

unclassified

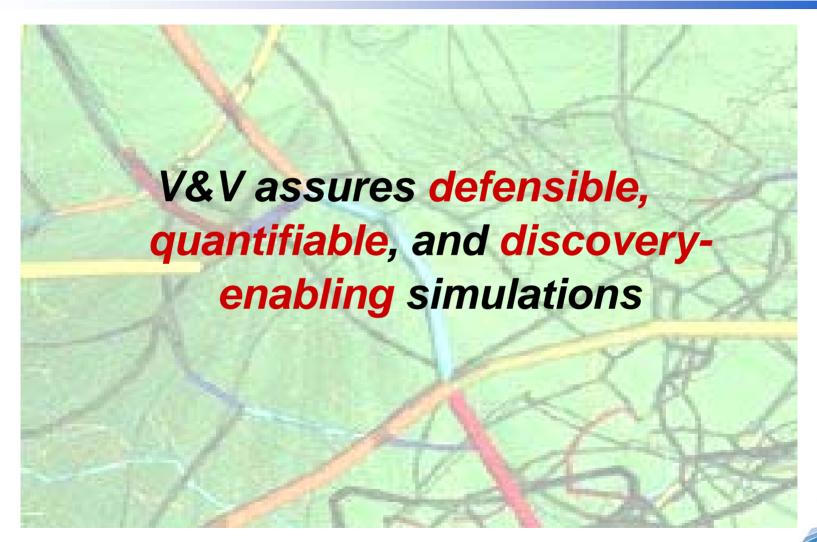
What is Verification and Validation?

- Verification: solving the equations right
- Validation: solving the right equations
- Uncertainty Quantification is recognized as an integral component of V&V

When the answer matters, V&V matters!

Verification and Validation: Mission Objectives

Focus Area	Current State		Future State
Credibility	 Annual assessment of current stockpile based on NTS data, hydro test data, and engineering tests 		 Assessment and certification with confidence of stockpile in states different from those tested (LEP, SFI, aged, modified design, etc)
Science- based Predictive Capability	 Sensitivity studies for knob settings Knobs used to compensate for incomplete knowledge 		 Physical processes understood and correctly modeled with uncertainties Be able to predict observables of future experiments
Broadened national security mission	 Great software and hardware tools for NW simulations 		Great tools for national security simulations, leveraging our NW knowledge and capability


V&V focuses on credible predictive capability for today's and tomorrow's national security mission

V&V Overall Vision

The Vision in short

- Defensible: simulation with a provenance
- Quantifiable: interpretation of simulation results
- Discovery-enabling: looking to what's next

The scientific community at large is already using simulations for discovery – it's now just a matter of time before someone demands **credibility**!

The "Steady State" V&V Program

The long-term V&V program consists of these elements:

- Day-to-day assessment and analysis, plus documentation and quality assurance;
- Research and development of tools to facilitate continuous improvement to our understanding of the complex system under the hood;
- A "test bed" for numerical methods, physics models, and UQ methodologies – comprehensive assessment of new technology for use in production.

V&V should not be about giving the impression that our codes are right...
V&V should be about "asking the hard questions!"

Where are we today?

Consider some indicators of our current state:

- "Numerical error" remains largely ignored by analysts and designers – thus, for example, we can't really say we can estimate uncertainties due to meshing
- V&V activities are centered around certification/assessment; codes that are not "design codes", such as post-processing, support software, links, etc., have gone under the radar
- We've identified a lot of parameters and done a lot of sensitivity studies; we've learned a lot about knob settings but haven't been able to do without most of these knobs.

Have the last 15 years of simulation been a happy conspiracy of compensating errors?!

Where others think we are today

- Consider the JASON RRW report:
 - "...A concern remains, however, that even though codes can reproduce the performance of previously tested weapons, it is not yet possible to quantify how well excursions from a tested design can be modeled and predicted..."
- This and other concerns led to a new Congressional direction to establish the "Advanced Certification" Campaign to address:
 - improvement of the weapons certification process through expanded, independent peer review mechanisms and refinement of computational tools and methods;
 - advancement of the physical understanding of surety mechanisms;
 - further exploration of failure modes;
 - manufacturing process assessments; and
 - the study of strategic system-level requirements.

