Oxidation of Mercury Across SCR Catalysts in Coal-Fired Power Plants Burning Low Rank Fuels

(DE-FC26-03NT41728)

Presented at Mercury Control Technology R&D Program Review Pittsburgh, PA • August 12-13, 2003

> 77 West 200 South, Suite 210 Salt Lake City, Utah 84101

Project Objectives

- Gather data on the behavior of mercury across SCR catalysts
 - Increase understanding of Hg behavior
 - New model
- Measurements at one power plant burning bituminous/subbituminous blend
- Slipstream reactor with six catalysts
 - One blank honeycomb
 - Three commercial honeycomb catalysts
 - Two commercial plate catalysts

Project Organization

- Slipstream reactor built under catalyst deactivation program (DE-FC26-00NT40753; Bruce Lani, COR)
- Mercury testing carried out under separate program (DE-FC26-03NT41728; José Figueroa, COR)
- Additional support from EPRI and Argillon GmbH
- Field test support from AEP

Project Team

- REI: Planning/analysis, slipstream reactor operation
 - Connie Senior, Temi Linjewile, Darren Shino, Dave Swensen
- URS: Mercury measurement and analysis
 - Carl Richardson, Mandi Richardson, Tom Mahalek
- AEP: Field test support and program review
 - Steve Pfeister, Steve Batie
 - Gary Spitznogle, Aimee Toole
- **Program review**
 - José Figueroa, Bruce Lani, Lynn Brickett (DOE-NETL)
 - Chuck Dene (EPRI)
 - Jeanette Bock (Argillon GmbH)

Testing Summary

- Rockport:
 - Two 1300 MW_e B&W opposed wall-fired, supercritical boilers
 - Testing on Unit 1 across air preheater
- Burn a bituminous-subbituminous blend
- Two test series (March and August)
- FIRST TEST SERIES:
 - Boiler held at full load, 7:00 to 19:00 during test days
 - Ontario Hydro measurement at inlet to SCR reactor (3/28/03)
 - SCEM measurements made 3/28-4/2/03
 - Coal and ash samples collected

Multi-catalyst Slipstream Reactor

Catalyst Dimensions

Chamber:	1 (Blank)	2	3	4	6	5
Catalyst type:	Monolith	Monolith	Plate	Plate	Monolith	Monolith
Chamber porosity: Length of catalyst in chamber	58.7%	70.0%	85.0%	86.9%	70.0%	68.3%
(inch):	24.40	21.50	39.25	43.25	20.06	19.75

Semi-continuous Hg Monitor (URS)

Coal Properties

Date	3/28/03	4/1/03	4/2/03	
(As Received):				
Carbon	50.67	51.80	51.75	
Hydrogen	3.51	3.64	3.46	
Oxygen	10.89	11.04	11.18	
Nitrogen	0.76	0.78	0.75	
Sulfur	0.32	0.30	0.37	
Ash	5.12	5.99	6.10	
Moisture	28.74	26.45	26.39	
HHV	8,723	8,989	8,989	
(Dry Basis):				
Hg, ug/g	0.088	0.118	0.091	
Cl, ug/g	120	160	200	
SO ₂ , lb/MBtu	0.74	0.67	0.82	
Hg, lb/TBtu	10.10	13.13	10.13	
Hg, ug/dnm ³ (5%O ₂)	8.02	10.82	8.46	

- Coal blend mostly subbituminous
- Higher CI than typical subbituminous
- 8-10 µg/dnm³ Hg (gasphase equivalent)
- Ash contains ~6 wt%
 Fe₂O₃, ~16 wt% CaO

Flue Gas Composition

Est. Gas	3/28/03	4/1/03	4/2/03
Composition			
Excess Air	35%	35%	35%
O ₂	4.0%	4.0%	4.0%
CO ₂	13.3%	13.4%	13.5%
H ₂ O	10.6%	10.2%	10.0%
N ₂	72.0%	72.3%	72.4%
SO ₂ [ppm]	317	292	360
HCI [ppm]*	7.5	10.1	12.8
NO _x [ppm]*	400	400	400

