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Onsager’s reciprocity relations have been applied to the motion of a planar interface in a phase 
transformation in a two-component system, in order to provide a test of kinetic models of alloy 
solidification. Although applicable to such models in general, Onsager’s relations yield no 
information for a subclass of models in which the thermodynamic driving forces are linearly 
dependent to first order, as is the case for several models of alloy solidtication including the 
continuous growth model (CGM) of Aziz and Kaplan. As a consequence, experimental tests 
will likely be required to distinguish between these models. If the CGM is generalized to include 
diffusion in the growing phase, Onsager’s relations are applicable under some circumstances. 

I. INTRODUCTION 

Rapid solidification experiments in binary al10ys’-~ 
have demonstrated that there is a breakdown of local equi- 
librium at the crystal-melt interface and a kinetic coupling 
between the motions of the two atomic species across the 
interface during rapid interface motion. A number of mod- 
els for interface motion have been developed to account for 
this behavior,P’4 as well as for similar behavior in other 
growth processes.‘5-‘7 A common goal of this work is the 
prediction of the interface velocity and the composition of 
the growing phase in terms of the temperature and com- 
position of the parent phase at the interface. Due to the 
experimental difficulties involved in measuring the relevant 
quantities at a rapidly moving interface, only partial tests 
of some of these models have been possible”” to date. 

Onsager’s theorem for irreversible processes,22 de- 
duced from time-reversal symmetry of the microscopic 
fluctuations that comprise steady-state behavior, identifies 
certain symmetries that hold for the coefficients of the lin- 
ear flow equations near equilibrium. These symmetries are 
referred to as Onsager’s reciprocity relations. For theories 
of phase transformations in alloys, Onsager’s theorem can 
provide an important test of their validity near equilibrium 
and potentially reduce the number of theories that need to 
be tested experimentally. In an earlier paper,23 Onsager’s 
relations were applied to a phase transformation at a mov- 
ing planar interface in a two-component system. The ap- 
propriate pairs of thermodynamic forces and conjugate 
fluxes were determined and then used to test two proposed 
models for binary alloy solidification, the continuous 
growth model (CGM) “with solute drag” and “without 
solute drag” of Aziz and Kaplan.6 In this paper, it is shown 
that these two models and several others are members of a 
class of models for which Onsager’s relations do not apply, 

due to a dependency in the thermodynamic driving forces 
near equilibrium. 

In Sec. II, Onsager’s relations for the case of dependent 
fluxes and/or forces is examined. The dependencies in the 
two versions of the CGM is demonstrated in Sec. III, and 
the inapplicability of Onsager’s relations is discussed. Sec- 
tion IV considers a new model proposed by Agren,i2-14 and 
it is shown that the same conclusions apply. In Sec. V the 
CGM is generalized to include diffusion in the growing 
phase, and it is shown that Onsager’s relations are appli- 
cable under come circumstances. in Sec. VI there is a dis- 
cussion of the results and in Sec. VII the work is summa- 
rized. 

II. DEPENDENT FORCES AND FLUXES 

Onsager’s theorem deals with systems near equilib- 
rium, where to first order the irreversible flows J are linear 
functions of the thermodynamic forces F. Consider a sys- 
tem where 

Jy= c L3F$ 
iB 

(1) 

o(p) denoting the Cartesian component of a type of cur- 
rent density i(j). For the proper choice of independent 
fluxes J and forces F, Onsager’s theorem states that the 
coefficients of L are symmetric, 

(2) 

It has been assumed that the magnetic field is zero and that 
the properties of interest have even parity; this is appropri- 
ate for the solidification problem investigated.% 

Onsager’s relations are applied to the interface region 
of an alloy composed of A and B atoms at temperature T. 
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FIG. 1. A planar solid-liquid interface moving with steady-state velocity 
u into the liquid. The indicated chemical potentials are evaluated imme- 
diately adjacent to the interface. 

The liquid and solid phases are separated by a planar in- 
terface moving into the liquid at steady state velocity v (see 
Fig. 1). It is assumed for simplicity that 

n~+nS,=n~+n~=n, (3) 
where nz(n;) and t&n;) are the number density of 
A(B) atoms in the solid and liquid immediately adjacent 
to the interface, respectively. For notational simplicity, we 
introduce the concentration, xa= n’$/n, a = S, L. 

