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PREFACE

This technical report is an extended version of the paper

A. G. Shet, W. R. Elwasif, R. J. Harrison, and D. E. Bernholdt. Programmability of the HPCS
languages: A case study with a quantum chemistry kernel. In 2008 IEEE International Parallel
and Distributed Processing Symposium, 14–18 April 2008.

with a more complete presentation of the codes in all three languages in Section 4. PROGRAMMING
EXAMPLES AND DISCUSSION. The complete set of codes can be obtained in digital form from the
authors.

As of the April 12, 2008 version, the codes have been updated to reflect the most recent releases of the
languages, which differ from the original paper for Chapel and Fortress.
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ABSTRACT

As high-end computer systems present users with rapidly increasing numbers of processors, possibly
also incorporating attached co-processors, programmers are increasingly challenged to express the nec-
essary levels of concurrency with the dominant parallel programming model, Fortran+MPI+OpenMP (or
minor variations). In this paper, we examine the languages developed under the DARPA High-Productivity
Computing Systems (HPCS) program (Chapel, Fortress, and X10) as representatives of a different parallel
programming model which might be more effective on emerging high-performance systems. The appli-
cation used in this study is the Hartree-Fock method from quantum chemistry, which combines access to
distributed data with a task-parallel algorithm and is characterized by significant irregularity in the compu-
tational tasks. We present several different implementation strategies for load balancing of the task-parallel
computation, as well as distributed array operations, in each of the three languages. We conclude that the
HPCS languages provide a wide variety of mechanisms for expressing parallelism, which can be combined
at multiple levels, making them quite expressive for this problem.
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1. INTRODUCTION

As trends in high-performance computing hardware move rapidly towards very large numbers of proces-
sor cores, the developers of software for such systems face increasing challenges in producing applications
that can effectively use the highest-end resources available. The dominant parallel programming model in
current use involves a sequential language (such as Fortran), combined with a two-sided message passing
library (such as MPI), and possibly a threading library (such as OpenMP). The continuing viability of this
approach in the face of hardware trends is increasingly the subject of debate within the computational sci-
ence community, with one recent report concluding that “it is virtually certain that MPI will not be able to
provide all of the required concurrency” [22].

Among the many efforts to develop new and improved parallel programming models and languages,
the High-Productivity Computing Systems (HPCS) program, sponsored by the U.S. Defense Advanced
Research Projects Agency (DARPA), deserves particular note. The three new programming languages de-
veloped under the DARPA HPCS program (Chapel [1,12], Fortress [4,9], and X10 [6,14]) represent perhaps
the largest concerted investment in the development of new environments for parallel programming in sev-
eral decades. These “HPCS languages” incorporate the results of past research in parallel programming
models with novel ideas and approaches relevant to emerging hardware architectures to produce high-level
languages with support for object oriented and generic programming, a broad range of constructs for ex-
pressing both task and data parallelism at multiple levels, and a global view of data. We (the authors of this
report) believe that these languages are at least representative of a new generation of parallel programming
environments which are appropriate for widespread use in high-end scientific and technical computing, and
therefore worthy of deeper examination.

Our overall methodology is to distill key aspects of various scientific applications into model computa-
tions that can be expressed in the HPCS languages. Our focus is on programmability, i.e. the mechanisms
these languages provide to express the model computations, and comparisons with the traditional message-
passing model and other approaches. At present, the language implementations are not sufficiently mature
to allow a meaningful examination of performance issues. We expect to place more emphasis on the inter-
actions between programmability and performance in future work as the languages progress. The goal of
our work is to better understand the capabilities and features of the HPCS languages from the standpoint of
computational scientists who may soon need to move towards languages of this type in order to continue
using the large-scale computer systems available in an effective manner.

In this report, we consider a kernel from the Hartree-Fock self-consistent field method [16], widely used
in quantum chemical simulations, which combines access to distributed data with a task-parallel algorithm
and which exhibits irregularity in both data distribution and parallel tasks. Scalable implementation of this
algorithm is, at best, extremely challenging in a traditional message-passing model, and was a significant
motivation for the development of the Global Arrays Toolkit (GA) [23], which shares some of the core
features of the HPCS languages. Key features of the algorithm which will be examined in this report include
dynamic load balancing, and high-level operations on distributed arrays.

