Pilot-Scale Research at NETL on Mercury Measurement and Control

A. Karash, R.A. Hargis, W.J. O'Dowd NETL Mercury Control Technology R&D Program Review Meeting August 12-13, 2003

Project Objectives

- Conduct parametric testing to assess the Hg removal performance of activated carbon and novel sorbents for a range of coals and blends
- Evaluate methods for measurement of mercury concentration and speciation
- Provide for testing of novel Hg removal methods (e.g. GP-254, Thief)
- Use test data for model development and validation

Modeling of Sorbent Injection Upstream of a Baghouse

Model developed by Dr. Radisav D. Vidic, University of Pittsburgh, and Joseph Flora, University of South Carolina.

Two-Stage Mathematical Model

- Mercury removal in duct modeled using a plug flow system.
 - Accounts for presence of an external mass transfer boundary layer.
- Mercury removal in the fabric filter modeled using a growing-bed packed-bed approach.
 - Accounts for presence of an external mass transfer boundary layer, dispersion, and a periodic cleaning interval.
- Mercury removal in the activated carbon particle is modeled using a pore diffusion model with the Langmuir isotherm describing equilibrium between the gas phase and the carbon particle surface.

Mercury Removal Data and Model Fit

Influence of Baghouse Pressure Drop on Hg Removal

Baghouse Hg Removal Efficiency – PRB

Sorbent Concentration (lb/MMacf)

In-Duct Hg Removal Performance of Norit Darco FGD

QSIS Probe Installed at Slipstream

Developed by Apogee Scientific

In-Duct Removals in Slipstream

- Slipstream allows testing in a flyash free flue gas where a wide range of variables can be altered
 - Residence times of 0.5 to over 4.0 seconds
 - Temperatures from under 200°F to over 350°F
 - Varying Hg concentration and speciation
- Various sampling techniques to quantify in-duct removals in the slipstream evaluated
 - Cyclone
 - PM_{2.5} Sampling Head
 - Virtual Impactor developed by MSP Corporation
 - Quicksilver Inertial Separation (QSIS) Probe
- Best results achieved with QSIS probe combined with Hg CEM
 and solid sorbent sampling method

Slipstream Hg Measurements – QSIS Probe

Time

Baghouse Inlet Sampling Configuration

Spray Injection Duct Sampling Location

Descriptor - include initials, /org#/date

Spray Injection Duct

500 lb/hr Combustor

Descriptor - include initials, /org#/date

Hg Speciation-PRB Coal w/o Sorbent Injection

Typical Hg Sampling Day - PRB Coal

In-Duct Hg Removal Efficiency

Sorbent Concentration (lb/MMacf)

Conclusions from Parametric Testing

- 500 lb/hr pilot combustor baseline speciation and activated carbon removal efficiency are very similar to full-scale testing results
- Impact of residence time on in-duct removal efficiency greater at higher temperatures
- Increase in Hg removal efficiency with sorbent feed rate up to about 3 lb/MMacf

Conclusions from Parametric Testing cont.

- Increase in removal minimal above 3 lb/MMacf
- Above 3 lb/MMacf best strategy to increase Hg removal may be to decrease duct temperature or increase residence time
- Total system removals 85-95 percent

Conclusions from Parametic Testing cont.

- Slipstream measurements useful for evaluation of various in-duct measurement methods
 - Slipstream Hg removals with Evergreen coal were not representative of pilot-scale testing
 - Conversion of elemental to oxidized mercury in the slipstream

Work in Progress

- GP-254
- Thief process
- Hg control in SD/FF configuration
- Enhancements to numerical model using PRB data from full flow testing on 500 lb/hr unit
- Effects of coal blends on Hg removal

