Expected Impacts to Coal Combustion Product Utilization (Risks, Landfilling, and Costs) From Mercury Sorbent Materials

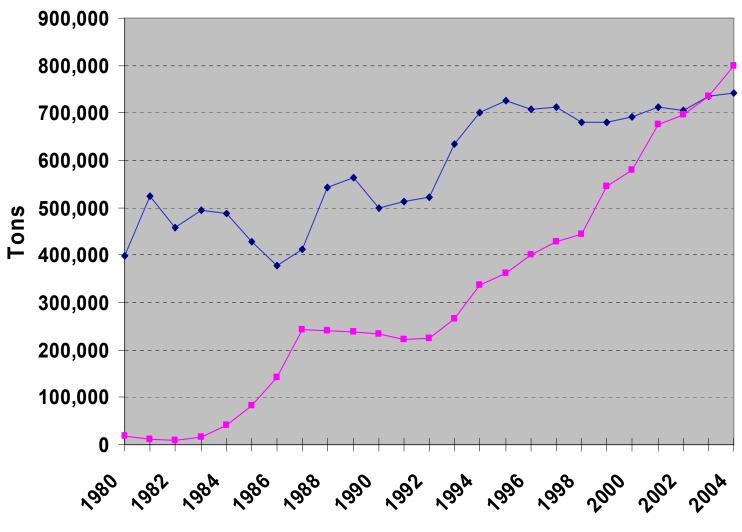
Bruce W. Ramme, P.E. Principal Engineer

2001 WE Coal Ash Production

• Fly Ash = 569,744 tons

• Bottom Ash = 129,627 tons

• Total = 699,371 tons


2001 CCP's Utilization (Tons)

•	Concrete	237,000
•	Waste Stabilization	116,000
•	Sub-Base (Btm. Ash)	76,000
•	Supplemental Fuel	70,000
•	Landfill Applications	37,000
•	Cement Raw Feed	23,000
•	CLSM Flowable Fill	19,000
•	Reclaimed Ash Material	9,000
•	Soil/Asphalt Stabilization	6,000
•	Miscellaneous	1,000

WE Coal Ash Production & Utilization

Year

→ Coal Ash Produced (Tons) → Coal Ash Util. (Tons)

2001 Ash Utilization

 WE Ash Utilization in Wisconsin is 97%

The National Average is 32%

Effects of Carbon in Fly Ash for Concrete

- Organic Contaminant
- Affects Freeze/Thaw Durability
- Admixture Quantities
- Color
- Water Demand & Strength

Predicted Carbon in Ash

Injection Concentration	Injection Rate	PAC in Ash
(lbs/Mmacf)	(lbs/h)	(%)
10	340	4.3
5	170	2.2
2	70	0.9
1.1	40	0.5

American Society of Testing and Materials ASTM C618

- Puts a 6% limit on carbon content in concrete
- Yet 1% is the real world limit

The key is consistency - to manage risk and minimize liability

ASTM C618 P4 Results

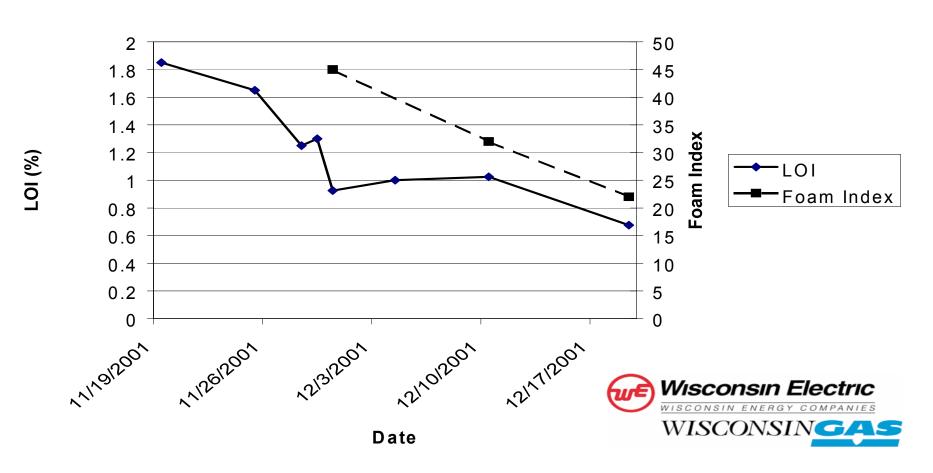
- LOI Changed from O.6% to
 - A range of 1.0 to 3.6%
- Strength Activity Changed from 91.3% to
 - A range of 84.1 to 86.8%
- Specific Gravity Changed from 2.58 to
 - -2.56 to 2.49
- No significant change in other parameters

Foam Index Testing Method

- Set amount of cement, fly ash and water or fly ash and water are introduced into a jar, capped and shaken
- Diluted drops of concrete air entraining admixture are added in small increments and shaken after each addition
- Determine how many drops are required to produce a stable foam on the surface
- The number of drops is the foam index

Carbon in Ash Foam Index Results

Salable Contract Limit is 25 Drops


Injection Concentration (lbs/Mmacf)	Unburned Carbon in Ash (%)	Foam Index (Drops)	Comment
0	0.55	15	Normal
1	1.1	>72	Maxed out
3	1.6	>72	Maxed out
10	3.6	>72	Maxed out

Residual Carbon Effects

Testing Concluded on 11/15/01

P4 Precip #8 LOI & Foam Index

Fly Ash Mercury Content (Bulk)

• Normal = 0.13 ppm

- Low Sorbent = 0.74 ppm (0.48-0.93)
- Medium Sorbent = 0.85 ppm (0.80-0.91)
- High Sorbent Hg = 0.95 ppm (0.84-1.00)

• NR 538 (Category 1) = Less than 4.7 ppm

Fly Ash Mercury Content (Leach)

• Normal = Less than 0.000028 mg/l

- Low Sorbent = 0.000033 mg/l
- Medium Sorbent = Less than 0.000028 mg/l
- High Sorbent Hg = Less than 0.000028 mg/1

• NR538 (Categ. 1) = Less than 0.0002 mg/l