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Abstract. We present a novel technique for fitting restframeI-band light curves on a data set of 42 Type Ia supernovae
(SNe Ia). Using the result of the fit, we construct a Hubble diagram with 26 SNe from the subset at 0.01 < z < 0.1. Adding
two SNe atz ∼ 0.5 yields results consistent with a flatΛ-dominated “concordance universe” (ΩM ,ΩΛ)=(0.25,0.75). For one of
these, SN 2000fr, new near infrared data are presented. The high redshift supernova NIR data are also used to test for systematic
effects in the use of SNe Ia as distance estimators. A flat,Λ = 0, universe where the faintness of supernovae atz ∼ 0.5 is due to
grey dust homogeneously distributed in the intergalactic medium is disfavoured based on the high-z Hubble diagram using this
small data-set. However, the uncertainties are large and nofirm conclusion may be drawn. We explore the possibility of setting
limits on intergalactic dust based onB − I andB − V colour measurements, and conclude that about 20 well measured SNe are
needed to give statistically significant results. We also show that the high redshift restframeI-band data points are better fit by
light curve templates that show a prominent second peak, suggesting that they are not intrinsically underluminous.
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1. Introduction

Observations of Type Ia supernovae in the restframeB-band
at redshifts ofz ∼ 0.5 and above have shown that they are
best fit by a cosmological model that includes a cosmological
constant or some other form of dark energy (Perlmutter et al.,
1998; Garnavich et al., 1998; Riess et al., 1998; Schmidt et al.,
1998; Perlmutter et al., 1999; Tonry et al., 2003; Knop et al.,
2003; Riess et al., 2004). The evidence for dark energy is sup-
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ported by cross-cutting cosmological results, such as the mea-
surement of the cosmic microwave background anisotropy,
which indicates a flat universe (De Bernardis et al., 2000;
Jaffe et al., 2001; Sievers et al., 2003; Spergel et al., 2003); the
evolution in the number density of X-ray emitting galaxy
clusters (Borgani et al., 2001; Henry, 2001; Schuecker et al.,
2003) and galaxy redshift surveys (Efstathiou et al., 2002),
which indicate thatΩM ≈ 0.3. Taken together, these inde-
pendent measurements suggest a concordance universe with
(ΩM,ΩΛ)�(0.25,0.75). However, the SN Ia Hubble diagram
remains the most direct approach currently in use for study-
ing cosmic acceleration, and, thus, possible systematic ef-
fects affecting the observed brightness of Type Ia super-
novae should be carefully considered, such as uncorrected
host galaxy extinction (see e.g. Rowan-Robinson (2002)), dim-
ming by photon-axion mixing over cosmological distances
(Csaki et al., 2002; Deffayet et al., 2001; Mörtsell et al., 2002;
Östman & Mörtsell, 2004) and extinction by intergalactic grey
dust (Aguirre, 1999a,b; Mörtsell & Goobar, 2003). Some of
these have already been addressed in previous SCP publi-
cations, see e.g. Perlmutter et al. (1997, 1998); Sullivan et al.
(2003); Knop et al. (2003).

Determining cosmological distances through Type Ia su-
pernova fluxes at longer restframe wavelengths offers potential
advantages, e.g. less extinction by dust along the line of sight,
either in the host galaxy or in the intergalactic medium. On
the other hand, the “standard candle” properties at these wave-
lengths and the possibility of additional systematic effects need
to be investigated.

In the restframeI-band, the uncertainties in extinction cor-
rections are significantly smaller than those in theB-band. For
example, for Milky-Way type dust (RV ∼ 3) the ratio of ex-
tinction for the two bands is sizable,AB/AI ∼ 2 − 3. In gen-
eral, the extinction corrections become less dependent on our
knowledge of intrinsic supernova colours and dust properties.

SNe Ia I-band light curves typically show a second peak
15-30 days after the first maximum. It has been suggested that
the intensity and time-difference between the first and secondI-
band peaks are related to the intrinsic luminosity of the Type Ia
SNe, appearing later and more evident for normal Type Ia
and earlier and fainter for underluminous ones (Hamuy et al.,
1996a; Wang et al., 2005). Thus, buildingI-band light curves
for Type Ia supernovae offers the possibility of probing bright-
ness evolution.

The scope of this work is to test the feasibility of using
the restframeI-band for cosmological distance measurements,
using data available to date, and to assess the importance ofob-
serving in this wavelength range for future samples of SNe. For
that purpose, we develop a template fitting technique, whichwe
apply to 42 nearby SNe Ia, to estimate the first (Imax) and sec-
ond (Isec) I-band light curve peaks. We use the fittedImax of 26
of these SNe Ia, which are in the Hubble flow, together with
two high redshift SNe Ia: SN 2000fr, at redshiftz = 0.543,
for which new infrared data are presented, and SN 1999ff, at
z = 0.455, available in literature (Tonry et al., 2003), to build a
Hubble diagram reaching out toz ∼ 0.5.

The properties of the second peak in the restframeI-band
light curves are investigated. Furthermore, additional colour in-

formation is used to test for extinction by non-conventional
dust for thez ∼ 0.5 supernovae. In a related work, Riess et al.
(2000) usedB − I colours of SN 1999Q, in the same red-
shift range. This SN, however, is not included in our analy-
sis, since we find inconsistencies with the published data (see
Section 4.3).

2. I-band light curve fitting

The second light curve peak seen inI-band for nearby Type Ia
SNe varies in strength and position with respect to the primary
maximum. This complicates the use of a singly parametrisedI-
band template, such as those currently applied in theB- andV-
band, (see e.g. Perlmutter et al. (1997); Goldhaber et al. (2001)
for an example of the timescale stretch factor approach), for
light curve fitting.

Contardo et al. (2000) proposed a model composed of as
many as 4 functions for a total of 10 parameters in order to fit
all UBVRI-bands. Their method used two Gaussian functions
to fit the two peaks, together with a straight line to fit the late
time decline and an exponential factor for the pre-max rising
part of the light curve. In this way, it is possible to describe
Type Ia SNe light curves over a wide range of epochs and in
all optical bands, though, as the authors recognise, it doesnot
represent accurately the second peak in theI-band due to the
influence of the linear decline. However, the main disadvantage
of their method, for our purpose, is the large number of free
parameters, which requires very well sampled light curves.

We have therefore developed a method for fittingI-band
light curves using five free parameters and one template1 used
twice to describe the two peaks. As our goal is only to mea-
sure the position and amplitude of the two peaks, we limit the
fit to 40 days after maximum, neglecting the late time decline.
Our fitting procedure can be summarised as follows: one tem-
plate is used to fit the time (t1) and the first peak magnitude
(I1), together with a stretch factor (sI), which is also applied
to the second template shifted in time to fit the time (t2) and
magnitude of the second peak (I2). The underlying function is

I = I1T (sI(t − t1)) + I2T (sI(t − t2))

whereT is the template. The five parameters fitted are thus:
{t1, t2, I1, I2, sI}, (see Table 1). A similar approach is also pro-
posed by Wang et al. (2005) who call it “super-stretch” to em-
phasise its extension of the stretch approach.

The use of this function in place of the one described by
Contardo et al. (2000), reduces the number of free parameters
by a factor of two. Implicitly, we have thus assumed that the
rising part of theI-band is the same as in the template used, i.e.
theB-band. As we will see, this assumption is not always true.
Note that, unless otherwise specified, the supernova phase al-
ways refers to the time relative to restframeB-band light curve
maximum.

1 The B-band template in Nugent et al. (2002) has been used be-
cause we found that it describes well the data when used with the
method developed here. We note that there are no physical reasons for
choosing theB-band over other bands or other kinds of templates.
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t1 time of the peak of the firstT template
I1 peak magnitude of the firstT template
t2 time of the peak of the secondT template
I2 peak magnitude of the secondT template
sI stretch factor of the time axis
tmax time of the firstI light curve peak
Imax first I light curve peak magnitude
tsec time of the secondI light curve peak
Isec secondI light curve peak magnitude

Table 1 Summary of the parameters used in this work to de-
scribe theI-band light curve. The first five parameters are de-
termined by fitting the data (see text for details). The next four
parameters are determined from the first set and are the actual
time and peak values of the light curve.

