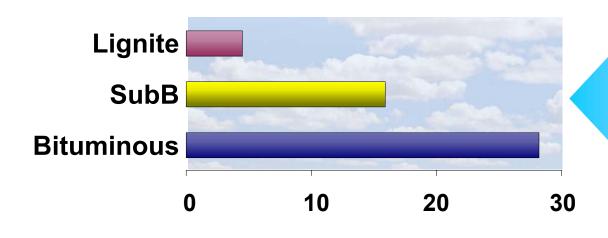

DOE-NETL's Mercury Control Technology R&D Program

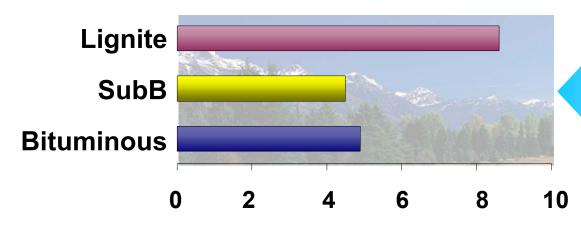
Program Review Meeting

August 12, 2003 Pittsburgh, PA

Scott Renninger
National Energy Technology Laboratory

Presentation Outline


- Hg Program Goals & Drivers
- Phase I Projects
- Phase II Field Testing Solicitation 41718
 Status
- Other NETL Related Activities

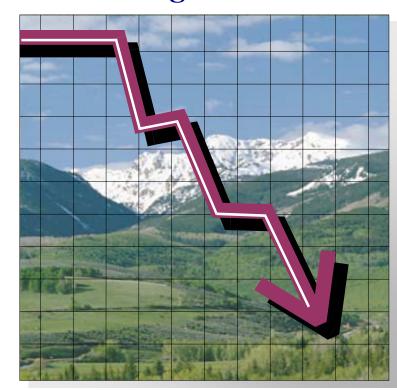


Power Plant Mercury Emissions

Coal Plants Emit ~ 48 tons/year

Total US Hg
Emissions
(tons per year)

Hg Emission Rate (lb per TBtu)


NETL Boiler Database

R&D Goals DOE-NETL Mercury Control Program

Cost

Have technologies ready for commercial demonstration:

- By 2005, reduce overall emissions 50-70%
- By 2010, reduce overall emissions by 90%
- Cost 25-50% less than current estimates

2000

Year ----

Baseline Costs: \$50,000 - \$70,000 / lb Hg Removed

Multi-pollutant Control Legislative Proposals Proposed Emissions Caps

Tons / Year

	Actual 2001	S. 485 - Clear Skies	S. 366 - Jeffords	S. 843 – Carper
Sulfur Dioxide (SO ₂)	10.6 M	4.5 M in 2010 3.0 M in 2018	2.25 M in 2009	4.5 M in 2009 3.5 M in 2013 2.25 M in 2016
Nitrogen Oxides (NOx)	4.8 M	2.1 M in 2008 1.7 M in 2018	1.51 M in 2009	1.87 M in 2009 1.7 M in 2013
Mercury (Hg)	48 (1999)	26 in 2010 15 in 2018	5 in 2008	24 in 2009 10 in 2013
Carbon Dioxide (CO ₂)	2.47 B (est.)	N.A.	2.05 B in 2009	2.57 B (est.) in 2009 2.47 B (est.) in 2013

Source: EIA AEO 2003 Reference Case Forecast, S.485, S.366, S.843

Multi-pollutant Control Legislative Proposals Proposed Emissions Caps

% Reduction from Baseline Actual

	Actual 2001	S. 485 - Clear Skies	S. 366 - Jeffords	S. 843 – Carper
Sulfur Dioxide (SO ₂)	10.6 M	58% in 2010 72% in 2018	79% in 2009	58% in 2009 70% in 2013 79% in 2016
Nitrogen Oxides (NOx)	4.8 M	56% in 2008 65% in 2018	69% in 2009	61% in 2009 65% in 2013
Mercury (Hg)	48 (1999)	46% in 2010 69% in 2018	90% in 2008	50% in 2009 79% in 2013
Carbon Dioxide (CO ₂)	2.47 B (est.)	N.A.	17% in 2009	~4% <i>increase</i> in 2009 2001 level in 2013

Six Mercury Control Field Tests

Technology / Utility Plant	Test Completion
ADA-ES – Sorbent Injection Alabama Power – Gaston We Energies – Pleasant Prairie PG&E – Brayton Point PG&E – Salem Harbor	April 2001 November 2001 August 2002 November 2002
McDermott-B&W – Enhanced Scrubbing Michigan South Central Power – Endicott Cinergy – Zimmer	October 2001 November 2001