The remainder of this report is organized as follows. In Section 2 we describe the Hartree-Fock problem
and a scalable algorithm for it in more detail. In Section 3 we give a brief overview of the HPCS languages,
focusing on the features relevant to the Hartree-Fock problem. In Section 4 we explore the concepts the
various languages provide to express the load balancing and array operations required by the algorithm.
Finally, in Section 5 we summarize our findings and describe our plans for future work with the HPCS
languages. This report extends our conference paper [24], primarily with a more complete presentation of
the code examples than was possible under the conference’s length limitations.
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2. THE PROBLEM

We have chosen the Hartree-Fock method of quantum chemistry [16] as an exemplar of applications
combining distributed data, task parallelism, and significant task irregularity.

The most computationally intensive step in the Hartree-Fock method is construction of the Fock matrix,

Fµν ← Dλσ{2(µν|λσ)− (µλ|νσ)} (1)

where the indices µ, ν, λ, σ denote the basis functions, and D is the density matrix. (µν|λσ) is a rank-4 ten-
sor representing the two-electron repulsion integrals. Formation of the Fock matrix is an O(N4) operation
for N basis functions.

The basis functions are grouped into electronic shells, and then into atomic centers, based on character-
istics of the molecule and basis. The two-electron repulsion integrals are evaluated in blocks based on the
shell structure of the basis. The resulting “shell blocks” of the integral tensor vary in size from 1 to more
than 10,000 elements. Separately, the computational costs of the integrals also vary over several orders of
magnitude and they are not readily predicted in advance.

A scalable parallel implementation of the algorithm requires that both the data (Fock and density ma-
trices) and the computation (integral block evaluation and their contributions to the Fock matrix) be fully
distributed. The first such implementation of the Hartree-Fock method was done by Furlani and King [18]
using MPI two-sided messaging, but they concluded that the dynamic load balancing required to achieve
scalability was too hard to express in MPI, even for small processor counts (at that time, O(10)) [17].

Furlani and King’s approach was a major motivation for the development of the Global Arrays Toolkit
(GA) [23], a library-based parallel programming environment providing a global view of memory with one-
sided access, and a few basic parallel programming constructs, such as locks and atomic read-and-increment
counters. Use of the GA library enabled the first scalable fully distributed Hartree-Fock implementation
[16, 19, 25]. The essence of the algorithm can be summarized as follows:

1. D and the two constituents of F known as the Coulomb (J) and exchange (K) matrices (correspond-
ing to the two terms in Eq. 1) are created as two-dimensional N ×N distributed arrays.

2. Construction of the J and K matrices, per Eq. 1, takes place in a four-fold loop nest over the basis
function indices. Due to permutational symmetries among the indices of the two-electron integrals, re-
strictions are imposed on loop bounds, yielding a triangular iteration space of roughly 1

8N4 elements,
one eighth the size of the full space. The four-fold loop is typically stripmined, with a granularity
chosen as a compromise between the reuse of D, J , and K and load balance. In this work we assume,
without loss of generality, that the loop nest is stripmined at the atomic level. Since the tasks are
highly irregular in cost, dynamic load balancing is required. (In the GA implementation, an atomic
read-and-increment counter is used to allocate tasks to processes as they become available.)

3. In each task, an atomic quartet of integrals is evaluated on the fly. Once computed, an integral is
contracted with six different D values and contributes to six different J and K values. The appropriate
D, J , and K blocks are cached and reused wherever possible to reduce network traffic. All tasks are
independent, except for the updates to the J and K matrices.

4. Finally, the J and K matrices must be symmetrized and combined to form F , which can be done in
a data-parallel fashion. (The GA library provides basic linear algebra operations on the distributed
arrays, including transposition.)
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3. OVERVIEW OF LANGUAGES

At a high level, the three languages have many similarities, though in detail there are significant dif-
ferences. All three languages emphasize the expression of parallelism at a high level by the programmer
and relying on the compiler/runtime/library infrastructure to produce an optimized implementation for the
underlying parallel architecture.