2.1. The low-redshift data set

We applied this method to fit a sample of local SNe Ia for
which bothB and I-band data are available in the literature.
The SNe primarily come from the Calan/Tololo (Hamuy et al.,
1996a), CfA (Riess et al., 1999) and CfA2 (Jha, 2002) data
sets. Data from three other well studied individual super-
novae were also included: SN 1989B (Wells et al., 1994),
SN 1994D (Richmond et al., 1995) and the underluminous su-
pernova SN 1991bg. We have used two data sets in restframe
I-band for SN 1991bg, one published by Filippenko et al.
(1992b) with quite good coverage from about 3 days afterB-
band maximum light to+60 days, and another published by
Leibundgut et al. (1993) with four data points, the first of which
is at the time ofB-band maximum. The agreement between
the two data sets was assessed by comparing the measurements
taken at the same date, i.e. JD=2448607, where we found a
difference of 0.06 mag. We take this as an estimate of the mea-
surement uncertainty in data of Leibundgut et al. (1993) as no
uncertainties are reported in that work.

2.2. Fitting method and results

Only supernovae with at least 6I-band data points and time
coverage constraining both peaks were selected for light curve
fitting. This resulted in a total of 42 SNe. Table 2 lists the pa-
rameters resulting from the fitting procedure. Since the domi-
nant uncertainties are symmetric in units of flux, we performed
the fit in flux rather than magnitudes. The parameters given in
Table 2 are transformed into magnitudes.

Prior to fitting, all data points werek-corrected to restframe
I-band as in Kim et al. (1996) and Nugent et al. (2002), assum-
ing a BessellI-band filter transmission curve (Bessell, 1990)
and time information from the availableB-band data. A new
spectroscopic template, which is a slightly modified version of
the template found in Nugent et al. (2002), was built for com-
puting thek-corrections. We have preserved the SED from the
UV through the Si II 6150Å feature, following Nobili et al.
(2003), but red ward of that we have incorporated additional
spectra from the Supernova Cosmology Project (SCP) Spring
1999 search (Aldering, 2000; Nugent & Aldering, 2000) to im-

prove this region as the original template was sparse and re-
quired a lot of interpolation. A potential source of systematic
uncertainty in thek-corrections is due to the wide Ca IR triplet
absorption feature, found to vary considerably among Type
Ia supernovae (Strolger et al., 2002; Nugent et al., 2002). We
have estimated this systematic uncertainty as a function ofred-
shift for 0.01 < z < 0.1 by computing thek-correction for
diverse nearby SNe Ia at different epochs. The dispersion in
thek-correction increases with redshift, reaching 0.05 mag. at
z = 0.1. We take this as a conservative estimate of the uncer-
tainty in all k-corrections in this wavelength region.

Note that the values ofI2 reported in Table 2 are not the
actual magnitudes of the secondary peak ,Isec, but a parameter
indicating the size of the contribution of the second template to
the overall I-band light curve.

In Fig. 1, all the fitted light curves are shown. They are
sorted in chronological order, except for the two very underlu-
minous supernovae: SN 1991bg and SN 1997cn, displayed at
the bottom of the figure. As the date of theB-band maximum
for SN 1997cn is unknown, the origin of the time axis was set
to the epoch (JD = 2450597.75) when this supernova was first
observed. Note that the second peak of underluminous super-
novae is almost completely absent, resulting in a value ofI2 ∼

2.5 to 3 magnitudes fainter thanI1.
Our sample includes SNe that are classified as spectroscop-

ically peculiar, showing similarities with the over-luminous
SN 1991T (Filippenko et al., 1992a; Ruiz-Lapuente et al.,
1992; Phillips et al., 1992). These are SN 1995bd, SN 1997br,
SN 1998ab, SN 1998es, SN 1999aa, SN 1999ac, SN 1999dq
and SN 1999gp (Li et al., 2001; Howell, 2001; Garavini et al.,
2004). One supernova, SN 1993H, was reported to show
similarities with the spectrum of the peculiar underluminous
SN 1986G (Hamuy et al., 1993). However, as we will see in
this work, we do not find all of these to show peculiarities in
their I-band light curve shape when compared to spectroscop-
ically normal SNe Ia. Recently, Krisciunas et al. (2003), built
the Hubble diagram for SNe Ia in infraredJ,H and K-bands
out toz = 0.04, and reported that three spectroscopically pecu-
liar SNe, SN 1999aa, SN 1999ac and SN 1999aw, do not show
a behaviour different than that of normal SNe. With the aim
to assess a greater homogeneity of SNe as standard candles in
the I-band than inB-band, we choose not to exclude peculiar
SNe from our sample, and instead monitor possible deviant be-
haviour of these objects.

Analysing the results of our fits, we found that Type Ia SNe
show a variety of properties for theI-band light curve shape.
In particular we noticed that the light curve could peak be-
tween−3 days and+3 days w.r.t.Bmax, as shown in Fig. 2
(left-hand panel). The time of the second peak,tsec (relative
to Bmax), is shown in the right-hand panel. The distribution of
tmax is centred at day−0.3 and has a dispersion ofσ = 1.3
days.tsec is centred at 23.6 with a dispersion ofσ = 4.4 days.
The result shown in Fig. 2 can be compared with the result of
Contardo et al. (2000) (their Fig. 4). Selecting the subsample
used by them we obtain a similar distribution, quite flat and
spread over a broad range, centred around 2 days beforeB-
maximum. However, when more SNe are added, we obtain the
distribution shown in Fig. 2.
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The fits have reducedχ2 values (see Table 2) that are gen-
erally around unity, except for a few cases.

Approximately half of the fits have reducedχ2 values (see
Table 2) that are around unity. The other half are either too good
or too poor, which either suggests that the published uncertain-
ties are unreliable or that the template is not a good model
In particular, we note that SN 1994D has aχ2/do f ∼ 26.
Although it has been suggested that the uncertainties for this
supernova may be underestimated (see Knop et al. (2003)), the
trend in the residuals shows that this SN is not well described
by the model, indicating the limitations of the fitting function.
As in other cases we find a systematic trend, especially in the
rising part of the light curves for 6 objects, less than half the su-
pernovae that have pre-maximum data. We note however, that
a different choice of the template, selected for fitting the pre
maximum data for these 6 SNe, would fail to fit the rest of the
sample, which is well fitted by the current template. We in-
vestigated possible systematic effects in the fitted light curve
maximum due to this, but found no evidence of a trend in the
residuals in the Hubble diagram (see Section3) for these 6 SNe.

While theχ2 gives a measurement of the goodness of the
fit, in the next section we test the robustness and accuracy ofthe
parameter estimation in our fitting method, reported in Table 2.

2.3. Monte-Carlo tests of the fitting method

Given the heterogeneous origin of the data sample, the quality
and the sampling of the individual SN light curves vary con-
siderably. Only a few supernovae have excellent time cover-
age in theI-band, resulting in a wide range of accuracy in the
fitted parameters. The robustness of the fitting procedure was
tested for all circumstances of data quality and time sampling
in our sample by means of Monte Carlo simulations. We gen-
erated 1000 sets of simulated light curves for each supernova.
The synthetic data points had the same time sampling as the
real light curves and with deviations from the best fit template
randomly drawn from a Gaussian whose width was set by the
published uncertainties. The simulated light curves were fitted
using the same method as the experimental data sets. The dis-
tribution of the fitted parameters from the simulated data was
compared with the input data from the fits of the experimen-
tal data. The mean value in the distribution of each parameter
generally coincides with that expected, i.e. within one standard
deviation. There is no evidence for biased fit parameters. This
lends confidence that the fitting procedure is robust, and given
the model of the light curve template, will not yield biased es-
timation of the parameters.

In two cases, SN 1997br and SN 1998ab, we found that the
fits to the MC simulations resulted in two solutions, one corre-
sponding to that found in the fit to the real data and the other
corresponding to a small fraction (3% and 22% for SN 1997br
and SN 1998ab respectively) of all simulations. We note, in-
cidentally, that these SNe are the two with the smallest ratios
between peak and dip in their light curves. However, the first
peak is determined by only one and two data points each. A
close look at the simulated light curves indicates the limited
number of points constraining the peak is the cause of the rare

Fig. 1 I-band light curve fits. On the ordinate is the flux nor-
malised to the first peak, on the abscissa the restframe time
sinceB-band maximum. The dashed line and the dash-dotted
line represent the two templates used to fit the first and second
peak respectively.

failure of the MC simulation. We nevertheless keep these SNe
in the rest of the analysis, since the parameters and their un-
certainties estimated from the main distribution agree with the
results on the real data.

