Mercury Control with the Advanced Hybrid Particulate Collector

(DE-FC26-01NT41184)

Stan Miller Energy & Environmental Research Center

Mercury Control R&D Review Meeting, Pittsburgh PA August 12–13, 2003

Project Team

U.S. Department of Energy

William Aljoe, Project Manager

Energy & Environmental Research Center

Main Contractor – Construction, Experimental Work, and Reporting Stan Miller, Project Manager Mike Collings, Research Engineer Ye Zhuang, Research Engineer

W.L. Gore & Associates, Inc.

Technical and Financial Partner – Bag Supplier Technical Advisor and Exclusive Licensee Craig Rinschler, Associate Rick Bucher, Associate Rich Gebert, Associate Dwight Davis, Associate

Big Stone Plant Host Site for Demonstration Jeff Endrizzi, Plant Manager Bill Swanson, Engineering Supervisor

Project Objective

 Demonstrate 90% total mercury control with commercially available sorbents in the *Advanced Hybrid*[™] filter at a lower cost than current mercury control estimates.

Mercury Control with the Advanced Hybrid[™] Filter

- Approach
 - Inject powdered activated carbon upstream of the Advanced Hybrid[™] filter
 - Achieve good mercury control at a low carbon addition rate of 24 mg/m³ (1.5 lb/million acf)

Mercury Control with the Advanced Hybrid[™] Filter

Scope of work

- Bench-scale batch testing
- Small pilot-scale testing (200 acfm)
- 2.5-MW Advanced Hybrid[™] filter field demonstration pilot testing
 - A utility power plant
 - Prove scaleup
 - Demonstration of longer-term mercury control (4 months)

Advanced Hybrid[™] Development

- September 1994 Advanced Hybrid[™] filter concept proposed to DOE
- October 1995 September 1997 Phase I Advanced Hybrid™ filter successfully demonstrated at 200-acfm scale
- March 1998 February 2000 Phase II Advanced Hybrid[™] filter successfully demonstrated at 2.5-MW scale at Big Stone Plant
- September 1999 August 2001 Phase III Advanced Hybrid[™] filter commercial components tested and proven at 2.5-MW scale at Big Stone Plant
- July 2001 December 2003 Mercury control with the Advanced Hybrid[™] filter
- Fall 2002 First commercial Advanced Hybrid[™] filter start-up

What Is an Advanced Hybrid™ Filter?

- Best features of agglomeration, electrostatic collection, and filtration
- Different than previous concepts
- Relatively simple
- Sound theoretical basis

Concept Logic

CHALLENGE

SOLUTION

GORE-TEX[®] Membrane filter media 99.99% Fine Particulate Control All Coals (chemical attack) All ePTFE fabric Air-to-cloth ratio 8–14 ft/min Cost (2.4-4.3 m/min)High-energy pulse-jet cleaning Pressure Drop Reentrainment Electrostatic enhancement Bag Life (wear) 90% electrostatic precollection Bag Life (electrical damage) Conductive – No Stat[®] bags and protective grid

Top View of the Perforated Plate Configuration for the 2.5-MW *Advanced Hybrid*[™] Filter

Top View of the Perforated Plate Configuration for the 2.5-MW *Advanced Hybrid*[™] Filter

Individual Bag Flow Rates

August 16, 2002 Advanced Hybrid™ Filter ESP Power On

Daily Average Air-to-Cloth Ratio

Date/Time

Individual Bag Flow Rates

Bench-Scale Tests

- Verify previous SO₂ and NO₂ effects
- Expand on SO₂ and NO₂ concentration effects
- Compare simulated flue gas with real flue gas results

EERC Mercury Bench-Scale System

EERC SM19581.CDR

Carbon Fixed Bed

EERC SM19583.CDR

Effect of SO₂ Concentration on Hg⁰ Capture with Activated Carbon

Effect of NO₂ Concentration on Hg⁰ Capture with Activated Carbon

NO₂ Concentration Effect at 500 ppm SO₂ and 135°C

Desorption of Mercury

2.5-MW Advanced Hybrid[™] Filter Field Test

- Demonstrate longer-term mercury removal.
- Determine the effect of carbon injection on the Advanced Hybrid[™] filter performance.

2.5-MW Advanced Hybrid[™] Filter Field Tests

- November 5–9, 2001
- June 28 September 3, 2002
- November 19–22, 2002
- May 6 June 3, 2003

Overview of Carbon-Injection System

Air-Vac Eductor of Carbon-Injection System

Carbon-Injection Location

Ontario Hydro Sampling Train at the Advanced Hybrid[™] Filter Inlet

Ontario Hydro Sampling Train at the Advanced Hybrid[™] Filter Outlet

Conversion System CMM Mercury Sampling

EERCSM19728.CDR

PS Analytical Mercury Analyzer

EERC SM19725.CDR

November 2001 Day 5 – Mercury Species Collection Efficiency *Advanced Hybrid*[™] Filter and Pulse-Jet Modes

June 28–September 2, 2002 2.5-MW *Advanced Hybrid*[™] Filter Test Parameters and Operational Summary

A/C Ratio Pulse Pressure **Pulse Duration Pulse Sequence** Pulse Trigger **Pulse Interval** Temperature **Rapping Interval** Voltage Current

10 ft/min (3 m/min) 70 psi (482 kPa) 200 ms 87654321 (multibank) 8.0 in. W.C. (2.0 kPa) 260-400 min 127°-160°C (260°-320°F) 15–20 min 58–62 kV 55 mA

June 28–September 2, 2002 2.5-MW *Advanced Hybrid*[™] Filter Test Mercury Removal Summary

Condition	Mercury Removal, %
Baseline – No TDF	5–10
1.5 lb Carbon/million acf	
No TDF	Average 63
1.5 lb Carbon/million acf	
TDF Cofiring Highest Rate	88

Daily Average Bag-Cleaning Interval

Date

Daily Average Pressure Drop

 K_2C_i

Date

Small-Scale Pilot Tests

- Mercury control screening tests
- Evaluate residence time
- Compare with field test results
- Evaluate TDF cofiring

Small Pilot-Scale Tests Effect of TDF on Mercury Capture Efficiency (Ontario Hydro results)

November 2002 CMM Outlet Mercury Concentration for the 2.5-MW *Advanced Hybrid*[™] Filter

May 2003 2.5-MW *Advanced Hybrid*™ Filter Inlet Mercury Speciation (CMM Data)

May 20, 2003 – 2.5-MW Advanced Hybrid[™] Filter Effect of Filtration Velocity on Mercury Removal at Big Stone

Summary Bench-Scale Tests

- Verified previous flue gas results
- SO₂ and NO₂ have significant effects on carbon capacity to remove mercury
- Similar results with real or simulated flue gas

Summary Small Pilot-Scale Tests

- Similar mercury speciation and mercury removal to field-testing results
- 50%–75% mercury removal at 1.5 lb carbon/million acf
- TDF cofiring significantly improved mercury capture
- No mercury desorption observed in longer residence time tests

Summary

2.5-MW Advanced Hybrid[™] Field Tests

- Total of 4-months' testing completed
- No effect of carbon on Advanced Hybrid[™] filter pressure drop or bag-cleaning interval
- 50%–75% mercury removal at 1.5 lb carbon/million acf
- 85%–95% mercury removal at 1.5 lb carbon/million acf and the highest TDF cofiring rate
- Level of mercury removal highly dependent on other flue
 gas components

