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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




ABSTRACT

The Pittsburgh Energy Technology Center (PETC) developed a triboelectrostatic separation
(TES) process which is capable of removing mineral matter from coal without using water. A distinct
advantage of this dry coal cleaning process is that it does not entail costly steps of dewatering which is
a common problem associated with conventional fine coal cleaning processes. It is the objective of this
project to conduct a series of proof-of-concept (POC) scale tests at a throughput of 200-250 kg/hr and
obtain scale-up information. Prior to the POC testing, bench-scale test work will be conducted with
the objective of increasing the separation efficiency and throughput, for which changes in the basic
designs for the charger and the separator may be necessary. The bench- and POC-scale test work will
be carried out to evaluate various operating parameters and establish a reliable scale-up procedure.
The scale-up data will be used to analyze the economic merits of the TES process.

At present, the project is at the stage of engineering design (Task 3). Work accomplished
during this reporting period include the construction of a Faraday Cage for measurement of particle
charges (Subtask 3.1), construction of the a bench-scale triboelectrostatic separator (Subtask 3.2) and

development of a theoretical model for predicting motion of charged particles in a non-uniform

electrostatic field (Subtask 3.2). This model will be useful for designing the POC module.
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INTRODUCTION

Numerous advanced coal cleaning processes have been developed in recent years that are
capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of
the processes involve fine grinding and use water as cleaning medium; therefore, the clean coal
products must be dewatered before they can be transported and burned. Unfortunately, dewatering
fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial
application. |

As a means of avoiding problems associated with the fine coal dewatering, the Pittsburgh
Energy Technology Center (PETC) developed a dry coal cleaning process, in which mineral matter is
separated from coal without using water. In this process, pulverized coal is subjected to
triboelectrification bgfore being placed in an electric field for electrostatic separation. The
triboelectrification is accomplished by passing a pulverized coal through an in-line mixer which is made
of copper, whose work function lies in-between those of carbonaceous material (coal) and mineral
matter. Thus, coal particles impinging on the copper wall loses electrons to the metal thereby
acquiring positive charges, while mineral matter impinging on the wall gains electrons to acquire
negative charges. The triboelectrostatic separation (TES) process has been tested successfully on
bench-scale. The results obtained at PETC showed that it is capable of removing more than 90% of
the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. It is
necessary, however, to test the process on a proof-of-concept scale so that appropriate scale-up

information is obtained. Furthermore, it is necessary to increase the throughput of the TES process by

improving the design for the electrostatic separation system.




The laboratory-scale batch TES unit used by PETC relied on adhering charged particles on
parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the
electrode surface area. If'this laboratory device is scaled-up as is, it Would suffer from low throughput
capacity and high maintenance requirement. In general, surface area-based separators (e.g., shaking
tables, magnetic drum separator, electrodynamic separator, etc.) have lower throughput capacities than
volume-based separators (e.g., flotation cell, dense-medium bath, cyclones, etc.) by an order of
magnitude. Furthermore, the electrodes of the laboratory unit need to be cleaned frequently, creating a
high-degree of maintenance requifement if it is scaled-up to a commercial unit. The bench-scale
continuous TES unit developed at PETC, on the other hand, separates positively and negatively
charged particles by splitting the gaseous stream containing these particles in an electric field by means
of a flow splitter, so that the oppositely charged particles can be directed into different compartments.
This device is ﬁmdallnentally different from the laboratory unit in that the former is a volume-based
separator, while the latter is a surface area-based separator. The bench-scale unit is referred to as
entrained flow separator by the in-house researchers at PETC. Thus, the entrained flow TES unit is a
significant improvement over the laboratory unit with regard to throughput capacity.