Observations From Field Tests

Activated carbon removes Hg

 Range of effectiveness depends on coal type and plant configuration

Many uncertainties remain

- Capture effectiveness with low-rank coals
- Sorbent feed rate and costs
- By-product use and disposal
 - At Pleasant Prairie, LOI increased from 0.6% to 2.5-3.5% at10 lb/MMacf
- Need for fabric filter for units equipped with ESP
- Balance-of-plant impacts

Advanced Mercury Control Concepts

- Apogee Scientific
 - Advanced Hg sorbents
- CONSOL
 - Multi-pollutant control for Hg, SO₂, acid gases
- UNDEERC
 - Hybrid particulate control system

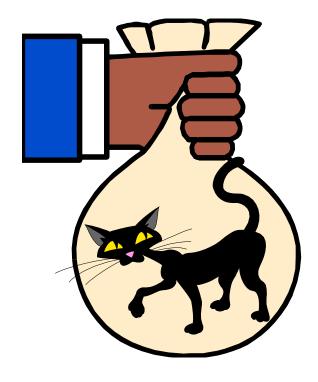
- Powerspan
 - Multi-pollutant control for Hg, SO₂, NO_x, particulates, acid gases
- Southern Research Institute
 - Calcium-based additives to control Hg
- URS Group
 - Catalyst to convert elemental to oxidized Hg

Designed to Achieve ≥ 90% Hg Removal

Mercury Control Technology R&D Phase II Field Testing Program

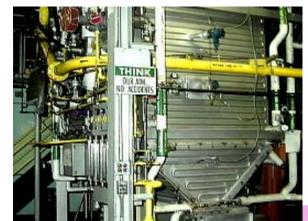
- Targeted solicitation issued Feb. 5, 2003: First closing date of April 7, 2003; Second closing date of Jan. 29, 2004
- Second phase of field testing at commercial coal-fired power plants
 - Activated carbon/sorbent injection
 - Enhance capture across FGD
 - Oxidation technology
 - Novel concepts
- One-month or longer duration testing at optimum conditions with focus on broader suite of boiler configurations and coal-types (e.g., lignite)

Solicitation Development/Structure



- Held two workshops to obtain stakeholder input (6/4/02 & 9/12/02):
 - Coal types to be evaluated
 - Plant size and configuration, including downstream control equipment
 - Length of testing
 - Application of Hg CEMs
 - Other issues
- Cost-sharing3/4 DOE1/4 Proposing Team
- Requested multi-site proposals with integrated project team

AND THE WINNERS ARE?


- Congressional Notifications have been sent to Headquarters for Approval
- Winners to be notified within the next few weeks

NETL's Inhouse R&D Activities

- THIEF Process Capture
 Hg on semi-combusted
 coal extracted from
 furnace and re-injected
 downstream of air
 preheater
- GP-254 Process Uses 253.7-nanometer ultraviolet radiation to increase fraction of oxidized Hg

NETL's 500#/hr Coal Combustion Pilot Unit

Dr. Evan Granite, co-inventor of GP-254 Process

Coal Combustion Byproduct Research

- Increase national beneficial use of coal byproducts from 33% to 50% by 2010
- Characterization of Hg (and other trace metals) leaching and volatilization from coal byproducts

Fly Ash and Scrubber Solids

Policy and Regulatory Implications of R&D

 Results of research and subsequent cost and performance analyses critical to:

- Hg and HAP Reports to Congress

Hg MACTInteragency Review

Administration's
 Clear Skies Initiative, e.g, new information
 "re-opener"

Environmental
Policy
Objectives

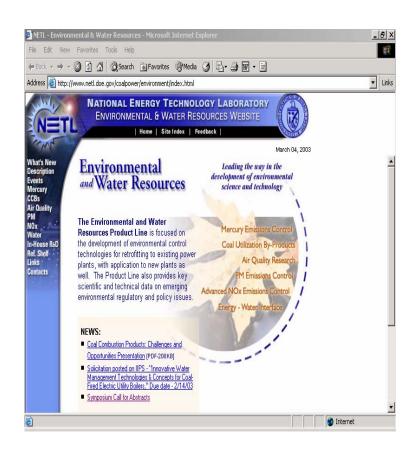
Technology
Research &
Development
Options

Policy/
Regulatory
Options

Alternative multi-pollutant control proposals

United Nation Environmental Programme (UNEP) Global Mercury
 Assessment

Key Unresolved Issues



Coal-fired Utility Plant Manager

- MACT or Clear Skies ?
- Trading?
- State vs. Federal limits
- Sustainability of Short-Term Results Over Much Longer Removal Periods
- Low Rank Coal Removals
- Confidence in CEMs
- Mercury Capture in By-Products/Regulatory Status?

DOE-NETL Environmental and Water Resources Home Page

 To find out more about DOE-NETL's Environmental R&D activities visit us at:

www.netl.doe.gov/coalpower/environment