In all three, program execution starts with a single conceptual thread of control, which then generates
more parallelism through the use of language constructs (i.e. not strictly SPMD). Parallelism is mapped
onto a multi-level conceptual model that is roughly approximated by the “processes” and “threads” of the
traditional MPI-based programming model, for which each language has different terminology. Memory in
all three is globally addressable, and data is global and can be distributed. Locality control permits compu-
tation and data to be assigned to specific system resources for performance reasons. The base languages are
object-oriented and provide generic programming capabilities.

3.1 CHAPEL

Chapel is being designed by Cray Inc. to support general parallel programming while narrowing the
gap between mainstream and HPC languages. Chapel’s design builds on concepts from ZPL [8, 13], High-
Performance Fortran [20], and Cray’s multithreaded extensions to C and Fortran [15], while adopting a
variety of other useful features from mainstream and academic languages.

A locale in Chapel symbolizes a unit of architectural locality on the target machine, containing pro-
cessing and storage capabilities. A locale’s memory is uniformly accessible to computations running on it.
Each locale supports a dynamic set of tasks that are created using begin, cobegin, and coforall statements.
Tasks are synchronized using synchronization (sync) variables that have full/empty semantics, and atomic
sections that provide transactional memory capabilities. Data and tasks can be mapped to machine resources
(locales) using on clauses. The mapping may be explicitly specified, or data driven. Chapel supports data
parallelism via domains, a first-class language concept representing an index set. Domains can be iterated
over in parallel using forall and coforall loops, and are used to declare, resize, and slice arrays. Domains
and their arrays may be partitioned across a set of locales using distributions, which map from the global
view of an aggregate to its implementation on distinct locales.

3.2 FORTRESS

Fortress, being developed by Sun Microsystems, Inc., is designed to be an open, growable language.
Consequently, it is designed with a small set of core language features, and the majority of concepts are
coded in libraries.

Fortress programs are multithreaded; a user may explicitly spawn threads, or call implicitly parallel
constructs that create threads managed by the Fortress language implementation. Atomic sections enable
synchronization of threads. Fortress regions abstractly describe the underlying machine structure and can
have an arbitrary hierarchical structure. Thread affinity to particular regions may be specified with at expres-
sions, and distributions allow management of data locality. Parallelism can be programmed inside libraries
as distributions and generators.

Fortress also provides a variety of novel features targeting the HPCS program’s productivity goals,
including built-in constructs for managing components and interfaces, expressing tests and contracts, and
methods for rendering the code that look like typeset mathematics.
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Table 1. Language Versions

Language Specification Implementation
Chapel v0.775 [2] v0.7 compiler
Fortress v1.0 [9] v1.0 interpreter
X10 v1.3 [7] v1.5 compiler

3.3 X10

X10, which is being developed by IBM Corp., is designed to leverage the extensive software ecosystem
around the Java language. X10 is defined as a serial subset of Java, extended with additional concurrency,
distribution, and locality features.

In X10, a place corresponds to a data-coherent processing element, with each place supporting a dy-
namic set of lightweight activities. Activities specify logical parallelism and may be composed in arbitrarily
nested ways using async, future, foreach, and ateach constructs, and are translated by the X10 compiler/run-
time into running threads. An activity executes to completion on the place where it is created, but can launch
activities on other places, and detect termination of all such activities via the finish statement. Clocks enable
synchronization of dynamically created activities across places. Activities within a place uniformly and
coherently access its memory using atomic statements; weaker ordering semantics exist for inter-place data
accesses. Similar to Chapel, X10 provides a ZPL-like “array language” to express high-level operations on
distributed arrays.

3.4 LANGUAGE VERSIONS AND LIMITATIONS

Versions of the languages used in this paper are shown in Table 1. The Fortress implementation has
thus far focused on the multi-threading capabilities of the language, and does not support explicitly multi-
processor code at this time. Where the lack of necessary features prevent us from actually implementing
certain approaches, we may, for the sake of completeness, discuss proposed implementations based on the
language specifications.

