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The Greenidge Multi-Pollutant
Control Project

m Power Plant Improvement Initiative
s Cost-shared collaboration between U.S. DOE and industry
s Commercial demonstration of coal-based technologies

s Goal: Help to ensure the reliability of the nation’s energy
supply by improving the efficiency, cost-competitiveness, and

environmental performance of new and existing coal-fired
electric generating facilities

m Greenidge Project

s DOE Cooperative Agreement signed May 2006

s Goal: Demonstrate a multi-pollutant control system that can
cost-effectively reduce emissions of NO,, SO,, mercury, acid
gases (SO,, HCI, HF), and particulate matter from smaller
coal-fired power plants
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Existing U.S. Coal-Fired EGUs
50-300 MW,

~ 440 units not equipped with FGD or SCR

= Represent ~ 60 GW of installed capacity
a Greater than 80% are located east of the Mississippi River
= Most have not announced plans to retrofit

Difficult to retrofit for deep emission reductions
s Large capital costs

= Space limitations

Increasingly vulnerable to retirement or fuel switching
because of progressively more stringent environmental
regulations

s CAIR, CAMR, state regulations
Need to commercialize technologies designed to meet

the environmental compliance requirements of these
units




AES Greenidge Unit 4 (Boiler 6)

Dresden, NY
Commissioned in 1953
107 MWe (net) reheat unit

Boiler:

= Combustion Engineering tangentially-fired, balanced draft
= 780,000 Ib/h steam flow at 1465 psig and 1005 °F

Fuel:
= Eastern bituminous coal
s Biomass (waste wood) — up to 10% heat input
Current emission controls:
m Overfire air (natural gas reburn not in use)
= ESP
= No FGD - mid-sulfur coal to meet permit limit of 3.8 Ib/MMBtu
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Multi-Pollutant Control Process

m Combustion modifications (outside DOE scope)
m Hybrid SNCR / SCR

= Urea-based, in-furnace selective non-catalytic
reduction

= Single-bed, in-duct selective catalytic reduction
m Activated carbon injection

= Turbosorp® circulating fluidized bed dry
scrubber

m Baghouse




Greenidge Project Performance Targets

Fuel: 2-4% sulfur bituminous coal, up to 10% biomass

Parameter Goal

NO < 0.10 Io/MMBtu (full load)

X

SO, = 95% removal

Hg = 90% removal

SO,, HCI, HF > 95% removal

Capital (EPC) Cost: ~ $330 / kW

Footprint: ~ 0.4 acre
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Organization
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Project Schedule
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Process Flow Diagram
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Hybrid NO, Control

m Combustion Modifications

= Replace coal, combustion air, and overfire air nozzles

= Improve fuel/air mixing, burner exit velocity, secondary
airflow control, and upper furnace mixing; reduce CO

s Reduce NO, to 0.25 Ib/MMBtu

x SNCR
= CO(NH,),+2NO+7%20,—-2N,+CO,+2H,0
s Reduce NO, by ~42.5% (to 0.144 Ib/MMBtu)
m SCR
" 4NO+4NH;+0O,—>4N,+6H,0
= 6 NO,+8NH; - 7N, +12H,0
s Reduce NO, by > 30% (to = 0.10 Ib/MMBtu)




SNCR for Hybrid System
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Greenidge Design:
m 2 Levels of Wall Injectors (Higher Temperature)
s 2 Multiple Nozzle Lances in Convective Pass (Lower Temperature)




Delta Wing ™ Static Mixers

® Homogeneous flue gas at catalyst
face

= NO, / NH; mole ratio + 5% RMS
deviation

= Velocity £ 129% RMS deviation
= Temperature £ 30 °F

= Minimize NH; slip
= Maintain mixing at reduced load
operation

m Maintain ash entrainment and
distribution




Single-Bed, In-Duct SCR

Bed Depth
~1.3m

S0, — SO,

<1.0%

NH, Slip
<2 ppmv

NOZ Removal

> 30%




Circulating Fluidized Bed Dry Scrubber
Process Concept

s Completely dry

Separate control of
reagent, water,
and recycled solid
Injection

High solids

recirculation

Applicable to high-
o — A | sulfur coals
Hydrated o R e — T
ime —> (B - S 15-25% lower
b s reagent

consumption than
SDA

Low capital and
maintenance costs
relative to other
FGD technologies




Circulating Fluidized Bed Dry Scrubber
Chemistry

Ca(OH), + SO, «» CaSO, - % H,0 + % H,0
Ca(OH), + SO, <> CaSO, - % H,0 + % H,0
CaSO,- % H,0 + % 0, < CaS0, - ¥ H,0
Ca(OH), + 2 HCI «» CaCl, + 2 H,0
Ca(OH), + 2 HF «» CaF, + 2 H,O
Ca(OH), + CO, <> CaCO, + H,O




Reactivation of Recycled Reagent
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Turbosorp® System at AES Greenidge

On-site lime
hydration system
8-compartment

pulse jet fabric
filter

Projected Ca/S of
1.5-1.6




Mercury Control

Expect = 90% removal with low carbon injection rate

ax Similarity to SCR / SDA / FF with bituminous coal
m Field sampling shows 90% Hg removal often achieved with no ACI

= Projected activated carbon requirement: 0 — 3.5 Ib/MMacf

SCR catalyst
= Oxidize Hg to Hg**

Activated carbon injection
= Adsorb Hg® and Hg?*

Circulating fluidized bed dry scrubber / baghouse
= Reduce temperature (~ 170 °F)

= Facilitate contact between Hg and carbon, fly ash, Ca(OH),
m Filter caking
m Recirculation = high sorbent residence time




Challenges / Uncertainties

Performance with 2-4% sulfur eastern bituminous
coal

= Ammonium bisulfate formation / fouling

» SO, capture and required Ca/S ratio

Hg removal performance

= Extent of Hg® oxidation at high space velocities in single-
bed catalyst

m Carbon injection requirements

Control of integrated system, especially during load
swings / cycling

= Effect of NH; slip on unit operability

Effect of biomass co-firing




Concluding Thoughts

= |Innovative approach to multi-pollutant control that provides a
low-capital-cost retrofit option for smaller coal-fired units

= Emission reduction targets:
(2-4% sulfur coal, up to 10% biomass)

s NO, to = 0.10 Ib/MMBtu

m SO, and acid gases by > 95%

m Hg by > 90%

m Improved control of fine particulate matter

= Capital cost: ~ $330/kW (delivered + erected) for 100 MW unit
s Footprint: ~ 0.4 acres for 100 MW unit
= Operational flexibility

= Actual performance data will be available soon
s System fully operational by beginning of 2007
= Initial performance results in early-to-mid 2007

= Long-term performance results and actual operating costs in
mid-2008




