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by Nanoindentation with a Spherical Indenter

H. Bei,1,2 Z. P. Lu,2 and E. P. George1,2

1The University of Tennessee, Department of Materials Science and Engineering, Knoxville, Tennessee 37996-2200, USA
2Oak Ridge National Laboratory, Metals and Ceramics Division, Oak Ridge, Tennessee 37831, USA

(Received 14 June 2004; published 16 September 2004)
125504-1
The mechanical behavior of bulk metallic glasses (BMGs) was investigated by nanoindentation with
a spherical indenter. The transition from perfectly elastic behavior to plastic deformation was clearly
observed as a pop-in event (sudden displacement excursion) on the load-displacement curves. Hertzian
stress analysis was used to describe fully the load-displacement behavior during elastic deformation and
to determine the theoretical shear strengths of the BMGs.
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The elastic limit of a defect-free solid is usually re-
ferred to as the ‘‘ideal’’ or ‘‘theoretical’’ strength. In
crystalline materials, the theoretical shear strength is
estimated to be on the order of G

10 [e.g., [1]], where G is
the shear modulus. Crystallographic defects (e.g., dislo-
cations) and fabrication flaws (e.g., voids) can cause
yielding or fracture to occur at applied stresses that are
much lower than this value. One way to minimize the
influence of defects is to decrease their number: speci-
mens in the form of thin, drawn fibers, in which the
probability of finding a defect in the tested volume is
very small, have traditionally been used to determine
the theoretical strengths of metals [2].

Unlike crystalline metals, amorphous metals (metallic
glasses) do not contain defects such as dislocations or
grain boundaries; therefore, it should be easier, in prin-
ciple, to experimentally determine their theoretical
strengths. Furthermore, since bulk metallic glasses
(BMGs) have recently been discovered [e.g., [3–7]], their
mechanical properties have become easier to character-
ize. However, in conventional mechanical tests, such as
uniaxial tensile tests, BMGs usually fracture in a cata-
strophic brittle manner before macroscopic yielding oc-
curs [8–10]. Even in compression, BMGs fracture shortly
after yielding (with less than 0.8% plastic strain [10]),
making it difficult to unambiguously determine their
yield stress. These problems are exacerbated when casting
defects are present (oxides, voids, nonmelted particles,
etc.), which are impossible to avoid during the fabrication
of BMGs. Therefore, the details of their yielding behav-
ior, as well as the correlation between yield point and
theoretical shear strength, remain poorly understood.

Here we use nanoindentation to investigate the transi-
tion from elastic to plastic behavior in BMGs and deter-
mine their theoretical shear strengths. Nanoindentation is
a useful technique for measuring the mechanical proper-
ties of small volumes of materials [11,12], including
BMGs [13,14]. Typically, a Berkovich indenter, which
has a pyramidal shape with triangular faces, is used in
0031-9007=04=93(12)=125504(4)$22.50
nanoindentation experiments. Unfortunately, when such
an indenter is used, there is usually not a clearly discern-
able transition between the elastic and plastic regions on
the load-displacement curves [13]. This is because with a
nominally sharp indenter, the stress rises almost imme-
diately to a value high enough to cause plastic deforma-
tion in the indented material, even at relatively small
penetrations (<10 nm). To avoid this problem, we used
a spherical indenter in this study which allowed us to
increase the applied stress in a controlled manner and
make the BMGs deform purely elastically at first and then
plastically.

Two classes of BMGs were investigated:
Zr-based [VIT-001 (Zr41Ti14Cu12:5Be22:5) and
BAM11 (Zr52:5Al10Ti5Cu17:9Ni14:6)] and Fe-based
[(CBAM321 (Fe61Zr8Y2Co6Mo7Al1B15) and F37
(Fe61Zr8Y2Co5Cr2Mo7Mn11B15)]. Their fabrication pro-
cedures are reported elsewhere (e.g., [3,4,15,16]).
Nanoindentation experiments were performed at 23 �C
using a Nanoindenter  XP (Nano Instruments
Innovation Center, MTS Corporation, Knoxville, TN).
Displacements (h) and loads (P) were measured with
resolutions of 0.16 nm and 0:3 �N, respectively. Two
geometries of diamond indenters were used: a sphere
with radius R � 1:5 �m and, for comparison, a
Berkovich indenter. The sphere radius was verified by
using it to measure the modulus of fused silica which is
well known [12]. The experiments were conducted in load
control at a constant loading rate ( dP=dt � 50 �N s�1)
to prescribed maximum loads of 1–20 mN.