4. PROGRAMMING EXAMPLES AND DISCUSSION

With their rich parallel semantics, the HPCS languages offer a variety of ways to implement algorithms
like Fock matrix construction. In this section, we present and discuss examples from various strategies we
have developed in the three languages.

Sections 4.1– 4.4 present different load-balancing strategies for the four-fold loop in the Fock matrix
construction (step 2 in the description in Section 2). In Section 4.5 we examine how the languages support
various kinds of operations on distributed global-view arrays required in steps 1, 3, and 4 of the Fock matrix
construction.

Except where limited by the current implementations of the languages (see Section 3.4), we show im-
plementations of the strategies presented here for each of the three languages. The complete set of codes
can be obtained from the authors.
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Code 1. Static, Program Managed Load Balancing - X10

1 place placeNo = place.FIRST_PLACE;
2 finish for(point [iat] : [1:natom])
3 for(point [jat, kat] : [1:iat, 1:iat])
4 for(point [lat] : [1:(kat==iat?jat:kat)]) {
5 async (placeNo) buildjk_atom4(new blockIndices(. . .));
6 placeNo = placeNo.next();
7 }

4.1 STATIC, PROGRAM MANAGED LOAD BALANCING

We begin with a statically distributed non-scalable implementation to illustrate how the HPCS languages
differ from more familiar SPMD environments in creating parallelism. By “program managed” we mean
the programmer controls the allocation of work to processors.

4.1.1 X10

Code 1 shows the X10 implementation of a simple round-robin workload distribution to places. An X10
program starts as a single root activity, on the first place, and iterates through the four-fold loop (lines 2–4).
Note that the loop indices are of type point, which is associated with the specified index space, rather than
simple integers, as they would be in a traditional programming environment, thus providing a higher degree
of type-safety.

In each iteration of the four-fold loop, the root activity launches an activity to asynchronously evaluate
the task (in all presented code segments, blockIndices is a class whose member arguments specify the
work to be performed in one task) on the remote place specified by placeNo (line 5). Then placeNo is
updated to the next value in the cyclically ordered set of places (line 6), and the root activity continues with
the next iteration.

The finish construct placed at the outermost level of the loop nest (line 2) forces the root activity to
await the termination of async activities launched within its scope (in this case the four-fold loop). This
ensures that all parallel tasks are completed before proceeding.

4.1.2 Chapel

Chapel allows users to specify iterators that produce a set of points in an index space with a specified
distribution across locales. The iterator in Code 2 involves the four-fold loop (lines 3–6) yielding a block
for the locale specified by loc (line 7). In each pass through the loop, loc is modified to denote the next
locale in a cyclic ordering of locales (line 8). Thus blocks are designated to locales in a round-robin fashion.

The output of the iterator drives the parallel forall loop in Code 3. The Chapel program starts as a
single computation on the first locale and invokes the forall statement which uses the on construct to
process each block on the locale designated by the iterator.

4.1.3 Fortress

Our proposed multi-region Fortress implementation would be very similar to the Chapel approach, using
the generator concept. The generator would feed a parallel for construct performing its iterations according
to the placement of indices from the generator.

5



Code 2. Iterator for static load balancing - Chapel

1 def genBlocks() {
2 var loc = LocaleSpace.low;
3 for iat in 1..natom do
4 for (jat, kat) in [1..iat, 1..iat] {
5 const lattop = if (kat==iat) then jat else kat;
6 for lat in 1..lattop {
7 yield (loc, new blockIndices(. . .));
8 loc = (loc+1)%numLocales;
9 }

10 }
11 }

Code 3. Top-level driver for static load balancing - Chapel

1 forall (loc, blk) in genBlocks() on Locales(loc) do
2 buildjk_atom4(blk);

4.2 DYNAMIC, LANGUAGE MANAGED LOAD BALANCING

The simplest possible scalable implementation would be if the language runtime could be relied upon to
take care of the load balancing without the programmer even needing to express it in code. It is important to
note that such capabilities are current research topics for the languages. Therefore, we present this approach
to illustrate the potential for extreme simplicity, but with the caveat that it is still quite speculative.