For the rest of the supernovae, the simulations confirmed
the expected parameters, giving general confidence in the ro-
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SN z sI t1 I1 t2 I2 χ2 N

1989B1 0.002 1.100± 0.126 -0.590± 1.549 11.752± 0.059 23.123± 2.079 12.513± 0.175 5.12 15
1991bg4 0.005 1.104± 0.034 3.274± 0.380 13.521± 0.006 28.800± 1.123 16.506± 0.122 21.78 20
1992al4 0.015 0.952± 0.054 1.176± 1.016 15.039± 0.043 27.887± 1.078 15.527± 0.069 0.59 10
1992bc4 0.020 1.121± 0.030 -1.579± 0.146 15.639± 0.014 27.677± 0.492 16.510± 0.026 18.78 20
1992bg4 0.035 0.963± 0.065 0.257± 1.929 17.543± 0.086 26.392± 2.543 17.963± 0.060 3.18 7
1992bh4 0.045 1.086± 0.145 -0.008± 1.029 17.899± 0.028 26.766± 2.494 18.543± 0.116 4.16 10
1992bo4 0.019 0.952± 0.019 -0.609± 0.162 16.064± 0.016 23.403± 0.374 16.944± 0.042 43.91 18
1992bp4 0.079 0.891± 0.053 -0.292± 0.710 18.962± 0.029 27.750± 1.287 19.346± 0.084 10.14 14
1993ag4 0.049 0.924± 0.058 1.092± 0.863 18.384± 0.039 26.904± 2.010 18.759± 0.060 2.57 12
1993H4 0.024 0.953± 0.033 -2.072± 0.960 16.664± 0.040 20.556± 0.943 17.532± 0.048 23.61 13
1993O4 0.051 1.089± 0.080 0.462± 0.917 18.197± 0.023 26.248± 1.108 18.858± 0.034 15.97 16
1994ae3 0.004 1.051± 0.017 -1.110± 0.142 13.383± 0.018 26.664± 0.312 14.032± 0.042 22.65 20
1994D2 0.002 0.891± 0.004 -1.007± 0.043 12.177± 0.004 25.219± 0.091 12.836± 0.008 546.17 26
1994M3 0.023 0.945± 0.041 0.035± 1.262 16.513± 0.050 24.824± 1.027 17.139± 0.063 26.73 13
1994T3 0.035 0.740± 0.026 2.371± 1.319 17.458± 0.049 30.187± 0.988 17.840± 0.053 9.22 8
1995al3 0.005 1.158± 0.046 -1.002± 0.472 13.526± 0.022 24.696± 0.751 14.149± 0.057 8.72 16
1995bd3 0.016 1.166± 0.025 -0.095± 0.112 16.082± 0.012 26.516± 0.367 16.632± 0.060 20.70 16
1995D3 0.007 1.267± 0.054 -1.408± 0.682 13.708± 0.026 24.763± 0.744 14.454± 0.037 10.34 25
1995E3 0.012 1.026± 0.040 0.067± 0.635 15.393± 0.024 26.340± 0.950 16.093± 0.050 6.78 14
1996ai3 0.003 1.115± 0.024 -2.042± 0.495 13.986± 0.022 24.947± 0.504 14.675± 0.023 48.38 10
1996bl3 0.036 0.942± 0.026 1.932± 0.365 17.079± 0.022 29.619± 0.684 17.702± 0.033 9.44 9
1996bo3 0.017 1.072± 0.010 -0.325± 0.113 15.701± 0.005 24.675± 0.186 16.253± 0.013 85.76 12
1996C3 0.030 1.059± 0.038 0.278± 1.085 16.829± 0.052 27.206± 0.928 17.521± 0.030 23.02 11
1996X3 0.007 1.079± 0.041 -1.944± 0.371 13.399± 0.012 24.524± 0.774 14.170± 0.033 7.87 15
1997bp5 0.008 1.235± 0.049 1.092± 0.277 14.134± 0.006 25.847± 0.484 14.637± 0.018 8.18 11
1997bq5 0.009 1.014± 0.014 0.479± 0.099 14.580± 0.017 25.130± 0.230 15.139± 0.017 16.26 11
1997br5 0.007 1.349± 0.035 0.769± 0.110 13.683± 0.020 20.672± 0.451 14.295± 0.037 13.75 10
1997cn5 0.017 0.840± 0.049 -1.711± 0.776 16.426± 0.027 24.070± 1.067 18.255± 0.156 11.78 12
1997dg5 0.031 0.965± 0.060 -1.324± 1.082 17.240± 0.035 26.675± 2.351 17.744± 0.051 1.18 6
1997e5 0.013 0.931± 0.031 -1.375± 0.315 15.477± 0.007 23.879± 0.386 16.064± 0.022 8.60 8
1998ab5 0.027 1.413± 0.046 0.279± 0.179 16.485± 0.021 19.787± 0.556 17.049± 0.042 8.40 10
1998dh5 0.009 0.997± 0.011 -0.337± 0.169 14.099± 0.015 26.025± 0.275 14.682± 0.024 0.77 6
1998es5 0.011 0.980± 0.140 -2.309± 0.511 14.083± 0.016 24.278± 1.062 14.928± 0.085 6.90 11
1998v5 0.018 0.940± 0.036 0.545± 0.611 15.790± 0.017 25.688± 0.698 16.100± 0.056 9.65 7
1999aa5 0.014 1.288± 0.014 0.301± 0.072 15.242± 0.007 25.585± 0.180 15.871± 0.027 73.43 14
1999ac5 0.009 1.210± 0.027 1.328± 0.283 14.321± 0.006 23.045± 0.519 15.057± 0.032 11.26 12
1999cl5 0.008 0.970± 0.118 -0.107± 0.571 13.139± 0.022 22.206± 1.647 13.688± 0.101 0.63 8
1999dq5 0.014 1.179± 0.024 -0.324± 0.126 14.785± 0.006 25.492± 0.198 15.312± 0.013 34.19 20
1999gp5 0.027 1.261± 0.044 -1.600± 0.263 16.405± 0.008 26.011± 0.526 17.045± 0.024 7.51 11
2000cn5 0.023 0.799± 0.026 -0.362± 0.206 16.679± 0.015 23.965± 0.441 17.256± 0.062 15.40 12
2000dk5 0.017 0.809± 0.016 -1.342± 0.177 15.767± 0.007 24.297± 0.429 16.222± 0.048 20.33 9
2000fa5 0.021 1.119± 0.050 -0.235± 0.278 16.289± 0.037 24.911± 0.423 16.888± 0.111 0.20 7

Table 2 Results of theI-band light curve fit of 42 nearby supernovae:t1 andI1 are the parameters for the time and amplitude fitted
on the first template,t2 andI2 are the parameters for the time and amplitude fitted on the second template, andsI is the stretch
factor.N is the number of points used in the fit (do f=N-5). The data were taken from:1 Wells et al. (1994);2 Richmond et al.
(1995);3 Riess et al. (1999);4 Hamuy et al. (1996a);5 Jha (2002);6 Filippenko et al. (1992b); Leibundgut et al. (1993).

bustness of the procedure and the accuracy of the uncertainties
on the parameters given in Table 2.

2.4. Intrinsic variations

We investigated possible relations betweenI-band andB-band
parameters. Following Goldhaber et al. (2001), the time of
maximum, the stretch factor,sB, and the amplitude of maxi-
mum,mB, were determined by fitting aB-band template to the
publishedB-band data. A width-luminosity relation was found
for the firstI-band light curve peak. Figure 3 shows theI-band

absolute magnitude versus the stretch factor in theB-band for
SNe with zCMB ≥ 0.01, where the distance (in Mpc) to each
SN was calculated from its redshift, assuming a value for the
Hubble constant,H0 = 72 km s−1 Mpc−1. The error bars in
Fig. 3 include an uncertainty of 300 km s−1 on the redshifts to
account for the peculiar velocities of the host galaxies. The un-
derluminous supernovae, SN 1997cn and SN 1991bg, are not
included in the sample or in any of the analysis presented in this
section. Corrections for Milky Way and host galaxy extinction
were also applied, i.e.

MI
max− 5 log(H0/72)= Imax− AMW

I − Ahost
I − 25− 5 log(dL)
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Fig. 1 continued.I-band light curve fits. On the ordinate is the
the flux normalised to the first peak, on the abscissa the rest-
frame time sinceB-band maximum. The dashed line and the
dash-dotted line represent the two templates used to fit the first
and second peak respectively.

