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My primary research topic is the development of numerical methods for the approximation of
solutions to the nonlinear partial differential equations that arise in computational fluid mechanics
(CFD). I am particular interested in efficient and robust solution methods for flows in evolving domains
that are directly applicable to real-world problems. The main tools of my research are Cartesian
schemes with embedded boundary capability, block-structured hierarchical multilevel refinement and
the idea of implicit geometry representation via level set functions. I want to utilize these principles to
construct highly efficient numerical methods in all flow regimes and to combine the implementations
in a unified, fully parallelized software framework. The resulting infrastructure would enable well-
resolved simulations of very difficult flow problems, like multiphase or free-surface flows with fluid-
structure interaction.

1 Background

The most appropriate discretization principle in CFD is the finite volume approach. Only finite-
volume-type schemes satisfy essential physical properties like the global conservation of mass and
momentum and are guaranteed to converge towards the correct solution in case the problem involves
shock waves. Alternative discretization techniques such as particle methods or the Lattice-Boltzmann
approach provide acceptable approximations only for certain types of problems in the subsonic regime
and are typically only first-order accurate. On the other hand, finite volume or discontinuous Galerkin
schemes are nowadays available for very high order (four or greater). While higher-order methods are
computationally expensive on genuinely unstructured meshes, the computing costs are smallest when
uniform Cartesian grids are employed [45, 46].

In order to consider complex, even moving boundaries on a Cartesian mesh, level set methods have
recently become popular. The boundary is represented implicitly with a scalar function ϕ that stores
the signed distance to the boundary surface and allows the direct evaluation of the boundary outer
normal in every mesh point as n = ∇ϕ/|∇ϕ| [39]. The level set function of a multiphase boundary
for instance evolves according to

ϕt + a∇ϕ = 0 , (1)

where a denotes the interface velocity to be derived from the computation. Inherent problems are
the effective numerical solution of Eq. (1) with significantly greater accuracy than that of the scheme
for the underlying hydrodynamic equations and the efficient re-initialization of ϕ as a proper distance

Figure 1: Interpolation stencils
for the construction of values in
interior ghost cells (gray) at an
embedded rigid wall.

function. The most straightforward level set method directly uses
some of the cells on the Cartesian mesh to enforce immersed bound-
ary conditions [27] immediately before the original numerical up-
date. This step involves interpolation and/or extrapolation opera-
tions to construct appropriate values in those internal “ghost cells”
(compare Fig. 1). A cell is considered to be a valid fluid cell in
the interior if the distance in the cell midpoint is positive and is
treated as exterior otherwise. In a typical level set method, the
numerical stencil itself is not modified, which causes a diffusion of
the boundary location and results in an overall non-conservative
scheme of only first-order accuracy. A possibility to alleviate the
error is to use dynamic mesh adaptation.

The idea of Structured Adaptive Mesh Refinement (SAMR) on
purely Cartesian meshes has been pioneered by Berger and Col-
lela in [2]. While originally developed for first-order hyperbolic
conservation laws

∂tq(x, t) +∇ · f(q(x, t)) = 0 (2)
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with the compressible Euler equations in mind, the principle has been extended successfully to incom-
pressible Navier-Stokes equations, incompressible and/or stationary Euler equations and magneto-
hydrodynamics.

Figure 2: SAMR hierarchy.

Instead of replacing single cells by finer ones, the SAMR method
follows a patch-oriented approach. Cells being flagged by error indica-
tors (shaded in Fig. 2) are clustered into non-overlapping rectangular
grids. Refinement grids are derived recursively from coarser ones and
a hierarchy of successively embedded levels is thereby constructed (cf.
Fig. 2). The regularity of the data allows high performance on vector
and super-scalar processors and cache optimizations. The utilization
of refinement both in time and in space is an important difference to
usual unstructured adaptive strategies and is one of the main reasons
for the high efficiency of the approach.