4.2.1 Fortress

The Fortress for construct (Code 4, line 1) is parallel by default and, driven by the loop’s generator,
would (conceptually) spawn a new thread for each point in the iteration space (line 3). The Fortress specifi-
cation anticipates that the runtime will be able to load balance computations that expose substantially more
parallelism than the available processors. Fortress has a fairly powerful generator concept that allows the
entire four-fold loop to be expressed in a single statement. (Loops and generators with explicit sequential
semantics are possible too.)

4.2.2 Chapel

Chapel provides distributions as a mechanism for distributing an index space (domain) across locales.
Distributions may be written to dynamically divide indices among locales. A forall looping on such a

Code 4. Dynamic, Language Managed Load Balancing - Fortress

1 for iat<-1#natom, jat<-1#iat, kat<-1#iat,
2 lat<-1#(if (kat=iat) then jat else kat end) do
3 buildjk_atom4 blockIndices(. . .)
4 end

6



Code 5. Shared counter for dynamic load balancing - X10

1 int G = 0;
2 finish ateach(point [p] : dist.factory.unique(place.places)) {
3 int myG, L = 0;
4 future<int> F = future (place.FIRST_PLACE) {read_and_increment_G()};
5 myG = F.force();
6 for(point [iat] : [1:natom])
7 for(point [jat, kat] : [1:iat, 1:iat])
8 for(point [lat] : [1:(kat==iat?jat:kat)]) {
9 if (L == myG) {

10 F = future (place.FIRST_PLACE) {read_and_increment_G()};
11 buildjk_atom4(new blockIndices(. . .));
12 myG = F.force();
13 }
14 ++L;
15 }
16 }

distributed domain would be a way of achieving dynamic load balancing. The feasibility of building this
feature into Chapel and its application to the Fock algorithm is an open research issue at present.

4.2.3 X10

The X10 specification requires that data and activities remain in the place they were created or spawned
for their lifetime. However, X10 places are virtual, so that many places might be mapped to each physical
processor, and conceivably migrated among them by the runtime for load balancing and other resource
management purposes, similar to Cilk’s work stealing [3, 11] within an SMP node or CHARM++ [5, 21] in
the distributed context. Given a runtime with such a capability, the simplest X10 implementation would be
nearly identical to Code 1, but with many more places than processors, so that one or a few atom blocks
were allocated to each place.

4.3 DYNAMIC, PROGRAM MANAGED LOAD BALANCING USING A SHARED COUNTER

A dynamically load balanced computation involves all participating processors (conceptually) sharing
a single list of tasks, and whenever a processor is free, it takes another task from the list. One common
approach, and the one we use here, to implementing the shared task list is to have all processors locally
generate tasks in the same sequence, and use a globally shared counter (typically implemented with an
atomic read-and-increment operation) to track how many tasks have been taken by processors.

4.3.1 X10

In Code 5, the root activity creates the globally shared counter G on the first place (line 1). Then it uses
the ateach construct (line 2) to launch a copy of the Fock-build algorithm (lines 3–16) on each place. The
finish (line 2) causes the root activity to block until the rest of the algorithm completes on every place.

Each place iterates over the same sequence of tasks (the four-fold loop, lines 6–8), using L to count the
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Code 6. Atomic read-and-increment - X10

1 private int read_and_increment_G() {
2 int myG;
3 atomic myG = G++;
4 return myG;
5 }

Code 7. Shared counter for dynamic load balancing - Chapel

1 var G : sync int = 0;
2 coforall loc in LocaleSpace on Locales(loc) {
3 var (L,lattop,myG) = (0,0,readAndIncrementG());
4 for iat in 1..natom do
5 for (jat, kat) in [1..iat, 1..iat] {
6 lattop = if (kat==iat) then jat else kat;
7 for lat in 1..lattop {
8 if (L == myG) then
9 cobegin {

10 buildjk_atom4(new blockIndices(. . .));
11 myG = readAndIncrementG();
12 }
13 L += 1;
14 }
15 }
16 }

tasks. When L matches the next task assigned to the place (myG), it evaluates that integral block. Assign-
ments (myG) are obtained from a remote atomic read-and-increment operation on the globally shared counter
G on the first place (lines 4 and 10). When every place has completed the four-fold loop, all tasks will be
evaluated.

