
77 West 200 South, Suite 210
Salt Lake City, Utah  84101

REACTION
ENGINEERING

INTERNATIONAL

Oxidation of Mercury Across SCR 
Catalysts in Coal-Fired Power Plants 

Burning Low Rank Fuels

(DE-FC26-03NT41728)

Presented at
Mercury Control Technology R&D Program Review

Pittsburgh, PA • August 12-13, 2003



REACTION
ENGINEERING

INTERNATIONAL

Project Objectives

• Gather data on the behavior of mercury across SCR 
catalysts
– Increase understanding of Hg behavior
– New model

• Measurements at one power plant burning 
bituminous/subbituminous blend

• Slipstream reactor with six catalysts
– One blank honeycomb
– Three commercial honeycomb catalysts
– Two commercial plate catalysts
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Project Organization

• Slipstream reactor built under catalyst 
deactivation program (DE-FC26-00NT40753; 
Bruce Lani, COR)

• Mercury testing carried out under separate 
program (DE-FC26-03NT41728; José
Figueroa, COR)

• Additional support from EPRI and Argillon 
GmbH

• Field test support from AEP
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Project Team

REI: Planning/analysis, slipstream reactor operation
– Connie Senior, Temi Linjewile, Darren Shino, Dave Swensen

URS: Mercury measurement and analysis
– Carl Richardson, Mandi Richardson, Tom Mahalek

AEP: Field test support and program review
– Steve Pfeister, Steve Batie
– Gary Spitznogle, Aimee Toole

Program review
– José Figueroa, Bruce Lani, Lynn Brickett (DOE-NETL)
– Chuck Dene (EPRI)
– Jeanette Bock (Argillon GmbH)
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Testing Summary

• Rockport:  
– Two 1300 MWe B&W opposed wall-fired, supercritical boilers
– Testing on Unit 1 across air preheater

• Burn a bituminous-subbituminous blend
• Two test series (March and August)
• FIRST TEST SERIES:

– Boiler held at full load, 7:00 to 19:00 during test days
– Ontario Hydro measurement at inlet to SCR reactor 

(3/28/03)
– SCEM measurements made 3/28-4/2/03
– Coal and ash samples collected
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Multi-catalyst Slipstream Reactor
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Catalyst Dimensions

Chamber: 1 (Blank) 2 3 4 6 5
Catalyst type: Monolith Monolith Plate Plate Monolith Monolith
Chamber porosity: 58.7% 70.0% 85.0% 86.9% 70.0% 68.3%
Length of catalyst in chamber 
(inch): 24.40 21.50 39.25 43.25 20.06 19.75
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Semi-continuous Hg Monitor (URS)
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Coal Properties

Date 3/28/03 4/1/03 4/2/03
(As Received):
Carbon   50.67 51.80 51.75
Hydrogen 3.51 3.64 3.46
Oxygen  10.89 11.04 11.18
Nitrogen 0.76 0.78 0.75
Sulfur   0.32 0.30 0.37
Ash 5.12 5.99 6.10
Moisture  28.74 26.45 26.39
HHV 8,723 8,989 8,989

(Dry Basis):
Hg, ug/g 0.088 0.118 0.091
Cl, ug/g 120 160 200

SO2, lb/MBtu 0.74 0.67 0.82

Hg, lb/TBtu 10.10 13.13 10.13
Hg, ug/dnm3 (5%O2) 8.02 10.82 8.46

• Coal blend – mostly 
subbituminous

• Higher Cl than typical 
subbituminous

• 8-10 µg/dnm3 Hg (gas-
phase equivalent)

• Ash contains ~6 wt% 
Fe2O3, ~16 wt% CaO
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Flue Gas Composition

• Calculated 
from coal 
analysis and 
measured O2, 
except NOx

Est. Gas 
Composition

3/28/03 4/1/03 4/2/03

Excess Air 35% 35% 35%

O2 4.0% 4.0% 4.0%
CO2 13.3% 13.4% 13.5%
H2O 10.6% 10.2% 10.0%
N2 72.0% 72.3% 72.4%
SO2 [ppm] 317 292 360
HCl [ppm]* 7.5 10.1 12.8
NOx [ppm]* 400 400 400