2 Previous research

2.1 Shock-capturing methods for combustion

I have devoted my doctoral research to the construction of efficient numerical methods for the simula-
tion of supersonic combustion phenomena, especially detonation waves [14]. The governing equations
are the multi-component Euler equations

∂tρ + ∇ · (ρu) = 0 , ∂t(ρu) + ∇ · (ρu⊗ u) +∇p = 0 ,
∂t(ρE) + ∇ · ((ρE + p)u) = 0 , ∂tρi + ∇ · (ρiu) = Wiω̇i ,

(3)

with ωi denoting the production rate of species i derived from a detailed chemical reaction mechanism.
The numerical solution of system (3) is considerable more difficult than in the standard case of a
single ideal (and polytropic) gas, because an implicit equation of state for a mixture of real gases with
different temperature-dependent transport properties needs to be considered.

The appropriate basic solution technique for transient supersonic combustion phenomena is the
method of fractional steps that decouples the hydrodynamic transport and the chemical reaction nu-
merically. In particular, this technique allows the utilization of a conventional time-implicit numerical
solution method for ordinary differential equations local in every cell to advance the reactive source
terms and the application of a time-explicit finite volume scheme for the homogeneous Euler equa-
tions. Beside other high-resolution shock capturing schemes, I derived a reliable second-order hybrid
Roe-solver-based method for this purpose [22, 17]. The method is suited to eliminate several numerical
uncertainties inherent to a large number of published detonation simulation results that have been
obtained with recent methods, such as ENO or WENO.

Self-sustained detonations are characterized by a fragile balance between hydrodynamics and chem-
istry that can only be captured sufficiently by providing a very fine local resolution around the head
of the detonation front. Especially, gaseous detonation waves genuinely exhibit highly oscillatory
triple point patterns, a phenomenon that is not well understood and therefore the primary focus of
experimental and theoretical detonation research [5]. By utilizing the above high-resolution scheme
together with SAMR, I have been able to confirm computational results for regular oscillating triple
point patterns in two and three space dimensions obtained on supercomputers only shortly earlier
[29, 47] on conventional Linux-Beowulf clusters of moderate size [16, 19]. Recently, a series of large-
scale computations has been conducted that investigates the evolution of similar structures under
transient geometric conditions [20]. Complex boundaries are considered with a first-order level set
method exactly as sketched in Section 1. Through extensive shock polar analysis it was found that
even in transient situations, i.e. very high overdrive or marginal conditions close or even below the
limit of detonability, the hydrodynamic wave configuration around a triple point corresponds to either
a Double-Mach Reflection or a Transitional-Mach Reflection, but apparently never to the simpler
Single-Mach Reflection case [21].

2



Figure 3: A trace of the maximal vorticity
throughout the whole computation visualizes the
triple point trajectories for a realistic 60o pipe
bend (lower). The enlarged upper graphic dis-
plays a snapshot of the detonation front on the
trajectory picture.

Figure 4: A Schlieren graphic of the detonation
front snapshot overlying the domains of hierar-
chical mesh refinement (in different gray tones)
visualizes the level of detail necessary for predic-
tive detonation simulation.

2.2 Shock-driven fluid-driven structure interaction

As a postdoctoral scholar, I worked particularly on the development and application of level-set-
based shock-capturing methods that can be employed for multi-physics fluid-structure interaction
simulations. These ideas are implemented in the “Virtual Test Facility” (VTF) software [24], a
fluid-structure interaction simulation environment that targets strong shock and detonation waves
impinging dynamically on deforming solid materials [25]. Fluid-structure interaction (FSI) in the VTF
is accomplished through a loosely coupled, partitioned approach with (basically) separated solvers
that exchange boundary conditions at the interface after successive time steps. For this application, I
developed a novel algorithmic extension of the hyperbolic SAMR method that incorporates the fluid-
structure exchange smoothly into the recursive time step refinement pattern and allows very fine local
resolutions to capture the near-body interaction at minimal computational costs [7, 23]. In coupled
computations, the level set function ϕ, representing the solid surface, is updated after every boundary
synchronization step by calling a specialized algorithm that computes the distance information for
a triangulated surface mesh by utilizing characteristic geometric reconstruction and scan conversion
[36]. By tailoring the level set computation to the case of multi-block meshes of identical resolution
and by evaluating the distance information exactly only in a small band around the interface, we have
been able to reduce the computational expense of the level set evaluation for typical surface meshes of
several ten thousand triangles to less than 10% of a typical explicit hydrodynamic update. Without
frequent re-meshing and complicate mesh untangling the approach allows large plastic deformations,
fracture and fragmentation.