Figure 1 is a typical loading and unloading P-h plot for
the VIT-001 material up to a maximum load (Pmax) of
5 mN. At locations indicated by the arrows, sudden
displacement excursions (pop-ins) were observed during
loading, with the first pop-in occurring at a load of about
1.2 mN. Upon unloading from Pmax, the displacement is
not fully recovered, indicating that a load of 5 mN causes
permanent (plastic) deformation in this material. To clar-
ify the pop-in mechanism, another loading and unloading
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FIG. 1 (color online). Load-displacement data for VIT-001
obtained during nanoindentation with a spherical indenter
showing pop-in behavior (arrows) during loading.
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cycle was performed at a different location on the sample,
but this time up to Pmax � 1 mN, i.e., slightly below the
first pop-in load. As shown in Fig. 2, the P-h data ob-
tained during this loading cycle are completely reversed
upon unloading, indicating that the deformation is per-
fectly elastic up to a load of 1 mN. A power-law fit
through the loading and unloading data, represented by
the continuous line in Fig. 2, has the form

P � 0:00542 h1:5; (1)

where the units of load P and displacement h are mN and
nm, respectively.

The above expression may be compared to the general
load-displacement relationship for spherical elastic con-
tacts given by Hertz [17]:
FIG. 2 (color online). Perfectly elastic loading and unloading
behavior exhibited by VIT-001 below the first pop-in load. The
continuous line is a power-law fit Eq. (1) to the experimental
data.
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where R is the radius of the spherical indenter (1:5 �m
here) and Er is the reduced modulus, which accounts for
the fact that elastic displacements occur in both the
indenter and the specimen. The reduced modulus is given
in terms of Es and �s, the elastic modulus and Poisson’s
ratio of the specimens, and Ei and �i, the modulus and
Poisson’s ratio of the indenter.

For commonly used diamond indenters, the relevant
elastic constants are Ei � 1141 GPa and �i � 0:07 [12],
and for VIT-001 they are Es � 101:2 GPa and �s � 0:35
[18]. These values can be substituted in Eq. (3) to obtain
Er � 104:8 GPa, which, when substituted in Eq. (2),
gives the following expression for the load-displacement
behavior:

P � 0:00541 h1:5: (4)

The close agreement between Eqs. (1) and (4) demon-
strates that during nanoindentation with a spherical dia-
mond indenter, the load-displacement behavior of VIT-
001 below the first pop-in is perfectly described by the
Hertz solution for elastic contact of a sphere on a flat plate.

As an additional check of our technique, we compared
the indentation modulus, Es

1��2s
, of VIT-001 obtained from

Eqs. (1)–(3), namely, 115 GPa, with that obtained using a
Berkovich indenter and the Oliver-Pharr method [11]. In
the latter case, the indentation modulus was determined
from the unloading curve at Pmax � 20 mN and found to
be 114� 3 GPa, which is almost identical to that deter-
mined with the spherical indenter.

Next we loaded VIT-001 up to Pmax � 1:5 mN, which is
slightly higher than the first pop-in load (1.2 mN), and
Fig. 3 shows the loading and unloading data. In contrast to
the perfectly elastic behavior shown in Fig. 2, the loading
curve in Fig. 3 is not reversed upon unloading and the
displacement is not fully recovered. In other words, the
specimen deforms plastically at loads higher than the first
pop-in load.

The above results make it clear that the first pop-in
corresponds to a transition from perfectly elastic to plas-
tic deformation, that is, it is the onset of plasticity in VIT-
001. Therefore, the maximum shear stress within the
BMG, when this first pop-in occurs, represents its theo-
retical shear strength—if there are no defects present in
the analyzed volume. To calculate this stress, we need the
Hertzian elastic stress distribution underneath a spherical
indenter. For the geometry shown in Fig. 4, the stress
distribution within the specimen in cylindrical coordi-
nates (r; �; z) is given by [19]
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FIG. 3 (color online). Load-displacement data showing that
when theVIT-001 alloy is loaded beyond the first pop-in, plastic
deformation occurs and the displacement is not fully recovered
upon unloading.
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where
FIG. 4. Geometry of axisymmetric spherical indentation.