In the present work, the entrained flow separator will be scaled-up to proof-of-concept POC-
scale. However, the parallel plate electrodes will be replaced by a pair of circular electrodes, for which
there are two advantages. First, the circular electrodes provide a non-uniform electric ﬁeld (and,
hence, a field gradient), which will be conducive for improving the separation of oppositely charged
particles from each other. Second, the electrode will be rotated so that fresh electrode surfaces can be
exposed. This new design is similar to the open-gradient magnetic separator developed by Oak Ridge

National Laboratory during the early 1980s. Therefore, the new design may be referred to as open-

gradient triobelectrostatic separator.




OBJECTIVES

It is the objective of the project to further develop the TES process developed at PETC
through bench- énd POC- scale test programs. The bench-scale test program is aimed at studying the
charging mechanisms associated with coal and mineral matter and improving the triboelectrification
process, while the POC-scale test program is aimed at obtaining scale-up information. The POC-scale
tests will be conducted at a throughput of 200-250 kg/hr. It is also the objective of the project to
conduct cost analysis based on the scale-up information obtained in the present work. |

Specific objectives of the work conducted during this quarter were: 1) to design and set-up an
apparatus for studying triboelectrification mechanism with an objective of maximizing separation
efficiency (Task 3.1), ii) to complete; construction of the bench-scale (1 kg/r) triboelectrostatic
separator (Task 3.2),- and iii) to continue development of the fundamental model for predicting the

motion of charged particles in a non-uniform electrostatic field (Task 3.2).

WORK DESCRIPTION

Task 3.1: Tribocharger Tests

As will be shown later in this report, separation efficiency of the TES process depends critically
on the surface charges of the particles involved. In general, the larger the difference between the
charges of particles to be separated, the higher the separation efficiency. It is, therefore, the objective
of this subtask to design efficient charger for the triboelectrostatic separator. To meet this objective, the
following R&D activities will be undertaken.

e studies of charging mechanism

e evaluation of charger design




e evaluation of charger materials
¢ development of design/scale-up criteria

During the current reporting period, charging mechanisms have been studied. However, much of our
efforts have been concentrated on developing an appropriate technique for charge measurement. Two
different techniques were considered. One is the ;cechnique developed by Mazumder, in which charged
particles are placed in an electromagnetic field, while monitoring the trajectories. The other is the
method of using Faraday cages. The former may be more accﬁrate than the latter; however, it requires
a more sophisticated and costly equipment. Furthermore, this technique cannot be used for measuring
the charges of particles larger than 60 um. Although most of the TES tests were conducted on
micronized coal samples at PETC, it is hoped that the POC module to be developed in the present
work can be tested on coarser particles, (e.g., PC-grinds). It was, therefore, decided to use a Faraday
cage to measure particle charges in the present work.

Figure 1 shows the Faraday cage used for measuring charges of particles, and Figure 2 shows
how it is connected to an electrometer (Keithly Model-642) and a data acquisition system. The
Faraday cage consists of inner and oﬁter cages made of copper. The inner copper cage is electrically
connected to the electrometer through a coaxial cable, while the outer cage is grounded. Both the
inner and outer cups have copper lids to prevent the measurement being affected by the stray electric
fields from the surroundings. This design is different from what is generally reported in the literature.
Without the lids, the measurement suffered from too much noise. The particles are delivered to the
inner cage through a small copper tubing, which is an extension of the inner cup. It is necessary to
make the copper tubing as part of the inner cage. Otherwise, particles colliding on the inner wall of the

copper tubing can acquire additional charges, causing a source of error.

Figure 3 illustrate the mechanisms involved in the charge measurement using the Faraday




cage. Consider particles touching the walls of the inner cup (Figure 3a). Let us assume that the
particles are charged negatively, in which case the free electrons of the particles will flow from the
particle surface to the walls, resulting in a flow of electric current from the Faraday cage to the
electrometer. Consider also the case of the negatively charged particles not touching the walls
(Figure 3b). In this case, the negatively charged particles will polarize the inner copper cup in
such a way that the inner wall is positively charged while the outer wall is negatively charged.
The free electrons will flow from the negative charge sites of the inner wall to the electrometer,
causing a current. Thus, the net results are the same in both cases, i.e., the presence of negatively
charged particles will result in a current flowing from the Faraday cage to the electrometer.

