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Project Background

There are ~ 440 existing coal-fired units in the United States that are not equipped with FGD,
SCR, or Hg control systems

– Represent ~ 60 GW of installed capacity
– Greater than 80% are located east of the Mississippi River
– Most have not announced plans to retrofit

It is difficult to retrofit these smaller units for deep emission reductions
– Large capital costs
– Space limitations

These units are increasingly vulnerable to retirement or fuel switching because of progressively 
more stringent environmental regulations

– CAIR, CAMR, CAVR, state regulations

Hence, there is a need to commercialize technologies designed to meet the environmental 
compliance requirements of these units

The Greenidge Project seeks to demonstrate an innovative combination of technologies that are 
designed to satisfy this need by affording deep emission reduction capabilities, low capital costs 
(~$340/kW*), small space requirements (~0.5 acre*), applicability to high-sulfur coals (2-4%*), 
low maintenance requirements, and operational flexibility   *For AES Greenidge Unit 4 installation
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Motivation

Dresden, NY

Commissioned in 1953

107 MWe (net) reheat unit

Boiler:
– Combustion Engineering tangentially-fired, balanced draft
– 780,000 lb/h steam flow at 1465 psig and 1005 oF

Fuel:
– Eastern U.S. bituminous coal
– Biomass (waste wood) – up to 10% of total heat input

Existing emission controls:
– Overfire air (natural gas reburn not in use)
– ESP
– No FGD - mid-sulfur coal to meet permit limit of 3.8 lb SO2/mmBtu
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Host Site
AES Greenidge Unit 4 (Boiler 6)

Combustion Modifications (low-NOx burners, overfire air)

Hybrid Selective Non-Catalytic Reduction / Selective Catalytic Reduction (SNCR/SCR) System
– SNCR includes 3 zones of urea injection; it is designed to reduce NOx by ~42% and provide NH3 for the 

downstream SCR reactor
– SCR is an in-duct design with a single layer of catalyst (1.3 m deep); it is fed entirely by NH3 slip from 

the SNCR and designed for ~30% NOx removal efficiency

Powdered Activated Carbon Injection System
– Projected injection rate for 90% Hg capture: 0 – 3.5 lb/mmacf

Turbosorp® Circulating Fluidized Bed Dry Scrubber
– Water and dry hydrated lime injected separately; operating temperature ~ 160 °F, nominal Ca/S ~ 1.6 

mol/mol for 2.5% sulfur coal; designed to accommodate coals containing up to 4.0% sulfur
– Lime hydration system installed as part of project for onsite production of Ca(OH)2 from pebble lime

Baghouse
– 8-compartment pulse jet fabric filter; nominal air-to-cloth ratio = 3 (ft3/min)/ft2

– ~95% of baghouse solids are recycled to Turbosorp® scrubber using air slides
– Booster fan installed downstream of baghouse to overcome pressure drop
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Technology

Design Features Contributing to Mercury Control
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Hg Reduction Target: ≥90% (coal-to-stack)

Indeterminateb≥ 95%HF removal
97%≥ 95%HCl removal
97%≥ 95%SO3 removal
96%≥ 95%SO2 removal

0.10 lb/mmBtua≤ 0.10 lb/mmBtuNOx emission rate

Measured 
Performance

Performance 
TargetParameter

Guarantee Testing Results

aAlthough the target of 0.10 lb/mmBtu was demonstrated in short-term testing, the plant routinely has had to 
operate at ~0.13 lb/mmBtu to maintain acceptable combustion characteristics, steam temperatures, and 
ammonia slip;  bConcentrations at both the inlet and outlet of the Turbosorp® scrubber were less than the 
detection limit

March – May 2007, 2.4-3.2% Sulfur Eastern U.S. Bituminous Coal

All sampling and analysis performed by CONSOL Energy 
Research & Development

All flue gas Hg measurements conducted using the Ontario 
Hydro Method (ASTM D 6784-02)

– Liquid samples analyzed by cold vapor atomic absorption 
spectroscopy (March 2007) or cold vapor atomic fluorescence 
spectroscopy (October 2007)

– Particulate samples analyzed in accordance with ASTM D 6414 
or ASTM D 6722

Coal samples (composite of all feeders) collected at the 
beginning and middle of each test and analyzed for Hg by ASTM 
D 6722

Solid and liquid process samples (e.g., ash, lime, urea, water) 
and plant operating data also collected during each test to assess 
process performance

QA/QC
– Pre- and post-test leak checks performed for each test

– O2 concentration monitored continuously at meter exhaust

– Blank sampling trains analyzed to check for contamination

– Laboratory procedures included use of independent calibration 
verification standards, duplicate or triplicate analyses, matrix
spikes, digestion duplicates, and digestion spikes, with a 10% 
relative percent difference criterion for duplicates/triplicates and 
a 100±10% recovery criterion for standards and spikes

– Material balances performed for each of the March tests to 
ensure that the total mercury output from the process agreed 
reasonably well with the total mercury input to the process 
(material balances for the October tests have not yet been 
completed)