Snapshots from two typical parallel VTF simulations are displayed in the Figs. 5 and 6. Figure 5
shows the deformation of a quasi-two-dimensional thin elastic steel panel under shock wave impact for
which the FSI solution can be verified by considering the approximation of an Euler-Bernoulli beam
under instantaneous loading [18]. Figure 6 shows the fracture of a thin copper plate at the end of
a water shock tube [7, 23]. The later simulation utilizes a HLLC approximate Riemann solver. The
strict positivity preservation of this scheme is essential for computing the splashing of the waterjet
into the outside air. Further, it clearly illustrates the advantages of the level-set-based approach as
the fluid solver handles major topology evolutions without problems.
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Figure 5: Deforming panel under shock wave im-
pact. Mesh adaptation according to the flow field
is shown in the backplane.

Figure 6: Thin copper plate ruptured by a pres-
sure wave in a water shock tube. The fluid density
in the midplane shows the water splash.

2.3 Block-structured adaptive mesh refinement

As generic framework for Cartesian finite volume methods, I developed the block-structured mesh
refinement package AMROC (Adaptive Mesh Refinement in Object-oriented C++) [13] that allows
the effective implementation of hierarchical multi-level algorithms, e.g., Berger-Collela SAMR for
hyperbolic problems or geometric adaptive multigrid for parabolic and elliptic equations. A key feature
of AMROC is the efficient distributed-memory parallelization of multi-level algorithms including the
proper treatment of internal refinement boundaries that is indispensable to preserve the order of
accuracy of higher-order discretizations [15].

The software encompasses already a very large number of approximate Riemann solvers and shock-
capturing schemes, especially for the hyperbolic Euler equations with various equations of state.
Beside the ones previously mentioned, further large-scale applications of AMROC include large-eddy
simulation of compressible shock-driven turbulence with a hybrid centered finite-difference WENO
method [40, 41] or shock wave interaction with blunt bodies [33].

As a prototype for implicit schemes on block-structured meshes, a dynamically adaptive solver
for the Poisson equation has been implemented following the work of Martin and Collela [35]. The
availability of multi-level hierarchical data in the regular SAMR approach suggests the application of
adaptive geometric multigrid techniques. Note that the regularity of the data allows the implemen-
tation of very efficient matrix-free smoothing algorithms. This solver could be the basis for parallel
adaptive methods for parabolic and elliptic equations, e.g., for the stationary and/or incompressible
Euler or (Reynolds-averaged) Navier-Stokes equations.

3 Future Research

In my future research, I would like to address efficiency and general applicability of dynamically
adaptive Cartesian methods. Cartesian methods with embedded boundaries automate the expen-
sive step of volumetric mesh generation and are particularly suited for fluid-structure problems with
large boundary movements. These properties make them a primary choice for computational-aided
engineering applications. Among the large number of current research questions are the construc-
tion of conservative high-order discretizations, especially with additional constraints as they occur in
the incompressible Navier-Stokes equations or the equations of magneto-hydrodynamics, the proper
consideration of boundary-layer flows or effective parallelization strategies for hierarchical petascale
architectures.
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3.1 Discontinuous Galerkin methods for embedded boundaries

In the near future, I want to put special emphasis on the derivation of efficient Cartesian methods that
are fully conservative and have an order of accuracy greater than two by applying the discontinuous
Galerkin method (DGM). The DGM is a finite-element-type scheme that can be regarded as an
extension of the finite volume method to arbitrary order [42]. A numerical solution of Eq. (2) is
sought by discretizing the variational formulation

d

dt

∫
Ω

q(x, t)v(x)dx +
∫

∂Ω

f(q(x, t)) · nΩv(x)ds−
∫

Ω

f(q(x, t)) · ∇v(x)dx = 0 (4)

and solving for an approximation Q in the space of functions that are discontinuous at element
boundaries and of polynomial degree r within cell k, i.e. Qk =