Figure 4 shows a print out from our data acquisition system connected to the Faraday
cage. The result was obtained with a sample of quartz particles (Dsp = 60um). It shows that the
quartz particles areAneggtively charged. The charge is dissipated within 180 seconds since the
particles are placed in the Faraday cage. Figure 5 shows the result obtained using 2.5 g of a coarse
Pittsburgh No. 8 coal sample (+65 mesh). As shown, the coal particles are positively charged
with a charge density of 6.6x10™ C/g. Figure 6 shows the result obtained using 4.5 g of finer
coal particles. The current signals obtained are higher due to the larger amount of sample and the
surface area. The charge density of the finer coal sample is 7.1x10" C/g. The results given in
Figures 4-6 show the basis of the TES process, i.e., coal particles are separated from ash-forming
minerals such as quartz due to the difference in particle charge. Maximizing the charge difference
would increase its separation efficiency.

Now that the Faraday cage has been constructed and is functioning properly, the particle

charging mechanisms will be studied in detail during the next reporting period. It is planned to

investigate the following parameters:




e particle size

e rank

e intensity of agitation

e agitation time

e coal-to-particle ratio in feed
e charger material

All of these parameters are needed for designing efficient POC-scale TES unit.
Task 3.2 Separator Tests

The primary objectives of this subtask are i) to evaluate different bench-scale designs for
the triboelectrostatic separator, and ii) to investigate the various operating parameters on
separator performance. The information obtained from this task will be used for obtaining
engineering guidelines for the design, manufacture, operation and optimization of the 200-250
Kg/hr POC unit. Tﬁe bench-scale tests will be conducted using two different separators having
nominal capacities of 1 kg/hr and 10-20 kg/hr. The performance data obtained fro these units will

be used to develop scale-up criteria for POC unit.

A. Construction of a Bench-scale Separator

During the past quarter, a bench-scale TES separator has been constructed. Figure 7
shows a schematic representation of the separator. A coal containing mineral matter is
pneumatically fed to an in-line mixer charger. When the particles exit the charger, coal particles
will be charges positively while the mineral matter be charged negatively. The charged particles
will pass through a collimator (flow straightner) and then through the uneven electric field created

between two rotating circular electrodes. Positively charged coal particles are directed toward

the negative electrode, while negatively charged mineral matter are directed toward the positive




electrode. The splitter in between the two electrodes can be located in different positions to
achieve some control of grade and recovery. The main advantage of this open-gradient separator
concept is that the throughput is essentially proportional to the volume of the entrained flow. In
addition, the rotating cylindrical electrodes are self-cleaning.

A bench-scale open-gradient TES unit is being fabricated and assembled. Figure 8 shows
the photograph of the equipment. A power supply has been installed and hooked-up to the
electrodes. It is capable of attaining a maximum applied voltage of 100 kV across the electrodes,
ie., +50 kV to the positive electrode and -50 kV to the negative electrode. The electrical circuit
is being inspected by the Safety Department of the university. The only parts missing at present is
the control panel and the collimator. We are also waiting a micronizer to be shipped to us from
PETC. Dr. Dennis Finseth is making the necessary arrangement for the shipment. Until the
micronizer is shippéd, test work will be conducted using the samples pulverized by means of a
hammer mill.

Because of the cylindrical electrode design, the bench-scale unit produces a non-uniform
electrostatic field which is substantially different from the uniform fields generated by previous
designs which utilized flat-plate electrodes. The non-uniform field induces an additional force on.
the particles that varies from the top to bottom of the electrodes. At present, the model is being
used to investigate the motion of charged particles in the non-uniform electrostatic field.