IMHO, "Advanced Certification" is about realizing the "defensible, quantifiable, and discoveryenabling" vision of verification and validation!

Strategy to reach steady state

We will take the next few years to realign the V&V program with our vision. The steps are

- 1. Evaluate today's state of simulation
- 2. Address today's deficiencies
- 3. Start quantification
- 4. Re-evaluate at the end of five years In addition, we will need to change our mode of operation.

Step 1: Evaluate Current State

- Process qualification: figure out -- and document -the physical models and numerical algorithms currently in our performance and engineering codes
- Uncertainty Quantification: "just how bad are we?"
 What if we are to turn off key knobs?
- Data Evaluation: what kind of experimental data do we have on hand, and how useful are they?

– ...

Step 2: Address Deficiencies

- Identify major physics and numerical uncertainties; devise plans for quantification
- Quality control in data analyses documentation of experimental conditions, validation of analysis processes, etc.; determine scientifically sound use of data
- Software quality and assessment of key feeder codes and links
- Software quality improvement of performance and engineering codes

– ...

Step 3: Results Quantification

- Banish the picture norm!
- Identify appropriate ways to report uncertainties
- Identify and use appropriate metrics; explore different metrics
- Validate sensitivity studies: when can "sensitivity studies" be considered "uncertainty quantification?"
- Continue R&D for UQ methodologies

– ...

Step 4: Reassessment

- Where have steps 1-3 taken us? Are we ready to:
 - Inform the design of experiments and predict observables, possibly with prediction error bars?
 - Simulate, with confidence, national security problems that are not "tuned" to existing above-ground or underground data?
- If yes, we've arrived!
- If not, go back to Step 1.

Changing our mode of operation

- "Coordination" and "Interdependence": Three Labs work together toward national solutions
 - We encourage scientific independence, but not local solution!
 - Codes will change, and V&V tools need to be "code agnostic"
 - Demonstration of work through negotiated Tri-Lab/Bi-Lab milestones
- Start thinking V&V as the "Jiminy Cricket for NW programs"
 - Customers requirements need to be met, but we have an opportunity to meet these requirements in a broader context!
 - V&V activities for customers should have an emphasis on V&V methodology development and application (for example, a demonstration of how multiple metrics may work to help understand an uncertainty, instead of baseline model matches to PINEX data in the eyeball norm).

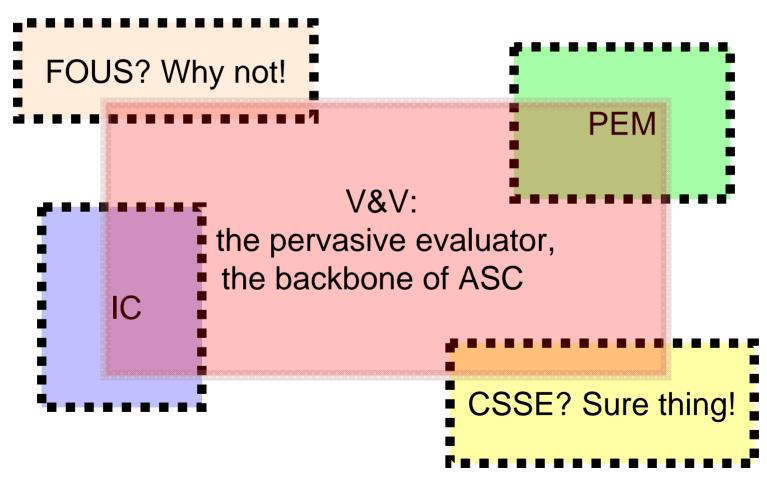
A modest proposal: new V&V work breakdown structure (wbs)

Current

- V&V Methods
- Primary V&V
- Secondary V&V
- Engineering V&V
- Specialized V&V
- Data Validation and Archiving

Proposed

- Verification applications
- Validation, UQ, and Metrics applications
- Support Codes V&V
- Experimental Data Quality Assurance
- SQE/SQA
- Foundational Research & Application



Karen's (V&V-Centric) View of the ASC Program

Not to Scale