The host galaxy extinction correction that is applied to most of
the supernovae is the weighted average of the three estimates
given in Table 2 of Phillips et al. (1999) assumingRI = 1.82.
The extinction for the supernovae in the CfA2 data set was cal-
culated following the same procedure, usingB andV-band pho-
tometry. At this point, we exclude SN 1995E, SN 1996ai and

Fig. 1 continued.I-band light curve fits. On the ordinate is the
flux normalised to the first peak, on the abscissa the restframe
time sinceB-band maximum. The dashed line and the dash-
dotted line represent the two templates used to fit the first and
second peak respectively.

SN 1999cl from the sample as they are highly reddened (see
also discussion in Nobili et al. (2003)). These are not shown
in any of the plots nor used in any of the analysis that fol-
low. Two supernovae in the sample, the spectroscopically pe-
culiar SN 1998es and SN 1999dq, plotted with filled symbols
in Fig. 3, appear intrinsically redder than average, and become
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Fig. 1 continued.I-band light curve fits. On the ordinate is the
flux normalised to the first peak, on the abscissa the restframe
time sinceB-band maximum. The dashed line and the dash-
dotted line represent the two templates used to fit the first and
second peak respectively.

∼ 2 − 3σ deviant from the average after correction for host
galaxy extinction. Before introducing light curve shape cor-
rections, the spread measured inMI

max excluding these two
SNe, is about 0.24 mag (0.28 mag if they are included). The
solid line shows the best fit to the data, obtained for a slope
αI = 1.18±0.19 and an absolute magnitude for a stretchsB = 1

Fig. 1 continued.I-band light curve fits of the underluminous
supernovae SN 1991bg and SN 1997cn. The dashed line and
the dash-dotted line represent the two templates used to fit the
first and second peak respectively. Note that the second peakis
∼ 3 mag fainter than the first peak.

Fig. 2 Distribution of the time ofI-band maximum referred to
the time ofB-band maximum (left panel) and the distribution
of the time of second maximum referred to the time ofB-band
maximum (right panel).

supernova equal toMI
max(sB = 1) = −18.89± 0.03 mag2. The

dispersion, computed as the r.m.s. about the fitted line is 0.17
± 0.03 mag. A similar correlation was found between the peak
magnitude and the stretch in theI-band,sI , with a r.m.s. of
∼ 0.19 mag about the best fit line, again excluding SN 1998es
and SN 1999dq.

A correlation was found betweentsecand theB-band stretch
factor, as shown in Fig. 4. There are three outliers labelledin
the figure, SN 1993H , SN 1998es and SN 1999ac, which are
identified as spectroscopically peculiar supernovae. However,
other supernovae in our sample that are classified as spectro-
scopically peculiar behave as “normal” Type Ia SNe. We note
that theB-band stretch factor for SN 1999ac is not well defined
due to an asymmetry of theB-band light curve (Phillips et al.,
2003).

Figure 5 shows a possible correlation betweenIsec and the
stretchsB, at least forsB < 0.9, after correcting for the luminos-
ity distance and for extinction both from host galaxy and Milky
Way. This correlation, however, disappears for larger values of
sB.

All of these correlations, shown in Fig. 3 - 5, were expected
since it has been suggested that the location and the intensity of

2 The value fitted forMI
max depends on the value assumed for the

Hubble parameter,H0 = 72 km s−1 Mpc−1. However, its value is not
used in any of the further analysis presented in this paper.
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Fig. 3 I-band absolute magnitude versus stretch in theB-band.
The best fit givesαI = 1.18 ± 0.19 andMI

max(sB = 1) =
−18.84± 0.03 mag. The two deviating supernovae, SN 1998es
(filled diamond) and SN 1999dq (filled circle), were excluded
from the fit.

the secondary peak depends on theB-band intrinsic luminosity
of the supernova (Hamuy et al., 1996a).

Figure 6 shows theI-band stretch,sI , plotted versus the
B-band stretch,sB. We found an interesting linear correlation,
although some of the supernovae, three of which are spectro-
scopically peculiar, are more than two standard deviationsfrom
the fit. The dispersion measured as r.m.s. about the line is 0.08.

We have investigated the possible existence of further rela-
tions between the fitted parameters, but find no additional sta-
tistically significant correlations.

Fig. 4 Time sinceBmax of the second peak versus the stretch
in the B-band. The labelled supernovae, classified as spectro-
scopically peculiar, are excluded from the fit because they are
outliers.

Fig. 5 Absolute magnitude of the secondary peak versus the
stretch in theB-band. The two deviating supernovae in Fig. 3
are SN 1998es (filled diamond) and SN 1999dq (filled circle).

Fig. 6 I-band light curve stretch,sI , versusB-band stretch,
sB. The labelled supernovae are more than two standard devia-
tion from the correlation shown by the ensemble. SN 1998ab,
SN 1997br and SN 1998es are classified as spectroscopically
peculiar.

3. The I-band Hubble Diagram

The fitted values ofImax were used to build a Hubble diagram
in the I-band. We select 28 supernovae from the sample con-
sidered here that have a redshiftzCMB ≥ 0.013. The maximum
redshift in this sample is 0.1.

The width-luminosity relation betweenImax and the the
B-band stretch factor was used to correct the peak magni-
tude, with aαI = 1.18 ± 0.19 as measured in the previ-

3 The lower limit chosen in previous analyses by the SCP is slightly
higher. However, we include these lower redshift SNe in the sample
in order to increase the statistical significance. Cutting the Hubble di-
agram abovez = 0.015 would decrease the sample by about 30 %.
Note, however, that this choice does not significantly affect any of the
results.
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SN sB zCMB meff
I

1992al 0.917± 0.012 0.014 14.868± 0.162
1992bc 1.076± 0.008 0.020 15.718± 0.111
1992bg 0.952± 0.017 0.036 17.120± 0.107
1992bh 1.014± 0.022 0.045 17.637± 0.062
1992bo 0.741± 0.008 0.017 15.710± 0.138
1992bp 0.863± 0.022 0.079 18.689± 0.055
1993H 0.773± 0.011 0.025 16.169± 0.106
1993O 0.887± 0.012 0.053 17.967± 0.054
1993ag 0.909± 0.027 0.050 17.928± 0.069
1994M 0.810± 0.016 0.024 16.080± 0.111
1994T 0.911± 0.025 0.036 17.105± 0.085
1995bd 1.172± 0.026 0.014 14.939± 0.162
1996C 1.039± 0.013 0.027 16.669± 0.097
1996bl 0.924± 0.016 0.035 16.630± 0.070
1996bo 0.890± 0.011 0.016 14.860± 0.138
1997bq 0.912± 0.009 0.010 14.154± 0.219
1997dg 0.836± 0.057 0.030 16.740± 0.110
1997E 0.784± 0.008 0.013 14.888± 0.173
1998ab 0.921± 0.010 0.028 16.180± 0.083
1998es 1.093± 0.014 0.010 13.885± 0.219
1998V 0.922± 0.013 0.017 15.272± 0.131
1999aa 1.073± 0.005 0.015 15.250± 0.146
1999ac 1.079± 0.009 0.010 14.144± 0.218
1999dq 1.037± 0.000 0.014 14.382± 0.155
1999gp 1.154± 0.011 0.026 16.303± 0.090
2000cn 0.749± 0.000 0.023 16.114± 0.107
2000dk 0.716± 0.007 0.016 15.375± 0.147
2000fa 1.019± 0.010 0.022 16.029± 0.106

Table 3 List of SNe used in the Hubble diagram.meff
I is the

peak magnitude corrected for dust extinction and for the width-
luminosity relation, following Eq. 1. The quoted uncertainties
do not include the redshift contribution due to peculiar ve-
locities in the host galaxies, assumed equal to 300 km s−1.
Redshifts from Table 2 are here transformed into the CMB
frame.

ous section, similarly to what is usually done in theB-band
(Perlmutter et al., 1999). The peak magnitude was also cor-
rected for Milky Way and host galaxy extinction:

meff
I = mI + αI(sB − 1)− Ahost

I − AMW
I (1)

The effective magnitude,meff
I of the nearby supernovae, listed

in Table 3, have been used for building the Hubble diagram in
I-band, shown in Fig. 7. The inner error bars include an un-
certainty in the redshifts due to peculiar velocities of thehost
galaxies, assumed to be 300 km s−1.

