NOVEL TECHNIQUES FOR MERCURY CONTROL

Henry W. Pennline and Evan J. Granite

U.S. Department of Energy National Energy Technology Laboratory

Mercury Control Technology R&D Program Review Meeting August 12-13, 2003

LAB-SCALE RESEARCH OBJECTIVES

Develop cost-effective novel sorbents.

Elucidate mercury-sorbent interactions.

Explore innovative techniques for mercury removal, for example, photochemical oxidation.

Develop high temperature mercury sorbents for gasification applications.

A Technique to Control Mercury From Flue Gas: The Thief Process

Henry Pennline, Evan Granite, Mark Freeman, Richard Hargis, and William O'Dowd

U.S. Department of Energy National Energy Technology Laboratory

> Mercury Control Technology R&D Program Review Meeting August 12-13, 2003

Sorbent Characterization

• Physical

- -Surface area (BET) and pore volume
- -Bulk chemical analysis
- -Particle size
- -Raman microanalysis

Chemical

-Mercury capacity

Evergreen Bituminous Coal

Sorbent Characterization

• Physical

- -Surface area (BET) and pore volume
- -Bulk chemical analysis
- -Particle size
- -Raman microanalysis

Chemical

-Mercury capacity

LAB-SCALE SORBENT SCREENING UNIT

Parametric Scan In Packed-Bed Reactor

Sorbents/Promoters: Carbons/Sulfur Temperatures: 140, 280, 350°F Gases: Simulated Flue Gases Elemental Mercury Concentration: 270 ppb Mass of Sorbent: 10 mg Time: 350 minutes Mercury Measurement: CVAAS Coals: Evergreen and Pittsburgh #8

Results: Commercial Carbons

<u>Sorbent</u>	Capacity (mg/g)	<u>Temp (°F)</u>
FluePac AC	0.89	280
Darco AC	1.60	280
Insul AC	1.96	280
Insul AC	0.19	400
S-AC-1	1.55	280
S-AC-2	1.39	280

- Unpromoted carbons display good capacity
- Adsorption favored by low temperature

Sulfur promotion does not increase capacity

Results: Thief Sorbents

 Pittsburgh #8-Port 2
 1.38
 280

- Partially combusted coal, produced in-situ and removed from furnace by lance ("thief")
- Similar capacity to activated carbon
- Cheaper than activated carbons

500 LB/HR PILOT COMBUSTOR AND PULSE JET FABRIC FILTER

Comparison of Sorbent (Evergreen)

Parameter	CERF	500-lb/hr	Activated
	Sample	Sample	Cardon
BET, m^2/g	31.2	69.1	481
Carbon Content, wt%	49.8	63.2	66.5
Hg Capacity, mg/g	2.03	1.80	1.61

Norit Darco versus Thief Sample (100micron)

Norit Darco versus Thief Sample (50 micron)

Typical 500-lb/hr Combustor Operating Conditions With Evergreen Coal

- Coal flow: 360-lb/hr
- Duct gas composition:
 - 7.2% O₂
 - 12.1% CO₂
 - 4.9% H₂O
 - 528ppm SO₂
 - 400ppm NO_x
 - Hg-oxidized 161-µg/min
 - Hg-elemental 23-µg/min
- Inlet duct temperature: 300°F
- Outlet duct temperature: 280°F
- Average baghouse temperature: 270°F
- Ash loading: 23.8-lb/hr

Comparison of the Effectiveness of Darco FGD and Thief Sorbent (Evergreen)

Preliminary Data for PRB Coal

Sample	Carbon Content, wt %	Sorbent Injection, Ib/mmacf	System Mercury Removal, %
Thief	87-91	14.1	57
Thief	75-84	11.5	82
Thief	50-65	2.3	92
Darco	66.5	2.1	91

CONCLUSIONS

- An alternate technique to activated carbon injection for Hg removal has been proposed.
- Process involves extracting partially combusted coal from the combustor and re-injecting downstream of the air preheater.
- As compared to activated carbon, partially combusted coal extracted near burner has:
 - -similar carbon content
 - -lower surface area
 - -similar elemental mercury capacity

CONCLUSIONS (cont'd)

- Test results indicate that the technique is promising on the pilot scale.
- Optimization in actual combustor requires best extraction location (modeling with coal particle mapping for validation) and good probe design.
- Economics appears favorable for near term goal.
- Technique patented.