∑R
i=0 ck

i pk
i (x), where {pk

i } spans
the local space of polynomials P r(Ωk) and ck

i ∈ Rn. By using v(x) ≡ pk
i (x) as test functions and

choosing an orthogonal set of polynomials, each element’s mass matrix can be diagonalized, allowing
the construction of fully explicit schemes (see [10, 45, 42] for details). The greatest strength of the
DGM compared to conventional finite volume methods is the compactness of the discretization that
requires neighboring information only to construct inter-element numerical fluxes to evaluate the
surface integral in Eq. (4), for instance with an approximate Riemann solver (cf. Section 2.1). The
DGM can be used on arbitrary triangulations, including those with hanging nodes, without problems
and the polynomial basis in every cell can be decided locally, allowing for both spatial and polynomial
adaptation. These properties make the DGM particularly interesting for embedded boundary methods
that construct complex cut-cells (see Fig. 8 for a typical scenario) and might merge small cells with
neighbors to reduce numerical stiffness, possibly leading to a non-conforming mesh (cf. right sketch of
Fig. 9). Coirier and Powell [11] have demonstrated that small cell merging increases the local absolute
error marginally, but leaves the overall order of a finite volume scheme unaffected. If required, local
non-conformity can be eliminated by cell shape adjustment [43].

In principle, discretizing Eq. (4) on arbitrary cut-cells requires only Gaussian quadrature rules
to evaluate the first and last integral and a loop over all cut-cell surfaces. Note that in general
orthogonality of a given basis {pi} will be lost on arbitrary cell shapes resulting in a dense local
element mass matrix. A first promising investigation for solving the Poisson equation with DGM
on a two-dimensional Cartesian cut-cell mesh has been published by van Raalte [48]; Engwer and
Bastian have recently applied the idea to simulate porous media flow with embedded solid obstacles
[26]. When used with an explicit scheme, an embedded boundary DGM will involve solution of a
dense R × R linear system with n right-hand sides in every cut-cell, which, given its small size, can
be accomplished very effectively, e.g., by Cholesky decomposition. As an optimization, especially
for explicit schemes, the derivation of a polynomial adaptive DGM that uses different orthonormal
basis functions depending on the cut-cell type would also be of interest. Such sets of appropriately
parameterized polynomial bases can be constructed by Gram-Schmidt orthonormalization (cf. [42]).
If the boundary is specified as the iso-surface of a scalar field defined in the element corners, and a
linear boundary approximation is assumed, only three fundamentally different cut-cell configurations
can occur in two and 15 in three space dimensions [34].

3.2 Structured adaptive multi-level methods on petascale systems

The incorporation of an embedded boundary DGM into a SAMR framework, such as AMROC, is
relatively straightforward. As the DGM has the communication pattern of a conventional finite vol-
ume method with extended vector of state, only a new single grid update routine with non-uniform
workload and proper inter-level transfer operations for all degree of freedom are required. While the
stencils of finite difference schemes increase with order [3], the DGM has always the stencil radius
1. This property together with the high local computational expense make the DGM very advan-
tageous for distributed memory computers. Integrating the method into a block-structured mesh
refinement system adds not only spatial and temporal adaptivity but combines single cells into larger
cache-coherent compute entities in a natural way. Early investigations on multicore systems have
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underscored that enforcing locality by data clustering is essential for exploiting multi-threaded shared
memory parallelism [6]. Since the upcoming generation of petascale computers connects multi- and
manycore shared memory compute nodes to hybrid distributed memory supercomputers, the overall
approach provides an outline for utilizing such architectures effectively. It can be expected that, like
for conventional finite volume methods, a block-structured adaptive DGM will outperform cell-based
refinement approaches [3, 42]. In practice, the utilization of hybrid architectures requires an imple-
mentation that utilizes both MPI and OpenMP. The most immediate MPI/OpenMP parallelization
would employ the existing MPI-based domain decomposition for distribution to nodes and OpenMP
to parallelize the many loops over independent subgrids, characteristic for SAMR.

Further research is still required to develop multi-constraint domain decomposition methods
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Figure 7: AMROC scalability test.

directly applicable to hierarchical data structures that bal-
ance the work on every level, while keeping intra- and inter-
level communication and data migration costs after repar-
titioning small. Figure 7 shows a representative AMROC
scalability test with the currently employed strictly local do-
main decomposition method based on a space filling curve
that partitions the hierarchy at the base level only [15]. The
test uses a typical time-explicit finite volume scheme on a
base grid with 323 cells and two additional levels with re-
finement factors 2, 4 and shows an ideal scale-up only for up
to 128 nodes.