*Estimated
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Hg and Cl in ash

Ash sample Date LOI, wt% Hg, ug/g Cl, ug/g
% Hg in 

Ash
%Cl in 

Ash
Economizer 3/28/03 0.08% 0.0053 28.6 0.03% 1.71%
ESP, silos 3&4 3/28/03 0.31% 0.0809 20.2 0.41% 1.21%
ESP, silos 3&4 3/31/03 0.37% 0.118 24.6 -- --
ESP, silos 3&4 4/1/03 0.31% 0.127 23.6 0.44% 1.20%
ESP, silos 3&4 4/2/03 0.34% 0.101 26.8 0.55% 1.11%

• Economizer ash has 10-20 times less Hg than ESP ash
• ESP ash has very little Hg, ~0.5% of coal Hg
• Cl content of ash is similar in economizer and ESP, ~1.5% of 

coal Cl
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Ontario Hydro Data

• Hg conc. in ash 
higher than in ESP fly 
ash

• BUT fraction of Hg in 
ash very low

• 81% elemental Hg 
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Comparison of Hg:  Coal v. SCEM
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Testing Summary: Reactor and Flue Gas

Date
Boiler 
Duct Entrance Chamber

Space 
Velocity

NH3 (avg) 
ppm

Hg0, 
ug/Nm3, 
5% O2

HgT, 
ug/Nm3, 
5% O2

%Elemental 
Hg

3/28/03 6.17 7.64 81%
3/28/03 727 651 657 medium 408 5.88 8.00 74%
3/31/03 719 631 657 medium 452 5.00 7.00 71%
4/1/03 719 602 657 low 555 4.82 7.75 56%
4/1/03 717 625 656 medium 523 7.82
4/2/03 724 641 662 medium 0 6.04 6.47 93%
4/2/03 726 658 667 high 435 4.81 6.47 80%

Temperatures, F Inlet Mercury

Space velocities (1/hr):
“low” ~ 3,000
“medium” ~ 6,000-8,000
“high” ~ 12,000-14,000
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28 March, Hg0:  6,000 hr-1, with ammonia

28-March-2003: with ammonia, ~6000 hr-1
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28-March-2003: with ammonia, ~6000 hr-1
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• Initial data points not used to calculated standard deviation (right-hand graph) 
• Inlet elemental Hg consistent over time 
• C1 (blank) did not show oxidation
• C2 showed oxidation
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28 March, HgT:  6,000 hr-1, with ammonia

28-March-2003: with ammonia, ~6000 hr-1
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28-March-2003: with ammonia, ~6000 hr-1
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• Initial data points not used to calculated standard deviation (right-hand graph) 
• Total mercury the same at inlet and outlet of C1 (blank)
• C4 may indicate loss of Hg across catalyst
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Oxidation of Hg0 Across Catalyst
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Loss of HgT Across Catalyst

• Loss of Hg across 
commercial catalysts 
observed

• No loss across blank
• No clear effect of NH3

• SV ~ 7,000 hr-1

• T ~ 655 F
• 420-540 ppm NH3

• Errors estimated from 
quadratic eqn.-20%
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Loss of Elemental Hg as a Function of 
Space Velocity
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Catalyst Types
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Conclusions

• Blank monolith did not oxidize Hg0

• Commercial catalysts oxidized Hg0

• Oxidation of Hg0:
– Function of space velocity (at constant T)
– Monoliths generally had same behavior vs. SV
– Plate catalysts behaved differently

• Loss (adsorption?) of Hg:
– No loss of Hg across blank
– Some loss of HgT across catalysts, but no clear effect of NH3
– No clear effect of catalyst pressure drop
– Assumption that lost Hg0 was oxidized
– Sampling system problems?  Loss of Hg+2?
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Next Test Series:  Priorities and Plans

• In progress (August 7 – August 15)
• Make gas-phase Cl measurements
• Make simultaneous NOx measurements
• Look at transients with sample line switch and ammonia 

on/off
• Repeat Hg0 measurements at one SV

– With and without ammonia
– NH3/NO ~ 0.9, maybe lower
– Determine whether oxidation changes with aging

• Look at possible sampling system effects on loss of Hg
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