

SOUTHERN RESEARCH

Mercury Control with Calcium-Based Sorbents and Oxidizing Agents

Thomas K. Gale

Acknowledgements

Barbara Carney -- DOE Project Manager Babcock Power -- Na₂S₄ Technology

We would also like to thank EPA and EPRI for funding and allowing collaboration with a fundamental mercury speciation program, also being conducted at Southern Research Inst.

Outline

Experimental

- Comparison of Hg-Oxidation and Hg-Capture -- PRB and Bituminous coals
 - Chlorine
 - General Flue Gas Components
 - Catalytic Material
- Na₂S₄ Injection
 - Effects of Chlorine, Temperature, Coal Type.

Combustion Research Facility

CRF ^{dT}/_{dt} Compared to Full-Scale

Mercury Monitoring System Including Spike and Recovery

Example of Data from Monitor Using Spike and Recovery

SOUTHERN RESEARCH

PRB/Bituminous Component Comparison Regarding Hg-Oxidation and Capture

 PRB Coal compared with Bituminous Coal
via coal blending

Hg-OxidationHg-Capture

Effect of Flue-Gas Chlorine on Hg-Oxidation

Effect of Chlorine on Hg-Removal

Isolated and Non-Correlated Parameters

■ NO Correlation with CO_2 , CO, O_2

■ NO Correlation with NO_x or H_2O

Through Isolation -- NOT SO₂

What's Left? UBC and Coal Minerals

Effect of SO₂ on Hg-Speciation

ANSWER: Unburned Carbon

UBC enhances HgCl₂/Ca Capture

Hydrated Lime w/Catalyst is Effective

SOUTHERN RESEARCH

Conclusions Regarding Hg-Oxidation

FOR LOW UBC CONDITIONS

- Total chorine content, injected through the burner or inherent in the coal, tends to increase Hg-oxidation prior to and across the baghouse.
- The catalytic material in coal ash is a more important factor in determining Hg-oxidation than total chlorine content.
- The primary parameter responsible for enhancement of Hgoxidation for blends of PRB and bituminous coal is the UBC in bituminous ash.

Conclusions Regarding Hg-Removal

FOR LOW UBC CONDITIONS

- Total chorine content, injected through the burner or inherent in the coal, has little effect on total mercury removal.
- Hydrated lime and even high-calcium ashes such as PRB can be effective sorbents, if they are mixed with a catalyst.
- The primary parameter responsible for enhancement of Hgcapture for the blends of PRB and bituminous coal in this investigation was the UBC in bituminous ash.
- Most effective Hg-removal was observed for high-calcium and high UBC concentrations in the ash.

Na₂S₄-Injection

- Fine-spray injection of Sodium Tetrasulfide into flue gas before baghouse or ESP.
- Na₂S₄ decomposes into elemental S^o and ionic sulfur S⁻²
- Hg^o is captured by S^o and HgCl₂ by S⁻² to form HgS.
- HgS is the most stable and benign form of mercury in the environment.
- Results of injection ~2.0 seconds before baghouse.

Na₂S₄-Injection Location

Gas-Phase Hg-Removal by Na₂S₄-Injection

Effect of Chlorine

SOUTHERN RESEARCH

Temperature Effect on Na₂S₄-Injection

Residual Effect of Na₂S₄-Injection

Conclusions

- Sodium tetrasulfide injection (~10 ppmv Na₂S₄ in flue gas), approximately 2.0 seconds ahead of a baghouse, is sufficient to removal 100% +/- 2% of flue-gas *vapor-phase* mercury, while burning a relatively low chlorine coal.
- Injection temperatures above 350 °F are detrimental to the effectiveness of Na_2S_4 -injection technology, while injection temperatures as low as 250 °F appear favorable.
- Chlorine in the flue gas reduced the effectiveness of Na_2S_4 -injection for Hg-capture directly proportional to the concentration of chlorine in the flue gas. However, previous work has shown this technology to be successful for use in high-chlorine waste-incineration flue gas.
- Other than chlorine content, Na_2S_4 -injection technology was unaffected by differences in coal type or flue-gas composition in this investigation.
- While Na_2S_4 -injection technology may be effective in the disperse phase (i.e., ESP applications), Na_2S_4 -injection in front of a baghouse benefits from a residual effect, probably associated with the baghouse filter cake. Hence, Na_2S_4 -injection in front of a baghouse may only require intermittent injection, and thus operational costs may be lower.

Future Work

Calcium-based sorbent development and optimization will continue, utilizing information obtained on catalytic enhancement of Hg-oxidation. An optimized sorbent will be tested to observe the ability of this designer sorbent to remove mercury in the disperse phase (ESP) and in a baghouse. Sorbents specifically designed to remove SO_2 in a semi-dry recirculating system will be examined for their effectiveness as a Multi-Pollutant Control Technology for removing both SO_2 and Hg from the flue gas. Sodium tetrasulfide injection will be tested for its ability to remove mercury across an ESP.

Finally, field-testing options will be explored for promising technologies.