The solid line represents the best fit to the data for the con-
cordance model with fixedΩM = 0.25 andΩΛ = 0.75. The
single fitted parameter,MI, is defined (as in Perlmutter et al.
(1997)) to be

MI ≡ MI − 5 logH0 + 25 (2)

whereMI is theI-band absolute magnitude for aB-band stretch
sB = 1 supernova. The value fitted isMI = −3.19 ± 0.03.
The two redder supernovae, SN 1998es and SN 1999dq, were

excluded from the fit, and are plotted with different symbols in
Fig. 7.

In order to disentangle the intrinsic dispersion from the sta-
tistical scatter due to the measurement uncertainties, we sim-
ulated data sets with a dispersion given by the measurement
uncertainty only. Since the uncertainty due to peculiar motion
of the host galaxy is dominant at very low redshift (∼0.2 mag
for z =0.01), we limited this calculation to only 15 SNe with
z > 0.025, which correspond to a peculiar velocity uncertainty
of the same order as the measurement uncertainties in our sam-
ple. The average of the r.m.s. measured on each of the sim-
ulated data sets is geometrically subtracted from the disper-
sion measured as r.m.s. on the data (0.17 mag), resulting in
σ = 0.13 mag. We consider this an estimate of the intrinsic dis-
persion of the stretch correctedI-band light curve maximum,
which agrees with the estimate given by Hamuy et al. (1996b)
using 26 SNe of the Calan/Tololo sample. The estimated in-
trinsic uncertainty of 0.13 mag has been added in quadratureto
the outer error bars of the plotted data. Note that if no correc-
tion αI(sB − 1) is applied the dispersion in the Hubble diagram
becomes 0.24± 0.04 mag, somewhat smaller than the cor-
responding dispersion measured in the “uncorrected”B-band
Hubble diagram. Moreover, we computed the dispersion in the
Hubble diagram for the three data sets separately, and no sta-
tistically significant differences were found.

4. High redshift supernovae

Next, we explore the possibility of extending the Hubble dia-
gram to higher redshifts, where the effects of the energy density
components of the universe are, in principle, measurable. The
restframeI-band data available to date for this purpose are un-
fortunately very limited. They consist of only three supernovae
(SN 1999Q, SN 1999ff and SN 2000fr) at redshiftz ∼ 0.5 ob-
served in the near infrared (NIR) J-band collected during three
different campaigns conducted using different facilities and by
two different teams. Keeping all of these possible sources of
systematic errors in mind, we include two of these supernovae
in theI-band Hubble diagram.

4.1. SN 2000fr

SN 2000fr was discovered by the Supernova Cosmology
Project (SCP) during a search for Type Ia supernovae at
redshift z ∼ 1 conducted in theI-band with the CFH12k
camera on the Canada-France-Hawaii Telescope (CFHT)
(Schahmaneche et al., 2001). The depth of the search allowed
us to discover thisz ∼ 0.5 supernova during its rise, about 11
rest-frame days before maximum B-band light.

The supernova type was confirmed with spectra taken at the
Keck II telescope and the VLT, showing that it was a normal
Type Ia atz = 0.543 (see Lidman et al. (2004); Garavini et al.
(2005) for an extensive analysis of the spectrum). This super-
nova was followed in the restframeB, V andI bands involving
both ground and space based facilities. Approximately one year
later, when SN 2000fr had faded sufficiently, infrared and opti-
cal images of the host galaxy were obtained. The optical light
curves in Knop et al. (2003) were re-fitted using the improved
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Fig. 7 EffectiveI-band maximum vs redshift for the nearby supernovae of the Calan/Tololo, CfA and CfA2 sample. The data have
been corrected for the stretch-luminosity relation and forMilky Way and host galaxy extinction. The r.m.s. along the concordance
model line isσ = 0.17±0.04 mag. Subtracting the contribution of the average uncertainty, results in 0.13 mag estimated intrinsic
dispersion (see text for details). SN 1998es and SN 1999dq were excluded from the fit (see text) and are plotted with open
diamonds. The inset plots the histogram of the residuals.

spectral templates for computingk-corrections. We found aB-
band stretch factor ofsB = 1.034± 0.013 and a time ofBmax,
tmax = MJD 51685.6. RestframeB − V measurements at the
time of Bmax indicate that SN 2000fr did not suffer from red-
dening due to dust in the host galaxy (see Section 6 for a more
extensive discussion). The adopted Milky Way reddening is
E(B − V) = 0.030 mag (Schlegel et al., 1998).

The near-infrared data were collected with ISAAC at the
VLT. They consist ofJs-band observations during three epochs
and a final image of the host galaxy without the SN (see Table
4). Each data point is composed of a series of 20 to 60 images
with random offsets between exposures. Figure 8 shows a com-
parison between the PerssonJ filter and the narrower ISAACJs

filter used for the observations, together with the atmospheric
transmission, and the spectral template at maximum.

The advantage in using the narrowerJs filter is that the
transmission of the filter is not determined by the region of
strong atmospheric absorption between 13500 and 15000 Å.
Consequently, the zero-point is significantly more stable than
that of standardJ. This was very useful, because all the ISAAC
data were taken in queue mode, where typically only one or two
standard stars, chosen from the list of Persson et al. (1998), are
observed during a night. All data, except the reference images,
were taken during photometric nights and the difference in the
zero-points from one night to the next was less than 0.01 mag-
nitudes.

The data were reduced using both internally developed rou-
tines and the XDIMSUM package in IRAF4. The differences
between the two analyses are within the quoted uncertainties.

4 IRAF is distributed by the National Optical Astronomy
Observatories, which are operated by the Association of Universities
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Fig. 8 Comparison between the PerssonJ filter (dashed-dotted
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SN 2000fr (dashed line) and theI-band red-shifted to z=0.543
(heavy solid line). The atmospheric transmission is also plotted
(dotted line). The spectral template at day 0 is on an arbitrary
flux scale for readability purpose (solid line).

MJD Epoch Js(mag) I(mag)

51685.06 -0.33 22.50± 0.09 23.52± 0.10
51709.02 15.20 23.57± 0.22 24.52± 0.23
51731.96 30.07 23.14± 0.15 23.99± 0.16

Table 4 Summary ofJs-band data for SN 2000fr. The quoted
errors are due to statistical Poisson noise and the uncertainty in
the ZP (contributing 0.01 mag). Epochs are in restframe days
relative to the date ofB-band maximum. The restframeI-band
is obtained through cross-filterk-correction from the observed
Js-band to BesselI-band. The uncertainties also include the
contribution fromk-corrections, estimated to be 0.05 mag at all
epochs considered.

The supernova images were aligned with the host galaxy im-
ages and the flux scaled to the one with best seeing, using the
field stars before performing PSF photometry (Fabbro, 2001).
The results are presented in Table 4. The stated uncertainties
include the statistical Poisson noise and the uncertainty on the
estimate of the zero point, added in quadrature.

The Js-band magnitude takes into account a colour term
which arises from the difference between theJ filter of the stan-
dard star system and theJs filter used in ISAAC. This correc-
tion was small,∼ 0.012 mag.

The cross-filterk-correction,KIJs , to convert fromJs-band
to rest-frameI-band, has been calculated following Kim et al.
(1996) using the spectral templates improved for this work.
Thek-correction includes a term to account for the appropriate
transformation between IR and optical photometric systems,
equal to (I − J) = 0.03(±0.02), determined by using the Vega

for Research in Astronomy, Inc., under cooperative agreement with
the National Science Foundation.

magnitudes inI andJ (Bessell et al., 1998; Cohen et al., 2003).
We conservatively assume 0.05 mag total uncertainty in thek-
corrections (see Section 2.2).

4.2. SN 1999ff

SN 1999ff was discovered by the High-Z Supernova Search
Team (HZSST) during a search conducted at CFHT using the
CFH12k camera in theI-band (Tonry et al., 2003).5 The super-
nova was confirmed spectroscopically as a Type Ia at redshift
z = 0.455. The adopted Milky Way reddening isE(B − V) =
0.025 mag (Schlegel et al., 1998).

J-band observations, corresponding to restframeI-band,
reported in Tonry et al. (2003), were taken at Keck using NIRC
at two epochs only. TheJ-band filter that was used for these
observations is very similar to the ISAACJs, shown in Fig. 8.
We have used the published photometry, and, for consistency
with the treatment of both the low redshift supernovae and
SN 2000fr, we computed thek-corrections using the improved
spectral templates. We found differences with the results pub-
lished in Tonry et al. (2003), due to the use of an incorrect filter
in the originally published results. (However, thek-corrections
calculated as part of the MLCS distance fits to this object were
done with the correct filter (Brian Schmidt, private communi-
cation)). TheI-band magnitudes were also corrected for the
offset found between the optical and IR systems, as explained
in the previous section. The restframeI-band magnitudes ob-
tained this way are reported in Table 5. The published optical
R-band data were used to fit the restframeB-band light curve
using the stretch method. Our time of maximum was within
1 day of the Tonry et al. (2003) value, with a best fit for the
stretchsB = 0.80± 0.05.