It is shown in Ref. 23 (hereafter referred to as paper 
I), that a proper choice of fluxes and forces that satisfy the 
hypothesis of Onsager’s theorem is 

J1=n;v=n(l-xs)v, (W 

J2= n$v= nxsv, (4b) 

F1 = (,&--,u;)/T= - A/LJT, (4c) 

F2= (&-&VT= - ApB/T, (4d) 
where &(&) and pi(p$) are the chemical potentials of 
the A(B) atoms in the solid and liquid, respectively. This 
choice of fluxes and forces is not unique. Two other choices 
as well as a general transformation are given in paper I. We 
reemphasize our conclusions in paper I that in order to 
make a proper choice, one cannot examine only the expres- 
sion for the entropy production rate but rather one must 
start with the expression for the entropy and take the par- 
tial derivatives according to Onsager’s prescription. 

For the analysis of the solidification models, the as- 
sumption in Onsager’s theorem of independent forces and 
fluxes will turn out to be an important issue. This assump- 
tion can in fact be relaxed somewhat. First of all, DeGroot 
and Mazur proved that if there is a linear homogeneous 
dependency, Zj!!!n,laiJi=O, amongst the fluxes but the 
forces remain independent, Rq. (2) remains valid.25 (Note 
that in this case the L matrix must be singular.) If, how- 
ever, both the fluxes and the forces are dependent, then the 
phenomenological coefficients, L, are not uniquely defined 
and Onsager’s relations are not necessarily fulfilled (among 
the unlimited number of choices for L, there will be a 

symmetric system) .25 Therefore, for dependent fluxes and 
forces, Onsager’s theorem does not say anything about the 
form of the L matrix and it cannot be used to test a par- 
ticular model. Finally, it should also be noted that just 
having dependent forces together with Eq. ( 1) , is sufficient 
to rule out a unique set of coefficients L. It is clear that 
adding any constant times the force dependency equation, 
ZEI,PjFi=O, to the right-hand side of Eq. (1) results in a 
different L matrix. 

For the two-component solidification models under 
consideration, note that 

XSJI = ( 1 - x.4 J2, .” 
and thus at equilibrium 

(5) 

J1/J2-+(1---so)/xso, (6) 
where xso is the equilibrium mole fraction of B atoms in 
the solid. The existence of this limit as IlFll 
+O [F= (F1, F2)] indicates that, to first order in the 
forces, there is a homogeneous relationship between the 
fluxes. This is sufficient to establish the dependence of the 
fluxes, as Onsager’s theorem only deals with first-order 
quantities. As indicated earlier, this dependence does not 
rule out the use of Onsager’s theorem. However, it will 
turn out that, in three of the models discussed below, the 
forces are dependent in the same sense as the fluxes, that is 
to first order. Onsager’s theorem therefore will not provide 
any information about these models. 

It is worth noting that dependent forces, while not 
typical, are not ruled out by thermodynamics. For exam- 
ple, the thermodynamic forces for diffusion in a two- 
component liquid are dependent, a consequence of the 
Gibbs-Duhem relationship. 

Ill. ANALYSIS OF CONTINUOUS GROWTH MODELS 

Two models were considered in paper I, the continu- 
ous growth models “with solute drag” and “without solute 
drag.‘y6 The essential assumption of these models is that 
the interface velocity is related to the chemical potential 
differences across the interface. 

A. Driving forces 

The conclusions that can be drawn by considering only 
the flux equations (4a) and (4b) and equations in the 
models relating solidification velocity to a driving force, 
will first be discussed. 