125504-3
u �
1

2

�
�r2 � z2 � a2� � 
�r2 � z2 � a2�2 � 4a2z2�1=2

�
;

(5e)

a is the contact radius given by
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and pm is the mean pressure given by
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At each point in the specimen, the components of the
stress tensor, �rr; ���; �zz, and �rz [Eq. (5)) can be used to
calculate the three principal stresses �1, �2, and �3, from
which a local maximum shear stress can be obtained as a
function of position:

�max �r; z� �
�1 � �3

2
: (6)

Figure 5 shows a contour plot of �max as a function of
position within the specimen. The magnitude of �max
varies from point to point within the specimen, but it
reaches a peak, �crit, directly below the center of the
spherical indenter (r � 0) at a distance of about half the
contact radius (a) below the specimen surface, i.e.,

�crit � 0:445pm@r � 0; z � 0:5a: (7)

Using Eqs. (5g) and (7), it is found that �crit � 3:1 GPa
for the VIT-001 material. This �crit is defined here as the
theoretical shear strength. As mentioned earlier, the theo-
retical shear strength of crystalline materials is on the
order of G

10 [1], where G is the shear modulus. Similar
estimates are not available for amorphous materials, but if
we assume that it is the same for BMGs, then the theo-
retical shear strength of VIT-001 should be 3:7 GPa
based on its reported shear modulus of 37.4 GPa [18].
This is close to the value calculated above for �crit, in-
dicating that the load at first pop-in, during nanoindenta-
tion with a spherical indenter, can be used to obtain
realistic values for the theoretical shear strength of
BMGs.

It is worth noting that the �crit obtained above is signi-
ficantly larger than the critical shear stress (0:85 GPa)
calculated from the reported uniaxial compressive
strength of VIT-001 (1.7 GPa [10]). This is probably be-
cause our nanoindentation experiments probe very small
volumes of materials (30 nm penetration depth at the
first pop-in), which are likely to be defect free. In con-
trast, relatively large volumes of material are tested in
conventional tension/compression tests. Casting defects
such as oxides, voids, and unmelted particles are usually
present in BMGs. These defects are more likely to be
present in the gage sections of tension/compression speci-
mens than in the volumes analyzed by nanoindentation,
and therefore more likely to influence the latter experi-
ments. As a result, the �crit measured by us is higher than
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TABLE I. Mechanical properties of the bulk metallic glasses investigated in this study.

VIT-001 BAM11 CBAM321 F37

Indentation modulus, spherea (GPa) 115 109 222 217
Indentation modulus, Berkovichb (GPa) 114 107 231 223
Load at first pop-in (mN) 1.2 1.1 2.2 2.6
Max. shear stress at first pop-inc (GPa) 3.1 2.9 5.5 5.7
Yield stress, sheard(GPa) 0:85 0:82 � � � � � �

a Calculated from Eqs. (2) and (3)
b Determined using the Oliver-Pharr method [11]
c Calculated from Eqs. (5g) and (7)
d Calculated from the uniaxial compressive yield stress [8,9]
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the maximum shear stress measured in tension/compres-
sion tests and more closely approaches the theoretical
strength of BMGs.

Pop-ins and elastic-to-plastic transitions similar to
those observed in VIT-001 were also observed in the other
three BMGs, indicating that nanoindentation with a
spherical indenter is a good technique to determine the
critical shear stress corresponding to the onset of plastic-
ity in BMGs. Table I summarizes the indentation modu-
lus, load at first pop-in, and the maximum shear stress at
first pop-in for the BMGs investigated in this study. The
Fe-based BMGs have higher modulus and strength than
the Zr-based alloys, suggesting that the former alloys are
intrinsically stronger than the latter.

In summary, two Zr-based and two Fe-based BMGs
were investigated by nanoindentation with a spherical
indenter. Sudden displacement excursions (pop-ins)
were observed in all four BMGs during loading. The first
of these pop-ins marked the transition from perfectly
elastic to plastic deformation, i.e., it indicated the onset
of plastic flow (incipient plasticity) in these materials.
FIG. 5 (color online). Contour plot showing the distribution
of �max in VIT-001. The peak value of shear stress, �crit, occurs
directly below the center of the spherical indenter (r � 0) at a
distance of about half the contact radius (a) below the speci-
men surface.
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Hertzian stress analysis was used to calculate the maxi-
mum shear stress in the materials when the first pop-in
occurred, allowing us to experimentally determine the
theoretical or ideal strengths of the BMGs.
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