Eventually, the model will be used to study the impact of changes in electrical potential and drum

diameter on separator performance.




b. Modeling of Electrostatic Separation

As part of the engineering design of a POC unit, a theoretical model has been developed.
The force (F) acting on a particle in an electric field is given by the following relationship:

F=qE - (1}
in which q is the net (free) charge of the particle and £ is the field strength. Eq. [1] is valid for
conventional electrostatic separators which provides uniform electric fields between two flat
electrodes. |

In a non-uniform electric field, such as the one created in an open-gradient TES unit
(Figure 7) being developed in the present work, additional force due to field gradient must be
considered. Thus, the total force acting on a particle in a non-uniform electric field becomes:

F =qE +kEVE

where % is a constant and VE is the field gradient. The value of & varies depending on the size,
shape, conductivity, and dielectric constant of the particles in the electric field. Let us consider an
electric field created between two cylindrical electrodes of radii R; and R; (see Figure 9). The
calculation of 7' may be simplified by treating the charges, g, of the electrodes as point charges located

at A; and A,. The potential, ¢, at point M in space can then be calculated using the Coulomb’s law:

1 1

Q= —rrasoqln(—j [2]
2 r

where € is the permitivity of vaccum (8.854x10™% Fm™) and ¢ is the dielectric constant of air

which is unity.

Applying Eq. [2] for the point charges of g at points A; and A,, the potential at an

arbitrary point M becomes:
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where o is the linear charge density, and r; and 7, are the distances between the two point
charges A; and A; and the point M in space. From geometric considerations of the electrodes

shown in Figure 9, one can readily derive the following relationship:
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where D is the distance between the centers these two cylinders.

Eq. [4] can be differentiated to obtain field gradients in x and y directions as follows:

op c l_ a-h+x h+a-x
= = 5 P + 3 2 (7]
ox 275380[_(a—h,+x) +y° (W+a-x)"+y
and .
% __ o y y
E=-2. —- — | (8]
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Eqgs. [7] and [8] may then be used to derive equations of motion in x-direction:
&x
m—r-=qE 9
Pl o 9]

and in the y-direction:




2
mﬂ=mg+qu [10]

atZ
where m is the mass of particle under consideration, g is the gravitational acceleration, and g is
the particle charge.

Egs. [9] and [10] have been used in the present work to determine the trajectories of
particles in the non-uniform electric field. A series of computer simulations were carried out
using the geometrical constraints shown in Figure 10. Two electrodes of identical diameters (R) -
of 0.15 m were considered. The distance (D) between the centers of the two electrodes were 0.5
m, and the distance between the collection plate and the axis of the two electrodes (h) were 0.5 m.

The potential difference between the two electrodes were 80 kV. Simulations were run for
different particle charges (g/m) in units of C/Kg, initial positions (a and b), and different velocities.

Under these conditions, the following boundary conditions can apply:

& oandd,_, =b [11]

at =0 t=0 -

for Eq. [9]. The boundary conditions for Eq. [10] are as follows:

=Vand)_, =-a. [12]

In using the equations of motion (Egs. [9] and [10]) derived in the present work for
simulation, it is necessary to know-the value of the charge (o) on the surface of the electrodes
used in the simulation. (This is because ¢ is an important parameter of Egs. [7] and [8], which in
turn are used in Eqs. [9] and [10].) In the present work, the value of ¢ was determined using the

following relationship:

_ o . (h+a-R)m+a-R)
H=% %_27r8501n(R1—h1+a)(R2—hz+a) [13]

10




in which p is the difference in potentials, ¢; and ¢,, at the closest distance between the two
electrode surfaces while &, 74, R, R, and a represent the geometric constraints of the
electrostatic separator as shown in Figure 10. In electrostatic separation, the distance between
two electrodes are usually set at a makimum distance where no spark occurs at a given applied
potential. Under most conditions in air, sparks occur when p exceeds certain critical value, which

is determined by the following relationship:
u=1Ix (4 X lOst'l) [14]

where [ is the closest distance between the surfaces of two electrodes and is given in units of

meters. In the present simulation, /=0.2 m; therefore, u=80 kV. Substituting this value into Eq.