1. Continuous growth model without solute drag 
For the model “without solute drag,” near equilib- 

rium, the velocity-driving force equation reduces to the 
form 

~=uR[(~--xs)F~+xsF~I, (7) 
where vR=vdR and R and v. are constants defined in 
paper I [see Eqs. (4.3) and (4.5) of paper I]. Near equi- 
librium the concentrations can be expanded, 
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FIG. 2. Sketch of the solution space for the continuous growth model. 
Note that Eq. ( 11) restricts the solution to be very near the straight line 
FI/F2= -d/c near equilibrium. 

x~=x,x+-Bx~, 
xs= xso+ Axs, (8) 

where xLo and xso are the equilibrium concentrations. 
Combining Eqs. (4), (7), and (8)) and keeping terms to 
second order in F1, F,, and Axs yields 

Jl= OUR{ [. ( 1 - XSO)~FI + ( 1 - -TSO> -9oF21 

+Ax,[2(x,--1F~,+(1--x,)F,13, = (9a) 

J~=~uR{[(~--xso)xsoF~+x~SOF~I 

+Ax,[(1-2xso)F1+2xsoFzl3. (9b) 
Consider the terms involving Axs in Eq. (9). One way to 
get a contribution to the J’s that is linear in Fs is for Axs 
to have the form 

(10) 

where c, d, e, and fare constants. By defmition Axs+O 
as F1 ,F,+O. Therefore the 8rst term on the right-hand 
side of the equation is not well defined at equilibrium 
(F,,F,+O) unless 

cF1+dF2=0. (11) 
This condition constrains the solution near equilibrium to 
exist in a limited region of {F,, F2) space. This space is 
roughly characterized as points {F1, F2) whose distance 
from the line cF1 + dF,=O is of order Fy + F$. A sche- 
matic of the solution space is depicted in Fig. 2. Although 
the linear homogeneous relationship cFi + dF,=O holds 
only at equilibrium, it nevertheless holds to first order in 
the neighborhood of the equilibrium point. As Onsager’s 
theorem applies only to the first order expansion of the 
fluxes in terms of forces, the forces must therefore be con- 
sidered to be dependent. According to the theorems, the L 

matrix is not unique and Onsager’s theorem does not tell 
us anything about the validity of this type of model. 

A second possibility is that 

A+-OIIFII). (12) 

Then the terms proportional to Axs in Eq. (9) are second 
order and can be neglected. In this case, 

J~=~~R[(~-xso)~F~+(~-xso)xso~;?I, 
J~=I~uR[(~-xso)xsoF~+x~SOF~I, (13) 

~12=~21=~~~~~--xso~~sot 

and Onsager’s theorem is satisfied. As indicated in Sec. II, 
the L matrix must be singular. 

2. Continuous growth model with solute drag 

A similar analysis can be carried out for the continu- 
ous growth model “with solute drag.” In this model 

u=uR[(~-xL)FI+xLF~I. (14) 
Again a solution can be constructed of the form of Eq. 
(10) for Axs and AxL. This leads to a constraint of the 
form given in Eq. ( 11) . As before, the forces and fluxes are 
dependent and Onsager’s theorem does not apply. If, how- 
ever, Axs and AxL are linear in the forces, all terms in Eq. 
(9) with Axs are second order and can be neglected. This 
yields 

L12ZL21, 

and Onsager’s theorem is not satisfied. Once again the 
fluxes are dependent and the L matrix is singular. 
B. Complete models 

While it is interesting to look at the possibilities dic- 
tated by considering only the flux equations (4a) and (4b) 
and the velocity-driving force equations (7) or ( 14), the 
actual solution to the complete model for the concentra- 
tions in terms of the forces does not depend on the flux 
equations at all. The complete model is given by Eqs. (7) 
or (14) combined with the kinetic equations for the parti- 
tion coefficient [Eqs. (4.1) and (4.2) in paper I] and the 
constitutive relations for the material [Eqs. (4.6) and (4.7) 
in paper I]. The solution for both versions of the continu- 
ous growth model is given in paper I, the model “with 
solute drag” in Eqs. (4.10) and (4.11) and the model 
“without solute drag” in Eqs. (4.20) and (4.21). It was 
found that the first possibility described in Sec. III A 1 and 
III A 2 arises for both theories; i.e., an equation of the 
form of Eq. ( 10) rather than Eq. (12) is found and thus 
cF,+~F~-&‘B(IIF][~). Due to this homogeneous depen- 
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dence of the forces, a unique L matrix does not exist and 
Onsager’s theorem does not apply to either of the models. 