Mercury Control Technology R&D Program Review Meeting

The GP-254 Process For Photochemical Removal of Mercury From Flue Gas

Evan J. Granite Henry W. Pennline

U.S. Department of Energy National Energy Technology Laboratory

August 12, 2003

Background: GP-254 Process Discovery

- Sorbent Development
- UV Measurement of Mercury
- AFS
- Unwanted Red-Brown Stains
- Mercuric Oxide
- Serendipity

Photochemical Oxidation of Mercury

- Mercury can absorb and emit 253.7 nm light
- Atomic Absorption (AAS) Hg + 253.7 nm radiation \rightarrow Hg^{*} Hg 6 (³P₁) (I)

(II)

- Atomic Emission (AES)
 Hg* → Hg + 253.7 nm radiation
- Atomic Fluorescence (AFS): steps (I) and (II)

• Analytical Basis for CEMs

What is Quenching?

- Intensity of Fluorescent Emission Diminished
- Energy Transfer Due To Collisions
- Function of Size, Shape, and Reactivity
- Primed for Chemical Reaction (Activation)
- Interferes with Ultraviolet Spectroscopy

Quenching Cross Sections Hq $6(^{3}P) + M \rightarrow Hq 6(^{1}S) + M^{*}$			
Function of Size, Shape, and Reactivity			
Species	Cross Section (cm ²)		
HCI	37.0 x 10 ⁻¹⁶		
NO	24.7 x 10 ⁻¹⁶		
O ₂	13.9 x 10 ⁻¹⁶		
CO	4.1 x 10 ⁻¹⁶		
CO ₂	2.5 x 10 ⁻¹⁶		
H ₂ O	1.0 x 10 ⁻¹⁶		
N ₂	0.4 x 10 ⁻¹⁶		
NETL			

Photochemical Oxidations

- First described in 1926 by Dickinson and Sherrill (O₂)
- Others discovered by Gunning in 1950s (HCI, H₂O, CO₂)

Relevant Overall Reactions

 $Hg + 2 O_2 + 253.7 \text{ nm light} \rightarrow HgO + O_3$

Hg + HCI + 253.7 nm light \rightarrow HgCI + 1/2 H₂

Hg + H₂O + 253.7 nm light \rightarrow HgO + H₂

 $Hg + CO_2 + 253.7 \text{ nm light} \rightarrow HgO + CO$

- Interferes with UV-Based CEMs
- Potential Removal Method

LAB-SCALE PHOTOREACTOR

NETL

Photoreactor For Removal of Mercury

Experimental Parameters

- Quartz Photoreactor, 6 Watt UV Lamp
- Temperatures: 80°F, 280°F, 350°F
- Flow-Rate: 60 ml/min Reaction Time: 350 min
- Intensity: 1.4 mW/cm²

Gas Compositions

A: 16% CO₂, 5% O₂, 2000 ppm SO₂, 300 ppb Hg, balance N₂

B: 16% CO₂, 5% O₂, 2000 ppm SO₂, 500 ppm NO, 300 ppb Hg, balance N₂

Results: Photochemical Removal

<u>Gas</u>	<u>T (</u> °F)	<u>Mean Hg Capture (%)</u>
Α	350	2.3 ± 2.0
Α	280	71.6 ± 30.1
Α	80	67.8 ± 28.8
B	280	26.8 ± 11.7

- Removal as Mercuric Oxide/Mercurous Sulfate Stain
- Higher Removals below 300°F
- Limited By Thermal Decomposition of Ozone (300-350°F)
- NO Reduces Removal, Possibly By Consuming Ozone
- Low Energy Consumption
- Potentially Low Operating Costs

Conclusions: Photochemical Oxidation

Method For Mercury Removal

- Obvious Interference For CEMs
- High Levels of Mercury Removal From SFG
- Capture as HgO and Hg₂SO₄
- Enhanced Removal Below 300°F

Conclusions: Photochemical Oxidation

Potential For Better Performance

- Other Oxidants (HCI, H₂O) in Flue Gas
- Promising Process Economics
- Potential For Multi-Pollutant Control
- Pilot-Scale Data Needed
- Low Rank Coals Are of Particular Interest

Plans For FY04

Bench-Scale Photoreactor

- Slipstream of Flue Gas From 500-lb/hr Pilot
- Temperature: 280°F 350°F
- Effect of Temperature, Radiation Intensity Residence Time & Composition
- Removals Measured On-Line By CEM
- Impact Upon Other Flue Gas Species
- Determine GP-254 Process Economics