MJD Epoch I(mag)

51501.29 5.01 23.57± 0.11
51526.31 22.21 24.06± 0.24

Table 5 Summary of IR data for SN 1999ff. Epochs are in
restframe days relative to the date of theB-band maximum
(tmax = MJD51494.8); restframeI-band magnitudes are com-
puted applyingk-corrections to the observedJ-band data pub-
lished in Tonry et al. (2003). The uncertainties also include the
contribution fromk-corrections, estimated to be 0.05 mag at all
epochs considered.

4.3. SN 1999Q

SN 1999Q was discovered by the HZSST using the CTIO 4m
Blanco Telescope and was spectrally confirmed to be a Type Ia
SN at z = 0.46 (Garnavich et al., 1999). The adopted Milky

5 Another supernova, SN 1999fn, was followed inJ-band by the
HZSST during the same search. However since it was found in a
highly extincted Galactic field, E(B-V)=0.32 mag, and since it was
strongly contaminated by the host galaxy, we did not includeit in our
analysis.
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Way reddening isE(B−V) = 0.021 magnitudes (Schlegel et al.,
1998).

SN 1999Q was observed in theJ-band over five epochs,
the first with SofI on the ESO NTT and the following four with
NIRC at the Keck Telescope (Riess et al., 2000). We recom-
puted thek-corrections using our new spectral template (as we
did for SNe 2000fr and 1999ff) and we find a difference of up
to 0.15 magnitudes between ourk-corrections and those pub-
lished in Riess et al. (2000).

A fit to the published restframeI-band data of SN 1999Q
shows that it is a 4 standard deviation outlier in theI-band
Hubble diagram. In order to investigate its faintness, we re-
analysed the publicly available SofI data and foundJ=22.63
± 0.15 mag, which is significantly brighter than the published
value, 23.00± 0.14 mag (Riess et al., 2000). Due to this large
discrepancy, we decided to not include this SN in the rest of the
analysis.

4.4. Light Curve fits for the high redshift supernovae.

TheI-band light curves of the high redshift supernovae are not
as well sampled in time as the low redshift sample analysed in
Section 2. There are only few data points for each SN, making
it impossible to perform the 5 parameter fit. Thus, we used the
results of the fit of the local sample of supernovae to build a set
of 42 I-band templates, which in turn have been used to fit the
high redshift SN light curves.

The best fit light curve for each of the 42 supernovae in
our low-redshift sample can be viewed as defining anI-band
template. The high redshift supernovae are fit to each template
with a single free parameter,Imax, the absolute normalisation
of the template. The time ofBmax is obtained from the lit-
erature (SN 1999ff) or from our ownB-band light curve fits
(SN 2000fr). The best-fitting low-redshiftI-band template fixes
the date of the I-band maximum relative to the date of theB-
band maximum. Aχ2 comparison was used to choose the best
low redshift template. Figs. 9 and 10 show the comparison of
the data with the best fit template for each of the supernovae.
Table 6 gives the results of the fit together with redshift, the
number of data points, the template giving the best fit and the
χ2. As there are only a few data points for each SN, theχ2 pa-
rameter has little significance for estimating the goodnessof
the fits. Thus, to estimate the possible systematic error in the
measured peak magnitude from the selection of the light curve
template, we computed the r.m.s. of the fittedImax of all the
light curve templates satisfyingχ2 ≤ χ2

min + 3. This possible
systematic uncertainty is reported also in Table 6. For bothSNe
this is quite small, and compatible with the scatter due to the
statistical uncertainties, thus, it is a conservative estimate.

4.5. Monte-Carlo test of the fitting method

A Monte-Carlo simulation was run in order to test the robust-
ness of the fitting method applied to the high redshift SNe. The
measurement uncertainties were used to generate a set of 1000
SNe, with data points randomly distributed around the real data
and at the same epochs as the data. All the simulated data sets
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Fig. 9 I-band fit for SN 2000fr. Out of 42I-band templates, the
best fit was obtained with the template of SN 1992bc. The fit
was performed with only one free parameter, the peak magni-
tude, Imax = 23.48± 0.08 mag. Supplemental data from the
B-band (not shown) is used to fix the date ofB-maximum.
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Fig. 10 I-band fit for SN 1999ff. Out of 42 I-band templates,
the best fit was obtained with the template of SN 1996bl. The
fit was performed with only one free parameter, the peak mag-
nitude,Imax = 23.55± 0.10 mag. Supplemental data from the
B-band (not shown) is used to fix the date ofB-maximum.

were in turn fitted with the 42 templates and the one giving
the minimumχ2 was selected for each simulation. The distri-
bution of the fitted parameters in each of the simulated data
sets around the true values, fitted on the experimental data,was
studied to check for systematic uncertainty in the fitting pro-
cedure. This was found to be robust, always selecting the same
template as the one giving the best fit for both SNe. No bias was
found, therefore confirming the peak magnitude fitted with this
method. The uncertainty inImax reported in Table 6 was con-
sistent with the dispersion in the distribution ofImax measured
from the simulations.

5. The I-band Hubble diagram up to z ∼ 0.5

The I-band peak magnitudes of the high redshift supernovae
reported in Table 6 were corrected for Milky Way extinction.
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SN z sB n Imax template χ2 AMW
J

SN 2000fr 0.543 1.034± 0.011 3 23.48± 0.08± 0.04 SN 1992bc 1.04 0.027
SN 1999ff 0.455 0.80± 0.05 2 23.55± 0.10± 0.08 SN 1996bl 0.05 0.022

Table 6 List of the high redshift Type Ia SNe used in this work.Columns are: IAU name, redshift, number of data points used
in the fit, magnitude of the peak resulted from the fit (both statistical and systematic uncertainties are given) before Milky Way
extinction correction, best fit template,χ2 of the fit, Milky Way extinction in theJ-band.
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Fig. 11 EffectiveI-band maximum versus redshift for the nearby supernovae of the Calan/Tololo, CfA and CfA2 sample, together
with two supernovae at redshift∼ 0.5 for casec (top panel), residuals to the (ΩM,ΩΛ)=(0.25,0.75) model for casec (middle
panel) and casea (bottom panel). SN 1998es and SN 1999dq were excluded from the fit (see text) and are plotted with open
diamonds. Only the low-redshift SNe have been extinction corrected. The host galaxy extinction correction would make the two
high-redshift data points closer to each other but with larger error bars.

Note that both SN 1999ff and SN 2000fr have been reported
not to suffer from extinction from their host galaxies.

The Hubble diagram has been built both with and without
width-luminosity correction (casec and casea respectively),
where the systematic uncertainties on the peak magnitudes of
the distant supernovae, listed in Table 6, are added in quadra-
ture to the statistical uncertainties. Casesb and d are like a
and c but neglect the systematic uncertainties from Table 6.

Figure 11 shows the extended Hubble diagram (casec), where
an intrinsic uncertainty of 0.13 mag has been added in quadra-
ture to the measurement errors of the plotted data. The solid
line represent the best fit to the nearby data for the concor-
dance modelΩM = 0.25 andΩΛ = 0.75. Also plotted is the
model forΩM = 1 andΩΛ = 0 (dashed line), and a flat,Λ = 0
universe in the presence of a homogeneous population of large
dust grains in the intergalactic (IG) medium able to explainthe
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observed dimming of Type Ia SNe atz ∼ 0.5 in the B-band
(dotted line) (Aguirre, 1999a,b). The bottom panel shows the
residuals obtained for casea. Table 7 lists theχ2 values for the
high redshift SNe for each of the models. TheΩΛ-dominated
cosmology is formally favored over the other two models at
the >2σ level. However, two high redshift supernovae obvi-
ously do not provide the full gaussian distribution that would
confirm this result.

(ΩM ,ΩΛ) χ2
a χ2

b χ2
c χ2

d

(0.25,0.75) 2.18 2.36 1.16 1.44
(1,0) 7.56 8.44 15.56 18.30
(1, 0)dust 3.52 3.96 5.36 6.48

Table 7χ2 (for 2 dof) of each model to the high redshift data,
without stretch correction and with systematic uncertainties
added in quadrature (χ2

a), neglecting the systematic uncertain-
ties (χ2

b), with stretch correction and adding the systematic un-
certainties in quadrature (χ2

c) or neglecting them (χ2
d).