It is not clear whether the dependency in the forces is 
due to the simplifying assumptions used in constructing the 
models, or whether it is an implicit physical constraint 
associated with the maintenance of the interface region in 
steady-state solidification (e.g., the infinite planar interface 
with no solid-phase dit%ion) . Regardless, this result indi- 
cates that Onsager’s theorem cannot tell us anything about 
the validity of these models, and some other methods (e.g., 
experiment) must be considered. 

For any of these models the L matrix can be calculated 
by examining the expansion for Axs and AxL as was done 
in paper I or by evaluating the derivatives of the fluxes, 

Lq,:;o( % lril+dF*Eo). 

These methods yield two different solutions for the L ma- 
trix, members of an infinite set of solutions that are simply 
related to one another: the difference between any two so- 
lutions in this set is a constant times Eq. ( 11) pq. 4.16) 
for the model with solute drag and Rq. (4.25) for the 
model without solute drag in paper I]. We see that several 
differing but perfectly valid- derivations yield apparently 
different L matrices. However, they all give the same phys- 
ical behavior due to the dependency in the F’s, Eq ( 11) . 

iv. AGRENS MODEL 

&ren12-14 has developed a model that is very similar 
to the continuous growth model. In linearized form the 
equations that define his model are 

Jo=-(L’T/V,)(F,-F,), 

JD=; (x’-xs), 
m 

(164 

(16b) 

u=-MT[x’F2+(1-x’)F1], (16~) 

X’=(XL+XS)/2, (led) 
where V, is the molar volume and L’ and M are con- 
stants.‘4 These equations do not completely define the 
problem; a set of thermodynamic relations describing the 
material are needed as well. Combining Rq. ( 16) with the 
material constitutive relations given in Eqs. (4.6) and 
(4.7) of paper I, completes the statement of the model. 
The solution for the concentrations is once again of the 
form given in ( lo), and the forces are dependent. This is 
not surprising, as Agren has pointed out that his model 
reduces to the continuous growth model with and without 
solute drag if Rq. ( 16d) is replaced by x’ = xL and xS, 
resp~ctively.‘4 

Agren’s choice for the fluxes is 

JD=+ (x’-xs), 
m (174 

Jc=$ . 
m 

(17b) 

(4 
vapor 

b 

q 

h 

fl xzv~> ix> ~ 
position. z 

. . 

FIG. 3. Steady-state solidification with steady-state diffusion in growing 
solid. (a) Crystal is pulled at constant velocity v to left. Grinding wheel 
results in solute source/sink at a f&d distance from the growth front. 
Solute diiusion is controlled independent of solidification rate by varying 
solute partial pressure in the reservoirs. (b) A plot of what the concen- 
tration of solute (B) atoms might look like as a function of position 
perpendicular to the interface, z. 

Taking the ratio of JD and Jc near equilibrium and using 
Eq. (16d) yields 

JD XLO- x&so 
T+ A - (18) 
JC L 

Both the fluxes and forces are homogeneously dependent 
and once again the L matrix is not uniquely defined. Thus, 
although Agren was able to cast his coefficient matrix in a 
symmetric form, he just as easily could have written it in 
an asymmetric form. Again we reach the conclusion that 
Onsager’s theorem does not require either of these forms. 

V. INCLUSION OF DIFFUSION IN THE GROWING 
PHASE 

It has been suggested that the dependency of the forces 
is an artifact of setting up the problem with no solid dif- 
fusion, and that incorporating even a small amount of solid 
ditlksion would eliminate the force constraints.” In this 
section, the consequence of having nonzero diffusion in the 
growing phase is considered. 

The steady state soliditication model can be changed 
by adding diffusion in the solid so that Onsager’s theorem 
can be applied to a generalized version of the continuous 
growth model. In order to have the diffusion affect the 
steady-state process, an additional boundary is included in 
the solid, also moving at velocity u at a distance h from the 
interface. (We show in Fig. 3 that such a steady state is 
physically possible. ) At this new planar boundary, the con- 
centration of B atoms is fixed at x; (see Fig. 3). For this 
model, near equilibrium, 
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J1=n(l--n,)u--nDaxSl , 
VA ‘intelface 

axs 
Jz=w~+nD~ interface, 

I 

where D is the diffusion coefficient in the solid and the 
gradient is evaluated on the solid side of the interface. J1 
and J, are the time derivatives of the total number of A 
and B atoms, respectively, on the solid side of the interface 
per unit area. 