X10 requires that remote references to mutable data (in this case the shared counter G) be done asyn-
chronously, hence the use of the future construct at lines 4 and 10. Separation between spawning the
future and forcing it (as in lines 10 and 12) allows computation and communication to be overlapped.

Code 6 shows how the atomic read-and-increment operation is straightforwardly implemented with an
atomic section.

4.3.2 Chapel

Our Chapel implementation in Code 7 employs the coforall statement to create distinct concurrent
computations for all the locales, with an on clause binding one computation to one locale (line 2). (The
Chapel forall construct only specifies that the iterations may run concurrently, while coforall requires
a separate computation for each iteration.) Each computation loops over the index space of tasks (lines 4–7).

The shared counter G is created on the first locale as a synchronization variable of the sync type, which
provides full/empty semantics (line 1). Once written, such a variable cannot be re-written until it is emptied.
Likewise, an empty variable cannot be re-read until it is written. Computations attempting to write to a full
sync variable or read from an empty one will block until another computation changes the variable’s state.
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Code 8. Atomic read-and-increment - Chapel

1 def readAndIncrementG() {
2 const myG : int = G;
3 G = myG + 1;
4 return myG;
5 }

Code 9. Shared counter for dynamic load balancing - Fortress

1 numRegs = 10
2 var G : ZZ32 = 0
3 for reg<-1#numRegs at region(reg) do
4 (L,myG) : ZZ32... := (0,read_and_increment_G())
5 for iat<-seq(1#natom), jat<-seq(1#iat), kat<-seq(1#iat),
6 lat<-seq(1#(if (kat=iat) then jat else kat end)) do
7 if (L = myG) then
8 do
9 buildjk_atom4 blockIndices(. . .)

10 also do
11 myG := read_and_increment_G()
12 end
13 end
14 L += 1
15 end
16 end

Taking advantage of these semantics to atomically update the counter in the readAndIncrementG method
from Code 8, every computation first does a read (line 2) followed immediately by a write of G (line 3) to
fetch the next task. The processing of a newly assigned task is overlapped with the fetch of the next task
inside a cobegin statement (Code 7, line 9).

4.3.3 Fortress

The Fortress version in Code 9 spawns parallel threads using the for expression, with the at expression
denoting the region where each thread should run (line 3). (At the time of this writing, since Fortress does not
support distinct regions, numRegs is used to simulate the different regions.) All threads traverse the iteration
space in a serial fashion as mandated by the seq multi-generator for loop (lines 5–6). The also construct
(line 10) runs a new task concurrently with update to the shared counter G. The read_and_increment_G
function is implemented as an atomic method in Code 10.

4.4 DYNAMIC, PROGRAM MANAGED LOAD BALANCING USING A TASK POOL

The task pool model of dynamic load balancing uses common work area, or “pool” into which produc-
ers submit tasks, and consumers remove and execute them. This is a general pattern of synchronization
applicable to a wide variety of problems.
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Code 10. Atomic read-and-increment - Fortress

1 read_and_increment_G() : ZZ32 = do
2 var myG : ZZ32
3 atomic do
4 myG := G
5 G += 1
6 end
7 myG
8 end

Code 11. Task pool of integral blocks - Chapel

1 class taskpool {
2 const poolSize;
3 var taskarr : [0..poolSize-1] sync blockIndices;
4 var head, tail : sync int = 0;
5 def add(blk : blockIndices) {
6 const pos = tail;
7 tail = (pos+1)%poolSize;
8 taskarr(pos) = blk;
9 }

10 def remove() {
11 const pos = head;
12 head = (pos+1)%poolSize;
13 return taskarr(pos);
14 }
15 }

4.4.1 Chapel

In Chapel, the pool of integral block tasks is built around an array of sync variables taskarr (Code 11,
line 3). Methods are defined for producers to add tasks to the pool (lines 5–9) and for consumers to remove
them (lines 10–14). The full/empty semantics of sync variables ensures the coordination of task addition
and removal operations. The head and tail variables are also defined to be of sync type, and control
access to the taskpool by multiple producers and consumers respectively.