Systematic uncertainties in the method used here also can-
not be extensively explored with only two supernovae. Some
uncertainties are specific to the sample considered here. The
different fitting methods applied to the restframeI-band light
curve for the low and high redshift samples can be easily over-
come if distant supernovae are followed at NIR wavelengths
with better time coverage. Both the low and high redshift sam-
ples used in this analysis are rather heterogeneous, as theywere
collected from different data sets. Future data sets collected
with a single instrument would naturally solve this problem.

6. SN Ia colours and intergalactic dust

Multi-colour photometry allows one to search for non-standard
dust having only a weak wavelength dependence, such as a
homogeneous population of large grain dust, as proposed by
Aguirre (1999a,b).

If we assume that grey dust is responsible for the dim-
ming of SNe Ia in theB-band atz ∼ 0.5, we can calculate the
expected extinction in other filters and compute the resulting
colours. Following Goobar et al. (2002a), we use the SNOC
Monte-Carlo package (Goobar et al., 2002b) for two cases of
the total to selective extinction ratio -RV = 4.5 and 9.5. We
assume that the dust is evenly distributed between us and the
SNe in question and we assume a flat cosmological model with
a zero cosmological constant.

The measuredB − I andB − V colours of SN 1999ff and
SN 2000fr, corrected only for Milky-Way extinction, are pre-
sented in Tables 8 and 9 and plotted in figure 12. The error bars
include the contribution of the intrinsic colour dispersion. The
expected evolution in theB− I andB−V colours of an average
SNe Ia in the concordance model and in the two models with
grey dust and without a cosmological constant atz = 0.5 are
also shown.

Theχ2 has been computed for bothB − V andB − I evo-
lution for SN 1999ff and SN 2000fr, and for both supernovae

together (see Table 10). The correlations between SN colours
at different epochs found in (Nobili et al., 2003) were taken
into account. However, we note that, although this correlation
should be taken into account in the calculations, neglecting it
would not change significantly the conclusions of the analy-
sis. Although individual supernovae giveχ2 values that would
seem to distinguish between the models, the combined results
disfavour such conclusions.

Epoch B − I

SN 2000fr
-0.32 -0.51± 0.12
14.70 -0.50± 0.24
29.08 1.42± 0.17

SN 1999ff
5.59 -0.18± 0.13
27.20 1.38± 0.24

Table 8 RestframeB− I colours in magnitudes for the two high
redshift SNe. The Epoch is in restframe days relative to theB-
band maximum, divided by theB-band stretch.

Epoch B − V

SN 2000fr
-7.97 -0.06± 0.05a

-3.51 -0.14± 0.05a

4.60 -0.12± 0.05
12.93 0.24± 0.08
20.31 0.61± 0.07
30.22 0.99± 0.09

SN 1999ff
-7.99 0.03± 0.08a

1.91 -0.02± 0.09
1.98 0.10± 0.12
2.91 0.23± 0.12
19.55 0.71± 0.09
28.75 1.22± 0.20

Table 9 RestframeB − V colours in magnitudes for SN 1999ff
and SN 2000fr. The Epoch is in rest frame days relative to the
B-band maximum, divided by theB-band stretch.

aThe data are not included in the analysis because they are outof the
range in which Nobili et al. (2003) studied colour correlations.

To make our test for grey dust more effective, a different
approach was followed. The method of least squares has been
used to combine colour measurements along time for each su-
pernova (see Cowan, 1998, p.106 for details). The residualsbe-
tween the data and the models are averaged with a weight that
is determined from the covariance matrix. In the following,we
refer toE(X − Y) to describe the colour excess of any super-
nova with respect to the averageX−Y colour of nearby SNe Ia,
as derived in (Nobili et al., 2003). First we applied this method
to all local supernovae and used the results to establish theex-
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Fig. 12 The evolution in the colour of SN 1999ff (squares) and
SN 2000fr (triangles),B − V (top panel) andB − I (bottom
panel), compared to the colour evolution of the average SNe Ia
in aΛ dominated universe (solid line) and aΩM = 1,ΩΛ = 0
universe with presence of grey dust withRV=4.5 (dashed line)
andRV=9.5 (dotted line) forz = 0.5.

pected distribution in theE(B− I) vsE(B−V) plane, as showed
in Fig. 13.

As the high redshift SNe were not corrected for host galaxy
extinction, we computed the colour distribution of nearby
SNe Ia for two cases: the left-hand panels represent the dis-
tribution of colour excess of 27 nearby SNe not corrected (top
panel) and corrected (bottom panel) for host galaxy extinction.
Spectroscopically peculiar SNe have been excluded from the
analysis. The projection of the ellipses on each colour axisis
the estimated standard deviation in that colour and the incli-
nation is defined by the linear Pearson correlation coefficient
computed on the same data sample. The solid contours repre-
sent 68.3%, 95.5% and 99.7% probability.

The right-hand panels in Fig. 13 show the combined val-
ues of colour excess, [E(B − V), E(B − I)], for the high red-
shift supernovae: [0.12± 0.09, 0.25± 0.17] for SN 1999ff and
[−0.11±0.08,−0.10±0.18] for SN 2000fr. These are compared

to the local supernova distribution (solid lines), that represent
the distribution expected in the absence of IG dust. Also plot-
ted is the 68.3% level of the expected distribution in presence
of grey dust withRV = 9.5, represented by the ellipse (dashed
line) that is displaced by (0.06,0.19) from the no-dust model.
Only the case ofRV = 9.5 has been plotted for readability rea-
sons, given the small difference between the two dust models.
Note that this is the closer to the no-dust model. The ellipse
corresponding toRV = 4.5 would be displaced by (0.03,0.04),
respectively inE(B−V) andE(B−I), from theRV = 9.5 model.

We computed theχ2 of the high redshift data for all three
models, for two cases: in the first case, the nearby SNe Ia are
corrected for extinction by dust in the host galaxy, and, in the
second case, they are not (bottom and top panels of Fig. 13).
For each model, we sum theχ2 contribution from all SNe, tak-
ing into account the correlation found betweenE(B − V) and
E(B − I) in the nearby sample. In the first case, the reducedχ2

(for 4 degrees of freedom) are 0.63, 1.20, and 0.97 for the no-
dust, IG dust withRV = 4.5 and IG dust withRV = 9.5 models
respectively. In the second case, the reducedχ2 are 0.62, 1.55
and 1.32 respectively. We note that both the intrinsic disper-
sion in the colours of the nearby data, and the uncertaintiesin
the colours of the high redshift SNe, have been taken into ac-
count in computing theχ2. The statistical significance of these
results is very limited, and should only be taken as an exam-
ple of the method developed here. Moreover, the possibilityfor
this analysis to be affected by systematic effects is not negli-
gible. Increasing the sample and the time sampling for each
object would allow us not only to improve the significance of
our statistic, but it will also be a means to identify and quantify
systematic effects involved.

A Monte Carlo simulation was used to estimate the mini-
mum sample size needed to test for the presence of homoge-
neously distributed grey dust in the IGM. SNe colours were
generated following the binormal distribution defined by the
nearby SNe Ia sample. Under the assumption that the system-
atic effects are negligible and an average measurement uncer-
tainty of 0.05 mag in bothE(B−V) andE(B− I), we found that
a sample of at least 20 SNe would be needed to exclude the IG
dust model withRV = 9.5 at the 95% C.L. Note that the average
measurement uncertainty of 0.05 mag can be achieved with dif-
ferent strategies. Currently, the uncertainties on the individual
measurements give the main contribution to the colour uncer-
tainties. A good sampling would allow us to better identify and
quantify currently unidentified systematic effects which may
possibly be affecting the current analysis.