3.3 Multiphase and free surface problems

While an embedded boundary DGM can be developed most effectively for (moving) solid walls, a
natural extension is the application of Eq. (1) to model dynamically evolving free surfaces or multi-
phase boundaries. Such problems can be solved with the “ghost-fluid” technique [27] similar in spirit
to the method outlined in Section 1. Although this approach permits the unchanged utilization of
higher-order finite difference schemes, it introduces a O(h) conservation error and approximates the
flux at the interface only crudely. Volume-of-fluid finite volume schemes on the other hand consider
all volume changes and interfacial fluxes properly and are hence discretely conservative, but in prac-
tice use simplified reconstruction stencils near the boundary, reducing the order of accuracy at the
boundary [12, 44]. Since such methods typically utilize a second-order accurate scheme away from the
cut-cells, the global error often scales with O(h2), particularly when measured in the integral L1 or
L2 norms. Nevertheless configurations can easily be constructed that exhibit a clear order reduction,
especially in the L∞ norm (cf. [12]). Since the DGM uses an entirely local higher-order interpolation,
and values of the immediate neighbors are only required for numerical flux evaluation and limiting of
discontinuous solutions (cf. [32, 10, 42]), a volume-of-fluid DGM will avoid all such problems elegantly.

The practical implementation of multiphase problems is complicated by the fact that the vector
of state along the embedded boundary is multi-valued and a different numerical method might have
to be employed for each phase. A naive solution would utilize a separate grid for every vector of

Figure 8: Efficient applica-
tion of Cartesian SAMR for
multiphase problems. The
shown meshes correspond
to a higher refinement level.
The actively used domains
of cut-cells in an embedded
boundary DGM are shaded
gray.

Grids for phase A Grids for phase B
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Figure 9: Left: Portion of a body-fitted triangular mesh tailored for boundary layer resolution.
Center: Overlaying meshes in a Chimera approach. Ghost cells are displayed dotted. Right: The DG
discretization allows the direct embedding of the body-fitted mesh into the Cartesian mesh. Small cut-
cells have been merged with neighbors. The gray dots mark the location for evaluating the interfacial
fluxes.

state covering the entire domain, but this approach is inappropriate for large-scale problems that are
tractable only by mesh adaptation. I envision a novel memory- and computation-efficient solution to
this problem that would use separate SAMR refinement hierarchies for every vector of state and multi-
level scheme involved (cf. Fig. 8). By defining each SAMR hierarchy on the same base grid and using
identical refinement factors, the boundary data exchange between hierarchies can be accomplished
(as usual in SAMR methods) through integer-valued cell indices. As the AMROC core C++ data
structures are already fully templatized, only additional communication routines would be required
to enable the data exchange between distributed SAMR hierarchies in parallel.

3.4 Viscous boundary layer flows

When second-order problems, such as elliptic or convection-diffusion equations, are to be discretized
with the DGM, the equations first need to be written as an extended first-order system [9]. While
for instance the discretization of the compressible Navier-Stokes with such a “local DGM” is then
straightforward [1], consideration of the solenoidal constraint in the incompressible Navier-Stokes
equations can be accomplished for instance by specially chosen polynomial functions [30] or by applying
a local projection operator in a post-processing step [8].