All sampling and analysis performed by CONSOL Energy All sampling and analysis performed by CONSOL Energy 
Research & DevelopmentResearch & Development

All flue gas Hg measurements conducted using the Ontario All flue gas Hg measurements conducted using the Ontario 
Hydro Method (ASTM D 6784Hydro Method (ASTM D 6784--02)02)

–– Liquid samples analyzed by cold vapor atomic absorption Liquid samples analyzed by cold vapor atomic absorption 
spectroscopy (March 2007) or cold vapor atomic fluorescence spectroscopy (March 2007) or cold vapor atomic fluorescence 
spectroscopy (October 2007)spectroscopy (October 2007)

–– Particulate samples analyzed in accordance with ASTM D 6414 Particulate samples analyzed in accordance with ASTM D 6414 
or ASTM D 6722or ASTM D 6722

Coal samples (composite of all feeders) collected at the Coal samples (composite of all feeders) collected at the 
beginning and middle of each test and analyzed for Hg by ASTM beginning and middle of each test and analyzed for Hg by ASTM 
D 6722D 6722

Solid and liquid process samples (e.g., ash, lime, urea, water) Solid and liquid process samples (e.g., ash, lime, urea, water) 
and plant operating data also collected during each test to asseand plant operating data also collected during each test to assess ss 
process performanceprocess performance

QA/QCQA/QC
–– PrePre-- and postand post--test leak checks performed for each testtest leak checks performed for each test

–– OO22 concentration monitored continuously at meter exhaustconcentration monitored continuously at meter exhaust

–– Blank sampling trains analyzed to check for contaminationBlank sampling trains analyzed to check for contamination

–– Laboratory procedures included use of independent calibration Laboratory procedures included use of independent calibration 
verification standards, duplicate or triplicate analyses, matrixverification standards, duplicate or triplicate analyses, matrix
spikes, digestion duplicates, and digestion spikes, with a 10% spikes, digestion duplicates, and digestion spikes, with a 10% 
relative percent difference criterion for duplicates/triplicatesrelative percent difference criterion for duplicates/triplicates and and 
a 100a 100±±10% recovery criterion for standards and spikes10% recovery criterion for standards and spikes

–– Material balances performed for each of the March tests to Material balances performed for each of the March tests to 
ensure that the total mercury output from the process agreed ensure that the total mercury output from the process agreed 
reasonably well with the total mercury input to the process reasonably well with the total mercury input to the process 
(material balances for the October tests have not yet been (material balances for the October tests have not yet been 
completed)completed)

Mercury Testing 
Methodology

The multi-pollutant control system being demonstrated at AES 
Greenidge Unit 4 is uniquely designed to meet the needs of 
smaller coal-fired units

– Has demonstrated deep reductions in SO2 emissions (> 95%)
and NOx emissions (> 60%) while requiring a capital investment 
of only $340/kW and a footprint of < 0.5 acre for a 107 MW unit

– Deep SO3 and HCl removal and reduced PM emissions are 
zero cost co-benefits

Testing results thus far have shown the system to be very 
effective in achieving deep Hg removal efficiency

– Greater than 90% Hg removal efficiency (coal-to-stack) 
observed in all 15 tests conducted to-date

– Average demonstrated removal efficiency (96%) represents 
94% reduction over baseline

Based on results to-date, projected incremental cost to achieve 
90% Hg capture is $0

– Ten tests have shown >90% Hg capture in the circulating 
fluidized bed dry scrubber and baghouse without any activated 
carbon injection

The multiThe multi--pollutant control system being demonstrated at AES pollutant control system being demonstrated at AES 
Greenidge Unit 4 is uniquely designed to meet the needs of Greenidge Unit 4 is uniquely designed to meet the needs of 
smaller coalsmaller coal--fired unitsfired units

–– Has demonstrated deep reductions in SOHas demonstrated deep reductions in SO22 emissions (emissions (> 95%)> 95%)
and NOand NOxx emissions (> 60%) while requiring a capital investment emissions (> 60%) while requiring a capital investment 
of only $340/kW and a footprint of < 0.5 acre for a 107 MW unitof only $340/kW and a footprint of < 0.5 acre for a 107 MW unit

–– Deep SODeep SO33 and and HClHCl removal and reduced PM emissions are removal and reduced PM emissions are 
zero cost cozero cost co--benefitsbenefits

Testing results thus far have shown the system to be very Testing results thus far have shown the system to be very 
effective in achieving deep Hg removal efficiencyeffective in achieving deep Hg removal efficiency

–– Greater than 90% Hg removal efficiency (coalGreater than 90% Hg removal efficiency (coal--toto--stack) stack) 
observed in all 15 tests conducted toobserved in all 15 tests conducted to--datedate

–– Average demonstrated removal efficiency (96%) represents Average demonstrated removal efficiency (96%) represents 
94% reduction over baseline94% reduction over baseline

Based on results toBased on results to--date, projected incremental cost to achieve date, projected incremental cost to achieve 
90% Hg capture is $090% Hg capture is $0