7. Test for SN brightness evolution

Evolution of the properties of the progenitors of SNe Ia with
redshift has often been proposed as an alternative explanation
for the observed dimming of distant SNe. This is based on the
assumption that older galaxies show different composition dis-
tribution than younger ones, e.g. an increased average metal-
licity, resulting in different environmental conditions for the
exploding star. A simple way to test for evolution is to com-
pare properties of nearby SNe with distant ones. This will not
prove that there is no evolution, but it will exclude it on a
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Fig. 13 Left-hand panels: distribution of combined colour measurements of nearby SNe Ia in theE(B− I) vs E(B− V) plane, not
corrected (top panel) and corrected (bottom panel) for the host galaxy extinction. The solid contours incorporate 68.3%, 95.5%
and 99.7% of the sample. Right-hand panels: SN 1999ff and SN 2000fr compared to the distribution defined by nearby SNe in
the case of no IG dust (solid ellipses), and in the case of IG dust with RV = 9.5 (dashed ellipse). For clarity only the 68.3% level
has been plotted for the dust distribution.

χ2
B−V /dof χ2

B−I /dof
SN 2000fr
no dust, (ΩM,ΩΛ)=(0.25,0.75) 2.33/4 2.08/3
dustRv = 9.5, (ΩM ,ΩΛ)=(1,0) 4.24/4 3.94/3
dustRv = 4.5, (ΩM ,ΩΛ)=(1,0) 5.29/4 4.50/3
SN 1999ff
no dust , (ΩM,ΩΛ)=(0.25,0.75) 6.05/5 3.93/2
dustRv = 9.5, (ΩM ,ΩΛ)=(1,0) 4.69/5 2.06/2
dustRv = 4.5, (ΩM ,ΩΛ)=(1,0) 4.31/5 1.89/2
SNe combined
no dust , (ΩM,ΩΛ)=(0.25,0.75) 8.38/9 6.01/5
dustRv = 9.5, (ΩM ,ΩΛ)=(1,0) 8.93/9 6.00/5
dustRv = 4.5, (ΩM ,ΩΛ)=(1,0) 9.59/9 6.39/5

Table 10χ2 computed for the 3 different models and colours
for each of the supernovae and for their combination.

supernova-by-supernova or property-by-property basis, always
finding counterparts of distant events in the local sample.

In this work we compared the colours of nearby and dis-
tant supernovae (primarily to test presence of “grey” dust).
Although the size of the high redshift sample is very lim-
ited, our results do not show any evidence for evolution in the
colours of SNe Ia. Furthermore, the correlation found between
the intensity of the secondary peak ofI-band light curve and
the supernova luminosity give an independent way of testing
for evolution. The restframeI-band light curve of the high red-
shift supernovae were all best fitted by templates showing a
prominent second peak, i.e. inconsistent with the intrinsically
underluminous supernovae. Note that the data presented here
for SN 2000fr show for the first time a case where the sec-
ondary peak is unambiguously evident in the data even prior
to the light curve fit. Table 11 lists the∆χ2 for the fit of the
high redshift SNe to the templates of the two underluminous
SN 1991bg and SN 1997cn, relative to the best fit. Theχ2 val-
ues are significantly larger than the best fit value.
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n SN 1991bg SN 1997cn
SN 2000fr 3 24.03 21.73
SN 1999ff 2 3.28 2.72

Table 11∆χ2 for the fit of the high redshift SNe to the templates
of the two underluminous SNe relative to the best fits (which
are “normal” SN templates).n is the number of data points used
in the one-parameter fit (see discussion in section 4.4).

8. Summary and conclusions

In this work we have investigated the feasibility and utility
of using restframeI-band observations for cosmological pur-
poses.

We have developed a five parameter light curve fitting pro-
cedure which was applied successfully to 42 nearby Type Ia
supernovae. The fitted light curves were used to build a set of
templates which include a broad variety of shapes. We have
found correlations between the fitted parameters, in particular
between the time of the secondary peak and theB-band stretch,
sB. Moreover, a width-luminosity relation was found between
the peakI-band magnitude and theB- andI-band stretches (sB

andsI).
We built a restframeI-band Hubble diagram using 26

nearby supernovae at redshifts 0.01≤ z ≤ 0.1, and measured an
r.m.s. of 0.24 mag, smaller than the uncorrected dispersioncor-
responding to restframeB-band. The width-luminosity relation
was used to reduce the r.m.s. to 0.17± 0.03 mag (including
measurement errors), corresponding to an intrinsic dispersion
of 0.13 mag. Differences between the three data samples are
also discussed.

J-band measurements of one new high redshift supernova
plus published data of another were used to extend the Hubble
diagram up toz ∼ 0.5. The restframeI-band light curves of the
z ∼ 0.5 supernovae were fitted with templates that were built
from the nearby SNe Ia, as the five parameter fit method could
not be used for the poorly sampled high redshift light curves.
The peakI-band magnitude of the high redshift SNe was com-
pared to three different sets of cosmological parameters. The
“concordance model” of the universe, (ΩM,ΩΛ)=(0.25,0.75),
is formally found in better agreement with the data than the
other models at the>2σ level. However, the small sample size
does not yet allow strong conclusions to be drawn.

Alternative explanations for the observed dimming of su-
pernova brightness, such as the presence of grey dust in the
IG medium or evolutionary effects in the supernova properties
have also been addressed. Both theI-band Hubble diagram and
multi colour photometry have been used for testing grey dust.
Although no firm limits on the presence of grey dust could be
set, this study shows that with higher statistics, the restframeI-
band measurements could provide useful information on cos-
mological parameters, including tests for systematic effects.
A Monte Carlo simulation indicates that a sample of at least
20 well observed SNe Ia would be enough for setting limits
through the multi-colour technique used in this paper. A simi-
lar technique, using QSO instead of SNe Ia, was successfully
used by Mörtsell & Goobar (2003) to rule out grey dust as be-

ing the sole explanation for the apparent faintness of SNe Iaat
z ∼ 0.5.

Possible systematic uncertainties affecting the restframeI-
band Hubble diagram are discussed. Some sources are identi-
fied, for instance the different methods applied for fitting the
low and the high redshift samples, selection effects for bright
objects due to the limiting magnitude of the search campaign,
as well as uncertainties in thek-correction calculations due to
the presence of the Ca IR triplet feature in the near infrared
region of the SN spectra. However, these systematic uncertain-
ties differ from the ones that could affect the restframeB-band
Hubble diagram.

RestframeI-band observations of distant SNe Ia are feasi-
ble, useful and complementary to the already well established
observations in theB-band.

Acknowledgements. S.N. is grateful to Brian Schmidt for useful dis-
cussions onk-corrections. We acknowledge the anonymous referee
for useful comments. Part of this work was supported by a gradu-
ate student grant from the Swedish Research Council. AG is a Royal
Swedish Academy Research Fellow supported by a grant from the
Knut and Alice Wallenberg Foundation. This work was supported in
part by the Director, Office of Science, Office of High Energy and
Nuclear Physics, of the U.S. Department of Energy under Contract
No. DE-AC03-76SF00098. Support for this work was provided by
NASA through grant HST-GO-08346.01-A from the Space Telescope
Science Institute, which is operated by the Association of Universities
for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

References

Aldering, G.,2000, in AIP Conf. Proc. 522, Cosmic
Explosions:Tenth Astrophysics Conference, ed. S. Holt &
W. Zhang. (Melville, N.Y. :AIP)

Aguirre, A. 1999, ApJ, 512, L19
Aguirre, A. 1999, ApJ, 525, 583
Balbi, A., Ade, P., Bock, J. et al., 2000, ApJ, 545, L1.
Bessell, M.S., 1990, PASP, 102, 1181
Bessell, M.S., Castelli, F. & Plez, B. 1998, A&A, 333, 231
Borgani, S., Rosati, P., Tozzi, P. et al., 2001, ApJ, 561, 13
Cardelli, J. A, Clayton, G.C. & Mathis, J.S. 1989, ApJ, 345,

245
Carpenter, J.M., 2001, AJ, 121, 2851
Cohen, M., Wheaton, WM. A. & Megeath, AJ, 2003, 126, 1090
Contardo, G., Leibundgut, B. & Vacca, W. D. 2000, A&A ,

359, 876
Cowan, G., 1998, Statistical data analysis, Oxford University

Press
Csaki, C., Kaloper, N. & Terning, J., 2002, Phys.Rev.Lett. 88,

161302
De Bernardis, P., Ade, P.A.R., Bock, J.J. et al., 2000, Nature,

404, 955
Deffayet, C., Harari, D., Uzan, J.P. & Zaldarriaga, M., 2002,

Phys.Rev.D66, 043517
Drell, P., Loredo, T.& Wasserman, I., 2000, ApJ, 530, 593
Efstathiou, G., Moody, S., Peacock, J.A. et al., 2002, MNRAS,

330, L29.
Fabbro, S., 2001, PhD thesis, Université Paris VII-Denis
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