Presented to Mercury Control Technology R&D Program Review Meeting Pittsburgh, PA August 12, 2003

#### POWERSPAN

#### Mercury Removal in a Non-Thermal Plasma Based Multi-Pollutant Control Technology for Utility Boilers

Christopher McLarnon, Ph.D. Vice President, R&D Powerspan Corp

### Electro-Catalytic Oxidation (ECO<sup>®</sup>) Technology

- Integrated control technology for coal-fired boilers designed to achieve high removal of:
  - SO<sub>2</sub> (98%)
  - NO<sub>x</sub> (90% based on 0.4 lb/MMBTU inlet NO<sub>x</sub>)
  - PM<sub>2.5</sub> (>95%)
  - Hg (80 to 90%)
- Pilot testing on slip stream from coal fired boiler
  - Started in Feb '02
  - Consistently meets removal goals

### **DOE Funded Pilot Test Program**

- \$2.8 million cooperative agreement with U.S. DOE (NETL) for optimizing mercury removal in ECO
- Goal is to demonstrate Hg removal while maintaining high removal of SO<sub>2</sub>, NO<sub>x</sub> and PM
- PS Analytical Sir Galahad semi-continuous monitoring of gas phase mercury
- Ontario-Hydro gas phase Hg measurement
- Measurement of mercury in ash and liquid streams

#### **Barrier Discharge Reactor**

- High energy electrons create oxidizing radicals (O, OH) from O<sub>2</sub> and H<sub>2</sub>O
- Radicals oxidize pollutants
  - HgO from Hg
  - H<sub>2</sub>SO<sub>4</sub> from SO<sub>2</sub>
  - NO<sub>2</sub> and HNO<sub>3</sub> from NO<sub>x</sub>
- Coaxial electrode design



#### **Ammonia Scrubber**

- Ammonia based scrubbing
  - Removes SO<sub>2</sub>, HNO<sub>3</sub>, NO<sub>2</sub>
  - Produces fertilizer co-product
- Consists of:
  - Gas cooling and saturation
  - Scrubbing
  - Ammonia vapor absorption
- Operate to prevent release of Hg



### **Wet Electrostatic Precipitator**

- Collects:
  - Hg<sup>2+</sup> not captured in scrubber
  - Aerosols (NH<sub>4</sub>HSO<sub>4</sub>, NH<sub>4</sub>NO<sub>3</sub>, NH<sub>4</sub>Cl) produced in the scrubbing process
  - Fine particulate matter (PM<sub>2.5</sub>)
  - Air toxic compounds



#### **Co-Product Processing**

- Ammonia addition to maintain pH at ~6
- Filtration to remove ash and insoluble metals
- Sulfur impregnated activated carbon (Mersorb LW) to remove Hg from ammonium sulfate-nitrate co-product





# ECO<sup>™</sup> Pilot Unit at FirstEnergy's R.E. Burger Plant



### **Pilot Testing**

- 1-2 MW slipstream from a 156 MW boiler, flue gas drawn from Plant's ESP inlet
- PS Analytical Sir Galahad with Baldwin Environmental sample conditioners and probes for measurement
- Routinely achieved >80% Hg capture
  - Verified by Ontario-Hydro testing

#### Pilot Data: >85% Hg Removal



Consistent with Ontario-Hydro result of 88% removal

### **Ontario-Hydro Test Results**

- Performed by Air Compliance Testing
- Concentrations in ug/Nm<sup>3</sup>

| Hg Fraction          | ECO<br>Inlet | ECO<br>Outlet | Removal |
|----------------------|--------------|---------------|---------|
| Particle Bound<br>Hg | 0.62         | 0.016         | 97.4 %  |
| Oxidized Hg          | 5.81         | 0.022         | 99.6 %  |
| Elemental Hg         | 0.16         | 0.75          |         |
| Total Hg             | 6.59         | 0.79          | 88.0 %  |

### **Pilot Testing with Hg Addition**

- Native Hg is >90% Hg<sup>2+</sup>
- Addition of Hg<sup>0</sup> results in:
  - Small increase in Hg<sup>0</sup> (~10% of added Hg)
  - Large increase in Hg<sup>2+</sup> (~30-40% of added Hg)
  - Large fraction of added Hg not reported in gas phase measurement (~60 to 70%)

#### Hg Addition with Flue Gas from ESP Inlet



---- Inlet Elemental Hg ---- Inlet Total Hg

### **Pilot Testing**

- Apogee QSIS probe installed for sampling inlet gas reduced effect of ash on Hg measurement
  - Bulk of added Hg still measured as Hg<sup>2+</sup>
- Ductwork to draw flue gas from plant's ESP outlet installed in July '03
  - Removed pilot cyclone separator, de-energized pilot dry ESP
- Reduced ash loading by more than a factor of 10
- Able to inject and measure Hg<sup>0</sup>

#### Hg Addition with Flue Gas from ESP Outlet



### **Continued Pilot Testing**

- Tests with addition of elemental Hg to gas stream
  - Demonstrate oxidation and capture of elemental Hg
- Hg material balances on process streams
  - Testing to determine fate of Hg throughout ECO process
- Independent measurement of Hg (Ontario-Hydro), metals (method 29), and particle size distribution

### Pilot Data: 90% NO<sub>x</sub> Removal



### Pilot Data: 98% SO<sub>2</sub> Removal



### **Pilot Data: Co-Product Processing**

- Activated carbon treatment reduces Hg concentration from >200 ppb to less than minimum detectable levels (<20 ppb)</li>
- Ammonium sulfate-nitrate crystals contained less than minimum detectable levels of Hg



### **Commercial Demonstration Unit**

- Installation at FirstEnergy's R.E. Burger Plant
- 50 MWe slipstream from a 156 MWe boiler
- Vertical scrubber and wet ESP in a single vessel
- Operation in first quarter 2004



### **Further Information**

- For further information contact:
  - Chris McLarnon
    - Vice President, Research and Development
    - Ph: 603.859.2500
    - Email: cmclarnon@powerspan.com