[13] along with the geometric constraints used in the simulation, one can obtain the value of &.
Table 1 shows the results of the computer simulation conducted in the present work. The

values of ¢ in the table represent the deflection of particles from the vertical trajectory, which may

Table 1. Results of computer simulation based on the geometric
constrains given in Figure 10

g¢/m a b \"4
(x 10)) (m) (m) (m/s) (m)
1 0.15 0 0 0.18
1 0.15 0 1 0.11
1 0.15 0 3 0.04
1 0.15 0.04 0 0.19
1 0.15 -0.04 0 0.18
1.5 0.15 0 0 0.28
1.5 0.15 0 3 0.06
1.5 0.15 0 1 0.16
1.5 0.25 0 1 0.16




represent the selectivity of the TES process. An important conclusion that can be drawn from the
simulation results is that as the feed velocity of particles increases, the deflection and, hence, the
selectivity decreases; however, this problem can be minimized by increasing the charge of the
particles. Therefore, it is of paramount importance to study the particle charging mechanisms and
develop methods of maximizing the charge of coal particles. It should be pointed out also that the

model developed in he present work is useful for optimizing the design of the bench- and POC-

scale TES unit.




SUMMARY

The work performed during the current reporting period was concerned with Engineering
Design (Task 3). As part of this task, tribocharging mechanism has beer; studied (Subtask 3.1). A
major accomplishment made during the past quarter was that a Faraday cage has been built to measure
the charges of particles. This device is equipped with a data acquisition system to achieve a high
degree of accuracy and increase the speed of measurement. An advantage of using the Faraday cage is
that the charge measurement can be conducted for a wide range of particle sizes. The results obtained
to date are consistent with the data reported in the literature, i.e., Pittsburgh No. 8 coal particles are
positively charges, while quartz particles are negatively charged.

As part of the Engineering Design work, a bench-scale TES unit has been constructed (Subtask
3.2). The design and fabrication are almost complete except the control panel and collimator. The
electrical circuit is to be inspected by the Safely Department of the University. The design of the
bench-scale unit is based on the open-gradient (or entrained-flow) concept, which should give a high
throughput capacity. The throughput of the bench-scale unit is expected to exceed 10-20 kg/hr.

Under Subtask 3.2, a theoretical model for open-gradient TES unit has been developed. The
model is capable of predicting deflection of charged particles as functions of particle charge, applied
potentials, feed velocity, -diameter of electrodes, separation distance between electrodes, distance
between coﬂgction plate and electrodes, etc. As such, the model is useful for designing PES units.

Furtherwork is needed, however, to incorporate the effects of polarization of particles in an electric

field.
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Figure 1. Schematic representation of the principles of particle charge measurement
using a Faraday cage
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Figure 2. Schematic representation of the Faraday cage used in the present work
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Figure 3. Instrumentation for the particle charge measurement using a Faraday cage
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Figure 4. A printout from the data acquisition system used in conjuction with the Faraday
cage. The result was obtained with a quartz sample (60pum)
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Figure 5. A printout from the data acquisition system used in conjuction with the Faraday
cage. The result was obtained with a Pittsburgh No. 8 coal sample (+65 mesh)
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Figure 6. A printout from the data acquisition system used in conjuction with the Faraday
cage. The result was obtained with a Pittsburgh No. 8 coal sample (-65 x 100 mesh)
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Figure 7. Schematic represeritation of the open-gradient triboelectrostatic separator used
in the present work




"Figure 8. Photograph of the bench-scale separator in construction
2
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Figure 9. Calculation of the potential (¢) at point A in space in the non-uniform electric field
created between cylindrical electrodes of radius R, and R,. The charges of the
electrodes are represented by the point charge (o) at point A; and A,
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Figure 10. Movement of a charged particle in a non-uniform electric field created by
cylindrical electrodes; a and b represent the original position, ¢ represents
deflection of the particle on the collection plate, and d represents the distance
between the centers of the electrodes