The main application (Code 12) begins as a single computation and sets up a task pool on the first locale.
The size of the task pool, poolSize, is set to the count of locales, numLocales (line 1). The cobegin (line
3) runs the producer (line 6) and consumer (lines 4–5) computations in parallel. The coforall construct
(line 4) guarantees that the loop iterations run concurrently on separate locales.

The producer (Code 13) simply adds atomic quartets to the task pool. The atomic quartets come from
the genBlocks iterator (Code 14), which steps through the four-fold loop (lines 2–5) and then generates
sentinel values (lines 8–9) to signal the consumers that there are no more tasks.

Consumers (Code 15) take tasks from the pool and evaluate them until the sentinel value described above
is encountered. The cobegin construct (line 5) allows the integral evaluation task to be overlapped with
obtaining the next atomic quartet.
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Code 12. Top-level driver for task pool - Chapel

1 const poolSize = numLocales;
2 const t = new taskpool(poolSize);
3 cobegin {
4 coforall loc in LocaleSpace on Locales(loc) do
5 consumer();
6 producer();
7 }

Code 13. Producer of integral blocks - Chapel

1 def producer() {
2 forall blk in genBlocks() do
3 t.add(blk);
4 }

4.4.2 X10

The X10 task pool (Code 16) uses conditional atomic sections to synchronize the actions of producer
and consumer activities (lines 10 and 18). A conditional atomic section checks for the validity of a condition
and executes the code inside the section with atomic semantics. If the condition is not true, the executing
activity is suspended until the condition is satisfied. The conditional atomic section in the add method
inserts a new task if the pool full condition is false. In the remove method, a task can be taken if the pool is
not empty.

In the X10 implementation (Code 17), the root activity instantiates a task pool of size equal to the
number of places on the first place (line 2), spawns consumer activities on all places (lines 5–6), and then
runs the producer (line 7). The producer (Code 18) populates the task pool with integral blocks and a
single nullBlock as the sentinel value. Consumers (Code 19) process the integral blocks and terminate on
encountering the nullBlock. A future progresses a consumer’s request for the next block alongside the
processing of the currently fetched block (line 4).

Code 14. Fock index space iterator - Chapel

1 def genBlocks() {
2 for iat in 1..natom do
3 for (jat, kat) in [1..iat, 1..iat] {
4 const lattop = if (kat==iat) then jat else kat;
5 for lat in 1..lattop do
6 yield new blockIndices(. . .);
7 }
8 for loc in LocaleSpace do
9 yield nil;

10 }
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Code 15. Consumer of integral blocks - Chapel

1 def consumer() {
2 var blk = t.remove();
3 while (blk != nil) {
4 const copyofblk = blk;
5 cobegin {
6 buildjk_atom4(copyofblk);
7 blk = t.remove();
8 }
9 }

10 }

4.4.3 Fortress

Our proposed implementation in Fortress would use features like for and also do to enable producer
and consumer threads to run together. The producer would be driven by a generator. The task pool imple-
mentation would use abortable atomic expressions, which allow atomic sections to validate conditions and
rollback on violations.

4.5 MULTI-DIMENSIONAL ARRAY FUNCTIONALITY

All three languages provide a rich set of global array functionality including physical distribution, ini-
tialization, one-sided accesses, and data parallel algebraic operations. The array functionality used in our
Fock build codes is captured in figure 1. We delve into details of the formation of the final Fock matrix from
the computed Coulomb (J) and exchange (K) matrices to illustrate how each language expresses some of
these operations.

4.5.1 Chapel

In Chapel, forall expressions are used to transpose the two matrices (Code 20, lines 2–3). Both the
arrays and their transposes are defined over the domain (index space) D (definitions not shown). The loop
indices i and j are drawn from the index space D, and as with a normal forall they may be done in
parallel. The cobegin (line 1) allows the two transpositions to be carried out in parallel as well. Lines 5–6
illustrate how Chapel promotes scalar operators to apply to arrays.

