1477 0.83660.007 0.46360.007 0.28460.005
Si SW 1477 0.83160.000 0.46060.002 0.26260.052

1477 0.924 0.359 0.436
Si Tersoff 874 0.81660.001 0.44260.001 0.39060.006
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Cowley22 and Ray1 results for comparison with the SW S
results.

IV. SUMMARY AND CONCLUSIONS

Convergence of the elastic constants using the HtN
semble depends on the type of the simulation~MD or MC!
and the potential model employed. The HtN MC calculatio
of the elastic constants have already been applied succ
fully to the Lennard-Jones and EAM potentials. We ha
extended the HtN MC calculation of elastic constants to t
silicon potentials. We have presented the results of
Monte Carlo simulations of the elastic constants of
Stillinger-Weber and Tersoff T2 crystalline silicon using t

FIG. 1. Elastic constants of the Stillinger-Weber silicon pote
tial at 1164 K and zero external pressure every 1000 MC st
The Parrinello-Rahman fluctuation formula~PR FF! is used here.
Elastic constants are in units of eV/Å3 and 1 eV/Å3

51.602 19 Mbar5160.219 GPa.
n-

s
ss-
e
o
e

e

-
s.

FIG. 2. Main diagonal elements of theh matrix every 1000 MC
steps. Conditions are similar to Fig. 1. Average values ofh11, h22,
and h33 are 16.3558, 16.3552, and 16.3586, respectively.h is in
units of Å.

FIG. 3. Temperature of the system every 1000 MC steps. C
ditions are similar to Fig. 1.
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FIG. 4. Volume of the computational box every 1000 MC step
Conditions are similar to Fig. 1. Average volume of the system
4376 Å3.

FIG. 5. Elastic constants of T2 silicon potential at 874 K an
zero external pressure every 10 000 MC steps. The PR FF is u
here. Elastic constants are in units of eV/Å3.
HtN ensemble and compared the Stillinger-Weber res
with the corresponding EhN results from molecular dyna
ics simulations. The HtN Monte Carlo calculations of th
elastic constants of SW silicon are in close agreement w
the corresponding results from the EhN molecular dynam
simulations. Averages of physical quantities are calcula
more accurately using the HtN Monte Carlo method rat
than the corresponding molecular dynamics for cases wh
harmonic modes are involved and the molecular dynam
does not sample phase space effectively. Based on ou
sults, vibrations of the computational box may be appro
mately harmonic in HtN molecular dynamics. This alon
with the fact that HtN MC accuracy is not affected by th
harmonic motion of the dynamics may explain the super
convergence of elastic constants in HtN MC simulatio
Calculations of the elastic constants of SW silicon, us
HtN molecular dynamics, did not converge satisfactori
The only reliable calculation of the elastic constants for th
potentials, using the HtN ensemble, is using the HtN Mo
Carlo method. Although the EhN molecular dynamics a
Monte Carlo simulations of the elastic constants are, in g
eral, more efficient than the corresponding HtN calculatio
they are often not used due to their requirement for the fi
and second derivatives of the potential. The derivatives
some of the potentials that have terms beyond pairs can
nontrivial, and therefore, the HtN Monte Carlo calculatio
of the elastic constants could be an alternative method
such cases. The reason for the higher accuracy and m
rapid convergence of the elastic constants using the E
ensemble as compared to the HtN ensemble is that the el
constants using the EhN ensemble are directly related to
Born terms that are nonfluctuating. On the other hand,
elastic constants obtained from the HtN ensemble are rel
to the strain fluctuations which will converge more slowly
general. For cases where we do not wish to calculate der
tives of the potential, the HtN MC method is a usef
method.

The fictitious massW, which is an arbitrary parameter i
HtN molecular dynamics, is not present in HtN Monte Ca

.
s

ed

TABLE II. Adiabatic elastic constants of Stillinger-Weber an
Tersoff T2 silicon at zero temperature. Elastic constants are in u
of eV/Å3. The experimental values are atT577 K from Ref. 23.
The EhN~extrapolation!/SW are from Ref. 1.

Method/potential
C11

(eV/Å3)
C12

(eV/Å3)
C44

(eV/Å3)

EhN~direct!a/SW 0.945 0.477 0.352
HtN~direct!/SW 1.126 0.491 0.349
EhN~analytical!/SWb 0.946 0.477 0.352
HtN~extrapolation!/SW 0.961 0.480 0.418
EhN~extrapolation!/SW 0.962 0.481 0.419
EhN~direct!a/T2 0.889 0.470 0.431
HtN~direct!/T2 1.103 0.477 0.433
Experimentc 1.048 0.406 0.501

aDirect methods of calculating elastic constants using the EhN
semble produced the same values either using the tension-stra
energy method.

bCowley results~Ref. 22!.
cReference 23.
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simulations. This in itself removes some of the arbitrarin
in the form of the kinetic energy of the computational b
and its equation of motion.

Furthermore, we have studied the convergence of
elastic constants of SW Si and T2 Si graphically by plotti
them versus MC steps and checking the degree of ove
between the symmetry-equivalent elastic constants. Base
our simulations, the errors in theC11 and C12 elastic con-
stants using HtN MC simulations are larger than the co
sponding error from the EhN MD results. On the other ha
the C44 error from the HtN MC simulation is much smalle
than the corresponding error from the EhN MD result. T
is consistent with the previous result using the Lenna
Jones potential.

Although an accurate way of calculating elastic consta
at zero temperature is through an analytical expression in
EhN ensemble, it has not received considerable attention
cause in this approach the elastic constants are related t
first and second derivatives of the potential, which could
R.
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s
-

ts
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e-
the
e

nontrivial with potentials that have terms beyond pairs. T
zero-temperature elastic constants of SW Si and T2 Si h
been calculated using direct HtN or EhN molecular stati
The results of SW Si are in very good agreement with
analytical results. Finally, as an alternative method for
calculation of elastic constants at zero temperature, we
trapolated~linearly! our HtN results to zero temperature. Th
results are in reasonable agreement with the analytical re
at 0 K.
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