 Calculated from coal analysis and measured O₂, except NO_x

*Estimated

Hg and Cl in ash

					% Hg in	%Cl in
Ash sample	Date	LOI, wt%	Hg, ug/g	CI, ug/g	Ash	Ash
Economizer	3/28/03	0.08%	0.0053	28.6	0.03%	1.71%
ESP, silos 3&4	3/28/03	0.31%	0.0809	20.2	0.41%	1.21%
ESP, silos 3&4	3/31/03	0.37%	0.118	24.6		
ESP, silos 3&4	4/1/03	0.31%	0.127	23.6	0.44%	1.20%
ESP, silos 3&4	4/2/03	0.34%	0.101	26.8	0.55%	1.11%

- Economizer ash has 10-20 times less Hg than ESP ash
- ESP ash has very little Hg, ~0.5% of coal Hg
- CI content of ash is similar in economizer and ESP, ~1.5% of coal CI

Ontario Hydro Data

- Hg conc. in ash higher than in ESP fly ash
- BUT fraction of Hg in ash very low
- 81% elemental Hg

Comparison of Hg: Coal v. SCEM

Testing Summary: Reactor and Flue Gas

	Temperatures, F				Inlet Mercury			
Date	Boiler Duct	Entrance	Chamber	Space Velocity	NH₃ (avg) ppm	Hg⁰, ug/Nm ³ , 5% O₂	Hg _T , ug/Nm ₃ , 5% O ₂	%Elemental Hg
3/28/03						6.17	7.64	81%
3/28/03	727	651	657	medium	408	5.88	8.00	74%
3/31/03	719	631	657	medium	452	5.00	7.00	71%
4/1/03	719	602	657	low	555	4.82	7.75	56%
4/1/03	717	625	656	medium	523		7.82	
4/2/03	724	641	662	medium	0	6.04	6.47	93%
4/2/03	726	658	667	high	435	4.81	6.47	80%

Space velocities (1/hr): "low" ~ 3,000 "medium" ~ 6,000-8,000 "high" ~ 12,000-14,000

28 March, Hg⁰: 6,000 hr⁻¹, with ammonia

- Initial data points not used to calculated standard deviation (right-hand graph)
- Inlet elemental Hg consistent over time
- C1 (blank) did not show oxidation
- C2 showed oxidation

28 March, Hg_T : 6,000 hr⁻¹, with ammonia

- Initial data points not used to calculated standard deviation (right-hand graph)
- Total mercury the same at inlet and outlet of C1 (blank)
- C4 may indicate loss of Hg across catalyst

REACTION ENGINEERING INTERNATIONAL

Oxidation of Hg⁰ Across Catalyst

- No oxidation across blank
- Some increase in oxidation w/o NH₃
- SV ~ 7,000 hr⁻¹
- T ~ 660 F
- 380-450 ppm NH₃

REACTION ENGINEERING INTERNATIONAL

 Errors estimated from quadratic eqn.

Loss of Hg_T Across Catalyst

- Loss of Hg across commercial catalysts observed
- No loss across blank
- No clear effect of NH₃
- SV ~ 7,000 hr⁻¹
- T ~ 655 F
- 420-540 ppm NH₃
- Errors estimated from quadratic eqn.

Loss of Elemental Hg as a Function of Space Velocity

Catalyst Types

Honeycomb Catalysts

Plate Catalysts

REACTION ENGINEERING INTERNATIONAL

Conclusions

- Blank monolith did not oxidize Hg⁰
- Commercial catalysts oxidized Hg⁰
- Oxidation of Hg⁰:
 - Function of space velocity (at constant T)
 - Monoliths generally had same behavior vs. SV
 - Plate catalysts behaved differently
- Loss (adsorption?) of Hg:
 - No loss of Hg across blank
 - Some loss of Hg_T across catalysts, but no clear effect of NH_3
 - No clear effect of catalyst pressure drop
 - Assumption that lost Hg⁰ was oxidized
 - Sampling system problems? Loss of Hg⁺²?

Next Test Series: Priorities and Plans

- In progress (August 7 August 15)
- Make gas-phase CI measurements
- Make simultaneous NO_x measurements
- Look at transients with sample line switch and ammonia on/off
- Repeat Hg⁰ measurements at one SV
 - With and without ammonia
 - $NH_3/NO \sim 0.9$, maybe lower
 - Determine whether oxidation changes with aging
- Look at possible sampling system effects on loss of Hg