We wish to construct equations for the solidtication 
process that reduce to the continuous growth model in the 
limit DdO and h + CO. At the solid-liquid interface, the 
composition of material incorporated into the solid, x,, is 
delined as 

x,= Jz/( Jl f J2) = Jz/vn. (20) 

If we construct the velocity-driving force equation to be of 
the form 

v=vfJ(l--X,)F1+X,~21 (21) 

then in the limit D/h-+, we tid J2+xsv, x,+xs and 
Eqs. ( 19) and (21) reduce to the no solute drag version of 
the continuous growth model. The equations needed to 
complete the model are the same as before. They are the 
kinetic equations, (4.1) and (4.2), and the constitutive 
relations, Eqs. (4.6) and (4.7), all from paper I. 

Expanding the concentrations about equilibrium as 
was done in Eq. (S), combining with Eqs. (4.1), (4.2), 
(4.6), and (4.7) of paper I, and keeping terms to second 
order yields 

=W’+bo(FrFd+ 
F2 -_- 

TBCL 

X[v+b~(F2--Fdl+..*, 

Qo= (xso-XL& 

bo=vD(x~--1)xso, 
(22) 

as= (cs/cL- l), 

bs=vd(l-xd -xs,,cs/cL], 

bL= - VDXSO, 
where the various constants vg, cs, cL, TA, T, are de- 
fined in paper I. To lowest order (recall v is linear in F1 
and Fz) 

Ax = w+bdG---Fd 
’ asv+bs(F2-F1) +@(llFll>. 

aov+bo(Fr-F,)=O. 

(23) 

This fraction must be treated in the same manner as was 
done in Eq. (10). In order for Ax,-+0 as F,, F2-0, it is 
required that to ilrst order 

(24) 
Substituting the expression (21) for II iu Eq. (24) yields 

bo FI 
xr= ---- aovR F2- F1’ (25) 
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From Eq. (25) we see that F, and F2 are now independent 
and x, is undefined at equilibrium. Its value depends on the 
direction of approach. The solution is undefined on the line 
FI=F2 as well. Combining Eq. (25) with Eqs. (19) and 
(20)) we can solve for the L matrix. 

Jz=nvR[-((g+g2)Fl+g2F21, 
(26) 

where g= - bdaovR . The L matrix is not symmetric and 
Onsager’s relations are not satisfied. 

In the liiit that D-+0 and h-t 00, we find x,--r xs and 
this model becomes the “without solute drag” version of 
the continuous growth model. From physical consider- 
ations this limit appears to be meaningful. Furthermore, 
the linear flow equations in Eq. (26) are equal to those in 
Eq. (23) [Eq. 4.26 f o paper I] plus a constant times the 
homogeneous equations for F1 and F2 given in Eq. (4.25) 
of paper I. One can add any multiple of Eq. (4.25) to Eq. 
( 13) since to first order Eq. (4.25) is zero. This demon- 
strates a continuity of the L matrix in this limit. Note, 
however, that the solution space changes discontinuously 
at D/h =0 from one where all fluctuations are allowed ( F1 
and F2 independent) to a restricted one (shown in Fig. 2) 
where only a very limited set of fluctuations is allowed. 
This discontinuity may make the drawing of any meaning- 
ful conclusions from this limit questionable. 

The version of the diffusion model that reduces to the 
continuous growth model “with solute drag” in the limit 
D-t0 and h+ 00 is obtained by substituting Eq. ( 14) for 
Eq. (21) inthe f a orementioned analysis. This version turns 
out not to yield any new behavior. Even with diffusion, in 
this form of the model, the forces are dependent to first 
order. 