4.5.2 Fortress

The tuple expression in Code 21, line 1 spawns separate threads to evaluate its elements. t() is an array
factory method that computes an array transpose by iterating over the array indices in an implicitly parallel
for loop. In lines 2 and 3, the Fortress library operators + and juxtaposition (multiplication) are applied to
arrays.
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Code 16. Task pool of integral blocks - X10

1 public class taskpool {
2 final int poolSize;
3 final blockIndices [] taskarr;
4 int head = -1, tail = -1;
5 public taskpool(final int poolSize) {
6 this.poolSize = poolSize;
7 this.taskarr = new blockIndices [poolSize];
8 }
9 public void add(blockIndices blk) {

10 when (head != (tail+1)%poolSize) {
11 tail = (tail+1)%poolSize;
12 taskarr[tail] = blk;
13 if (head == -1)
14 head = tail;
15 }
16 }
17 public blockIndices remove() {
18 when (head != -1) {
19 final blockIndices blk = taskarr[head];
20 if (blk != nullBlock)
21 if (head == tail)
22 head = -1;
23 else
24 head = (head+1)%poolSize;
25 return blk;
26 }
27 }
28 }

4.5.3 X10

Code 22 shows a naı̈ve transposition in X10. This implementation launches a separate asynchronous
activity for each element of the matrix (points in the distribution D) (lines 2 and 5). Futures are launched
on the place holding the [j,i] element of the index space to retrieve the remote value. The surrounding
finish (line 1) ensures completion of the two transpositions before continuing. add and scale (lines
9–10) are array class methods.

Note that the transposition can be expressed much more efficiently in X10 (fewer activities, better local-
ity, aggregated data movement) [10], though not as succinctly.

5. CONCLUSIONS AND FUTURE WORK

We have presented several possible implementations for load balancing of a computation involving
tasks of widely varying cost in each of the HPCS languages, as well as operations on distributed arrays.
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Code 17. Top-level driver for task pool - X10

1 final int poolSize = place.MAX_PLACES;
2 final taskpool t = new taskpool(poolSize);
3 blockIndices nullBlock;
4 finish {
5 ateach(point [p] : dist.factory.unique(place.places))
6 consumer();
7 producer();
8 }

Code 18. Producer of integral blocks - X10

1 private void producer() {
2 for(point [iat] : [1:natom])
3 for(point [jat, kat] : [1:iat, 1:iat])
4 for(point [lat] : [1:(kat==iat?jat:kat)])
5 t.add(new blockIndices(. . .));
6 t.add(nullBlock);
7 }

Though the languages differ in their detailed syntax and semantics, at a higher level, they provide similar
capabilities, which generally go well beyond those of the traditional message-passing model, and even the
Global Arrays programming model that was used for the first truly scalable, fully-distributed implementation
of the Hartree-Fock method. The examples illustrate the wide range of constructs provided for the expression
of parallelism, and how they can be combined to expose the maximum possible parallelism to the language.
This will be an important aspect of future programming environments as the number of CPUs and processor
cores continues to grow rapidly.

Future work includes examination of the performance considerations associated with different imple-
mentations, which we plan to undertake once the language implementations have reached an appropriate
level of maturity. We also plan to extend these studies to other scientific applications, in order to illustrate
other aspects of the languages.

Code 19. Consumer of integral blocks - X10

1 private void consumer() {
2 future<blockIndices> F = future(t) {t.remove()};
3 blockIndices blk = F.force();
4 while(blk != nullBlock) {
5 F = future(t) {t.remove()};
6 buildjk_atom4(blk);
7 blk = F.force();
8 }
9 }
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Fig. 1. Array Functionality

Code 20. Symmetrization of J and K - Chapel

1 cobegin {
2 [(i,j) in D] jmat2T(i,j) = jmat2(j,i);
3 [(i,j) in D] kmat2T(i,j) = kmat2(j,i);
4 }
5 jmat2 = 2*(jmat2+jmat2T);
6 kmat2 += kmat2T;
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