NETL CUB Characterization

Ann Kim

Mercury Control Technology R&D Program Review Meeting August 13, 2003

Effect on CUB

Hg

• Control transfers Hg from gas phase to other phases

Potentially increases cost of disposal and decreases utilization of CUB

Goals and Objectives

Goal

-To determine the stability of Hg in CUB

- CUB properties
- Receiving environment
- Objective
 - -Determine rate of Hg release from CUB
 - What will happen (column leaching)
 - -Determine mechanism of Hg retention
 - Why it will happen (isotherms)

Column Leaching Study

- Stability of Captured Hg
 - How much can be extracted from fly ash
 - Under what conditions chemical environment
- Materials high Hg fly ash
 - conventional PC
 - NETL Hg emission control test (MECT)
 - ADA PAC Injection Tests
- Technical Challenges
 - Inherent error in measuring very small numbers
 - Sample size
 - Effect of FA alkalinity
 - Porosity/permeability of high C FA

Technique - Column Leaching

- 20 columns 5 cm id by 1 m acrylic
- 5 leachant solutions
 - -Average flow rate 130 mL/d
- CUB samples
 - -Sample size: 1 kg/column
- Duration
 - -30 to 180 days
- Sampling frequency -2 to 3 days
- Hg Analysis CVAA

Leachant Solutions

Leachant	ID	#	рН
Water	H ₂ O	1	6.0
Acetic Acid	HAc	2	2.9
Sodium Carbonate	Na ₂ CO ₃	3	11.1
Synthetic Precipitation	SP	5	4.2
Sulfuric Acid	H ₂ SO ₄	7	1.2

Hg Analysis

• Solid

- -DMA-80
- -Triple acid digestion + ICP
- Leachate
 - -CVAA
 - DL = 1 ng/L

CUB Samples

Sample #	Туре	Source	Hg conc., ug/kg	LOI, %
FA50	500#PAC	NETL	1156	1.31
FA53	500#PAC	NETL	1091	2.45
FA56	500#PAC	NETL	1209	1.89
FA52	ADA PAC	Gaston Station	88100	28.66
FA55	ADA PAC	Brayton Point	1527	16.08
FA51	PC		1587	6.46
FA58	500#	NETL	87	1.79

Cumulative Leached Hg, ng/kg

	H2O	HAc	Na2CO3	SP	H2SO4
FA50	259	410	130	94	148
FA53	10	112	8	15	25
FA56	5	146	58	23	42
FA52	3	47	26	3	4
FA55	846	43	1263	465	83
FA51	12	754	7	9	20
FA58	15	45	517	0.5	12

Maximum concentration, ng/L

■ H2O ■ HAc ■ Na2CO3 ■ SP ■ H2SO4

Average concentration, ng/L

■ H2O ■ HAc ■ NA2CO3 ■ SP ■ H2SO4

Cumulative Hg Relative to Solid

Adsorption Isotherms

• Stability of Captured Hg

-At equilibrium, how much Hg can fly ash hold

Materials

- -2 Class F PC fly ash samples
 - FA17 high C
 - FA24 low C

Technical Challenges

- pH control
- Analytical accuracy/reproducibility

Technique - Adsorption Isotherms

Provide information about extent of adsorption

 $A_{max} = 25$

Provide information about strength of adsorption

 $K_{EQ}=1$ vs $K_{EQ}=10$

Relevant Literature

- Isotherms Hg adsorption onto other materials: Soils and Minerals
 - Coals, Activated Carbons, Soot
 - Ion Exchange Resins
- Langmuir Equation

$$[A] = A \max \frac{Keq[S]}{1 + Keq[S]}$$

• Freundlich Equation

$$[A] = m [S]^n$$

• Fly ash properties related to Hg adsorption: LOI

Experimental Procedure

- 1. Mix fly ash with known volume of H₂O
- 2. Measure [Hg] in solution at equilibrium

(will be zero if no desorbable Hg in CUB)

- 3. Add known amount of Hg(II) to solution [HgCl₂ Hg(OAc)₂]
- 4. Allow to equilibrate (with agitation)
- 5. Measure Hg in solution (CVAA)
- 6. Calculate Hg adsorbed by difference
- 7. Measure total Hg in CUB digest + CVAA solid Hg analyzer

Desorption: done in a similar fashion

starting with high [Hg] and diluting.

Hg Control Mtg 8/13/2003 AGK

Fly Ash Samples

	FA17	FA24
LOI (500°C)	5.2%	1.3%
FeO	9.0%	3.0%
CaO	1.8%	0.6%
Sand	9%	7%
Silt	86%	86%
Clay	5%	7%

Minumum Duration of 4 Weeks for All Experiments All Adsorptions Performed at 8 Hg/FA Ratios

Fly Ash			<u>24</u>
Adsorption at pH = 2	Liq/Solid = 5 Liq/Solid = 10	\ \	\ \
Adsorption at pH = 7	Liq/Solid = 5 Liq/Solid = 10	\ \	\ \
Desorption at pH = 2	Liq/Solid = 12		1
Desorption at pH = 7	Liq/Solid = 12	1	

FA24 at pH=2

Comparison of Fly Ash 17 and Fly Ash 24 at pH = 2

Deviation Plot

Hg Control Mtg 8/13/2003 AGK

- Although reproducibility continues to be a problem:
 - The Langmuir adsorption model appears to be a reasonable, but not perfect, approximation for Hg adsorption onto fly ash.
 - No hysteresis upon desorption indicates that the adsorption is reversible at pH=2 for a pre-leached ash.
 - Because column leaching experiments indicate much of the Hg is immobilized, the mechanism for capture during fly ash formation may not be a simple adsorptive process.
 - The high-carbon fly ash (FA 17) has a much higher Hg adsorption capacity than the low-carbon fly ash.
 - The non-random deviation plot (for FA 24) indicates that a better adsorption model may be needed.
- Analysis of data obtained at pH = 7 is underway.

Mercury in CUB

-Questions ????

Hg Control Mtg 8/13/2003 AGK