VI. DISCUSSION 

Caroli et al. ‘I suggest that the premature inclusion of 
the homogeneous dependence of the fluxes [Eqs. (4a) and 
(4b)] that is inherent in solidification without solid diffu- 
sion will lead to errors when applying Onsager’s relations. 
The discussion in Sec. II shows that in general this is not 
the case. The proof by DeGroot and Mazd5 shows that as 
long as the forces remain independent even if the fluxes are 
homogeneously dependent, Onsager’s relations hold. Fur- 
thermore, including solid diffusion to remove the depen- 
dency among the fluxes is no guarantee that Onsager’s 
relations are applicable. In Sec. V it was found that includ- 
ing solid diffusion in the CGM with solute drag still led to 
a system in which the forces were dependent near equilib- 
rium and Onsager’s relations could not be used. It was also 
found that the generalization of the CGM without solute 
drag to include solid diffusion resulted in a model in which 
the fluxes and forces are independent and Onsager’s theo- 
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rem applies. Therefore, whether or not solid diffusion is 
included is not the key issue when applying Onsager’s the- 
orem. It is the structure of the solution space (see Fig. 2) 
that determines whether or not Onsager’s theorem is ap- 
plicable. 

dependent to first order and Onsager’s relations do not 
apply. 

We have employed three different ways to evaluate the 
L matrix for the CGM models: by expanding the fluxes in 
terms of the forces at equilibrium, by taking the partial 
derivatives of the fluxes with respect to the forces near 
equilibrium and then taking the limit as equilibrium is ap- 
proached, and by taking the D/h+0 limit of the model 
generalized to include diffusion in the solid. The three 
methods give different L matrices, which has been a cause 
for considerable consternation in the past. Here it is shown 
why all three matrices are equally valid and give identical 
physical behavior. As a result of the linear dependency of 
the forces, any one of the L matrices can be obtained from 
any other by the addition of a constant times the linear 
dependency condition for the forces, Eq. ( 11)) to the rows 
of L. 

VII. SUMMARY 

( 1.) If the driving forces and fluxes are independent 
and are defined according to Onsager’s prescription. On- 
sager’s relations require a certain symmetry for the matrix 
of phenomenological coefficients of the linear flow equa- 
tions, L, near equilibrium. As has been shown in paper I, 
the proper definition is derived from the partial derivatives 
of the entropy itself and not the entropy production rate. 

(6.) When the CGM “without solute drag” is gener- 
alized to include diffusion in the solid phase, the forces 
(and fluxes) become independent. In this case, the result- 
ing L matrix is not symmetric, violating Onsager’s theo- 
rem, and thus this model is not valid. 

(7.) It is not clear that this last conclusion can be 
extended to the corresponding (no solid diffusion) CGM 
“without solute drag.” Taking the limit D/h +O yields an 
asymmetric L matrix which is one of the infinite possibil- 
ities [a constant times Eq. ( 11) can always be added to the 
rows-of L] obtained by a direct analysis of the no-diffusion 
CGM model. From physical considerations, the limit ap- 
pears to be meaningful, and it is therefore tempting to 
eliminate this model also. However, the solution space 
changes discontiuously at D/h=O, and therefore drawing 
conclusions from this limit analysis is questionable. 

(8.)For the CGM models, there are at least three ways 
of evaluating the L matrix and they all lead to different 
results. It has been shown that they are all equally valid 
(i.e., yield identical physical behavior) and are related to 
one another through the linear dependency in the forces, 
Eq. (11). 

(2.) It has been known for some time25 that the inde- 
pendence of both the fluxes and the forces is not necessary. 
As long as the forces remain independent, a linear homo- 
geneous dependency amongst the fluxes does not rule out 
the use of Onsager’s relations. We have shown here, how- 
ever, that a dependency among the forces as in Eq. ( 11) 
means the L matrix is not unique and Onsager’s theorem 
does not place any requirements on its symmetry. 

(9.) For any model with dependent forces, whether 
the dependency is due to simplifying assumptions in the 
model or an implicit physical constraint associated with 
the maintenance of the interface region in steady-state so- 
lidiication, the conclusion remains the same: Onsager’s 
theorem yields no information about the validity of such a 
model. 
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