–– Ten tests have shown >90% Hg capture in the circulating Ten tests have shown >90% Hg capture in the circulating 
fluidized bed dry scrubber and baghouse without any activated fluidized bed dry scrubber and baghouse without any activated 
carbon injectioncarbon injection

Range:Range:
93.0 93.0 –– 120.6120.6NANANANANANANANANANANANANANANANANANA120.6120.6119.2119.2118.7118.7108.8108.893.093.0100.3100.3Hg Mass Balance Hg Mass Balance 

Closure (%)Closure (%)

Range:Range:
0 0 –– 33000000003333000000333333000000PAC Injection PAC Injection 

Rate (lb/Rate (lb/mmacfmmacf))

Range:Range:
14.4 14.4 –– 25.325.316.416.418.718.717.117.115.415.417.517.521.921.925.325.314.414.420.520.515.615.617.517.517.917.917.917.916.916.920.920.9Unburned Carbon Unburned Carbon 

in Fly  Ash (%)in Fly  Ash (%)

Range:Range:
158.6 158.6 –– 165.2165.2165.2165.2160.5160.5160.2160.2159.9159.9160.0160.0160.4160.4159.1159.1158.7158.7158.6158.6161.7161.7161.9161.9162.1162.1162.8162.8163.3163.3163.2163.2Scrubber Outlet Scrubber Outlet 

Temperature (Temperature (°°F)F)

Range:Range:
92.9 92.9 –– 99.099.094.694.693.593.599.099.099.099.096.096.096.096.096.296.296.896.896.696.695.595.595.395.392.992.994.094.095.495.495.595.5SOSO22 RemovalRemoval

(%)(%)

Range:Range:
3.72 3.72 –– 4.874.874.304.304.244.244.034.034.124.124.424.424.514.514.754.754.874.874.704.703.803.803.803.803.723.723.773.773.903.903.893.89

Coal Sulfur Coal Sulfur 
(lb SO(lb SO22/mmBtu)/mmBtu)

Range:Range:
0.06 0.06 –– 0.530.530.060.060.080.080.340.340.530.530.230.230.530.530.090.090.120.120.170.17<0.42<0.42<0.41<0.41<0.40<0.40<0.38<0.38<0.34<0.34<0.32<0.32Hg Emission Rate Hg Emission Rate 

(lb/(lb/TBtuTBtu))

Range:Range:
6.38 6.38 –– 9.219.219.219.217.947.947.117.117.477.476.876.877.337.337.437.437.427.427.647.646.386.386.456.456.926.926.866.868.198.197.347.34Hg from Coal Hg from Coal 

(lb/(lb/TBtuTBtu) ) 

Range:Range:
105.1 105.1 –– 108.7108.7107.5107.5108.2108.2106.1106.1108.0108.0108.3108.3107.7107.7106.6106.6107.3107.3108.7108.7105.4105.4105.4105.4105.4105.4105.1105.1105.7105.7105.1105.1Gross Generation Gross Generation 

(MW)(MW)

95.6% 95.9% 94.5% 94.2% 93.7% 93.5%
97.8% 98.4% 98.8%

92.8%
96.6%

93.0% 95.2%
98.9% 99.3% 95.9%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

3/28/2007 3/28/2007 3/28/2007 3/30/2007 3/30/2007 3/30/2007 10/2/2007 10/3/2007 10/3/2007 10/5/2007 10/5/2007 10/8/2007 10/9/2007 10/10/2007 10/11/2007 Average

H
g 

R
em

ov
al

, C
oa

l-t
o-

St
ac

k

Mercury Testing Results To-Date
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Fixed & Variable 
O&M Cost 
($/MWh)

00Hg Control 
(incremental)a

$513 / ton SO2229SO2 Control
$3,290 / ton NO2106NOx Control

Total Levelized 
Cost

($/ton removed)
Capital Cost 

($/kW)

Process Economics

Assumptions: Plant size = 107 MW, Capacity factor = 80%, Coal sulfur = 4.0 lb SO2/mmBtu, Baseline NOx emission rate = 0.30 lb/mmBtu, SNCR 
normalized stoichiometric ratio = 1.5, Ca/S = 1.55, Quicklime = $110/ton, Urea (50% w/w) = $1.25/gal, Waste disposal = $12/ton, Plant life = 20 years, 
Fixed charge factor = 13.05%, Other assumptions based on common estimating practices and current market prices
aBased on performance testing results to-date

Constant 2005 Dollars

Results of March and May 2007 Test Series
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Baseline Removal: 
30%

Demonstrated 
Removal:

96%

94% Hg Reduction Over Baseline

Conclusions

Error bars represent ± 1 
standard deviation

Testing and evaluation will continue at AES Greenidge Unit 4 
through October 2008

Additional Hg tests will focus on:
– Hg removal at reduced boiler loads 

– Hg removal with biomass co-firing

– Role of the in-duct SCR in oxidizing Hg

– Hg removal as a function of fly ash unburned carbon content, 
fuel, and scrubber operating conditions

– Stability of the captured Hg in the scrubber solids / ash
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Future Plans