The practical computation of approximations of the Navier-Stokes equations becomes particularly
challenging when boundary layers around objects influence the flow field considerably. Cartesian mesh
adaptation is an inappropriate choice in this case since an exponential resolution reduction normal
to the boundary is necessary to capture all flow features [28]. Providing the required resolution
uniformly, i.e. with identical refinement in all three Cartesian directions, is highly inefficient. The
best method currently available for computing boundary layer flows around moving objects is the
adaptive Chimera approach developed by Meakin [37]. Communication between Cartesian and non-
Cartesian meshes is accomplished via interpolation of ghost cell values after successive mesh updates.
The approach uses the full stencil of a conventional finite volume method and is hence higher-order
accurate, but the transfer operations between overlapping meshes are non-conservative. In order to
cope with this fundamental problem I propose to utilize the local DGM instead. The properties of
the DGM (compactness, tolerance to hanging nodes) allow the direct construction of a single mesh
in which a small layer of non-Cartesian boundary-aligned cells near the body is directly embedded
into the Cartesian background mesh and the method can be implemented as an extension of the
embedded boundary DGM described in Section 3.1. In order to facilitate an on-the-fly generation
of the boundary-fitted mesh and to allow arbitrary embedded geometries, three-dimensional bodies
will be prescribed as a surface mesh of triangular elements, see left sketch of Fig. 9. The boundary-
fitted mesh itself is then constructed by extension in the normal direction and a re-evaluation of the
triangular vertices in every time step to consider surface mesh distortions and movements.
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When extending the embedded boundary DGM sketched in Section 3.1 to hybrid meshes (like the
one depicted in the right sketch of Fig. 9) only the discretization of the surface integral in Eq. (4)
is non-obvious. An accurate coupling could be accomplished for instance as follows: 1. Compute
all numerical fluxes F(Q+,Q−) in both meshes except at the mesh interface. 2. Evaluate Qj in
the midpoint of the jth boundary facet (marked by gray dots in Fig. 9) in the boundary-fitted (B)
and the Cartesian (C) DG grid. 3. Use F(QC

j ,QB) as jth boundary flux of the boundary-fitted
mesh. 4. Distribute F(QC

j ,QB
j ) to the Cartesian cells in contact with facet j according to the area

of intersection.
As the boundary layer mesh is small compared to the encompassing Cartesian mesh, it is reasonable

to assume that non-Cartesian meshes have a tangential resolution comparable to the finest level of
Cartesian mesh adaptation (cf. Fig. 9). This particular choice has several advantages: 1. In contrast
to current existing Chimera implementations [38, 4] no dynamic mesh adaptation is necessary in non-
Cartesian meshes. 2. Mesh adaptation can be implemented under the usual SAMR assumption of a
global integer-valued index coordinate system without searching for neighboring grids in geometrical
space. 3. Parallelization and especially load-balancing are straightforward, because additional to the
current solution in AMROC only non-Cartesian meshes with regular topology have to be considered.
The easiest solution is to parallelize these separately and, as communication with the DG approach
is only necessary along the interface mesh, to utilize the same VTF communication routines that
accomplish the boundary data synchronization between AMROC and a solid mechanics solver in the
case of fluid-structure interaction, compare Section 2.2.

3.5 Lattice-Boltzmann methods with SAMR

Finally, as a very fast alternative for incompressible subsonic flows it would be interesting to extend
the idea of block-structured mesh adaptation to grid-based Lattice-Boltzmann methods [31], which are
currently used for approximately 2/3 of all exterior flow simulations in the automotive industry. To
my best knowledge, all existing solutions use a cell-based refinement approach mandating expensive
tree traversals that take in practice, due of the simplicity of the Boltzmann operators, more than 50 %
of the overall compute time (private communication with M. Krafczyk). It can be expected that a
block-structured solution can eliminate such overhead costs almost completely.

References

[1] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the nu-
merical solution of the compressible Navier-stokes equations. J. Comput. Phys., 131:267–279,
1997.

[2] M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comput.
Phys., 82:64–84, 1988.

[3] R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel adaptive finite element methods for conser-
vation laws. Applied Numerical Mathematics, 14:255–283, 1994.

[4] D. L. Brown, W. D. Henshaw, and D. J. Quinlan. Overture: An object oriented framework for
solving partial differential equations. In Proc. ISCOPE 1997, appeared in Scientific Computing
in Object-Oriented Parallel Environments, number 1343 in Springer Lecture Notes in Computer
Science, 1997.

[5] S. Browne, Z. Liang, R. Deiterding, and J. E. Shepherd. Detonation front structure and the
competition for radicals. Proc. of the Combustion Institute, 31(2):2445–2453, 2007.

[6] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. Parallel tiled QR factorization for multicore
architectures. Technical Report LAPACK Working Note # 190, University of Tennessee, 2007.

[7] F. Cirak, R. Deiterding, and S. P. Mauch. Large-scale fluid-structure interaction simulation
of viscoplastic and fracturing thin shells subjected to shocks and detonations. Computers &
Structures, 85(11-14):1049–1065, 2007.

8
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