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I.  Introduction 

The main objective of this project is to design, develop, and evaluate speech processors for implantable 
auditory prostheses.  Ideally, such processors will represent the information content of speech in a way 
that can be perceived and utilized by implant patients.  An additional objective is to record responses of 
the auditory nerve to a variety of electrical stimuli in studies with patients.  Results from such recordings 
can provide important information on the physiological function of the nerve, on an electrode-by-
electrode basis, and can be used to evaluate the ability of speech processing strategies to produce desired 
spatial or temporal patterns of neural activity. 

Work and activities in this quarter included:   

• Seven days of continuing studies with local subject ME-16, implanted bilaterally with Med-El 
Tempo+ devices. 

• Attendance by Blake Wilson at the 9th Symposium on Cochlear Implants in Children, Washington 
DC, April 24-26. 

• A visit by Jim Patrick, Senior Vice President of Research and Applications, Cochlear Ltd., Lane 
Cove, NSW, Australia, April 30. 

• Evaluation of new subject ME-22, implanted with bilateral Med-El Tempo+ devices, May 9, June 
6, and June 20. 

• A visit by consultant Mariangeli Zerbi to verify software for modulated pulse train interaural 
timing difference studies, May 17-19. 

• Two weeks of studies with returning bilaterally implanted subject ME-18, May19 – May 30. 

• A visit by consultant Enrique Lopez-Poveda from Salamanca, Spain, May 19-23 coinciding with 
the visit of subject ME-18 

• Participation by Blake Wilson in the VII International Conference on Cochlear Implants and 
Related Audiological Sciences and the opening of the Center for Hearing and Speech, Warsaw - 
Kajetany, Poland, May 22-25. 

• A return visit by subject ME-14, June 16-17.  This subject previously participated in our studies 
of combined electric/acoustic hearing and now is bilaterally implanted with Med-El Tempo+ 
devices. 

• Participation by Blake Wilson in the celebration conference 25 Years of Cochlear Implants in 
Vienna, Vienna, Austria, June 19. 

• A return visit by bilaterally implanted subject ME-12, June 25 and 26.  

In addition to the above-mentioned activities, work continued on the analysis of previously collected data, 
further development of the new dual resonance nonlinear (DRNL) filter processing strategy, and 
development of new measures of sensitivities to interaural timing differences for studies with recipients of 
bilateral cochlear implants.  

In this report we provide a description of the hardware and software tools that have recently been 
developed and implemented in our speech processor laboratory to facilitate a time-efficient and flexible 
evaluation of novel and more complex speech processing schemes.  With these new system tools (referred 
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to as “streaming mode” in this report), pre-processed pulsatile stimulation sequences are downloaded and 
delivered to the subject’s implant(s).  These stimulation sequences are generated off-line, according to a 
given processing strategy implemented in the MATLAB programming environment, by processing 
sentence or consonant tokens in digital audio file format and converting them into a stimulation pulse 
sequence.  

Results from other studies and activities indicated above will be presented in future reports. 
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II.  Recent enhancements of the speech laboratory system 

The last several quarters saw a significant improvement of the capabilities of our speech laboratory 
system.  Real-time CIS speech processor designs, including bilateral capabilities, have been finalized for 
Med-El C40/C40+ and Nucleus CI24M and CI22 implant systems.  Psychophysical test procedures for 
the same bilateral implant systems have been extended.  Most recently, the capability to stimulate implant 
subjects with pulsatile sequences processed off-line from digitally stored speech tokens has been added.  
This feature is now available with uni- or bilateral Med-El and Nucleus CI24M patients, as well as 
subjects with direct access to their intracochlear electrodes through a percutaneous connector.  A 
description of this download-and-stimulate feature is presented in this report.  For more information about 
the bilateral tools, please see Appendix 2. 

 

Streaming mode 

 

Introduction 

Our typical approach to designing speech processors for speech reception measurements with cochlear 
implant subjects is to implement the processing algorithms in a real-time environment on a digital signal 
processor (DSP).  The advantage of this approach is that any speech test signal available in either analog 
or digital format, including live voice sampled through a microphone, can be easily fed into the speech 
processor.  This provides the possibility for the subject to listen to familiar sounds and voices, including 
his or her own voice, whenever being exposed to new processing strategies or variations thereof, therefore 
making it much easier to adjust to or pick out potential differences.  Also, it is very simple to mix speech 
signals into different noise backgrounds and adjust the signal to noise ratio as desired. 

However, a major drawback of a real-time approach for implementing speech processor designs is the 
generally complex and time-consuming implementation task itself.  For the sake of optimal code 
execution time and memory management, our DSP programs are all written in assembly language.  Also, 
processing algorithms must be carefully designed to run on a platform with fixed-point data 
representation (as is the case with the MOTOROLA DSP56301, which is the core of our lab system), in 
order to avoid data under- or overflows or undesired propagation of quantization errors due to finite word 
lengths. 

A major point of investigation in the current contract period is to explore novel speech processing 
strategies for cochlear implants that more closely mimic the functions of the auditory periphery in normal 
hearing, like level-dependent tuning of the basilar membrane, or inner hair cell transduction processes.  
The likely complexity of such novel processing structures and the high cost in terms of development time 
to run them in real-time was the main motivation to look for alternative methods of implementing and 
evaluating new speech processor designs in an efficient, flexible, and fast way.  This was achieved by 
integrating a new program mode (streaming mode) into the lab system, where pre-processed pulsatile 
stimulation sequences are downloaded and delivered to the subject’s implant(s).  These stimulation 
sequences are generated off-line in the MATLAB programming environment by processing speech tokens 
like sentences or consonants in digital audio file format and converting them into a stimulation pulse 
sequence, according to a given processing strategy also implemented in MATLAB.  The powerful and 
highly flexible MATLAB environment supports a fast and relatively simple implementation of complex 
processing schemes. 
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Design specification 

The requirements for the design and implementation of the streaming mode can be summarized as: 

• Support for bilateral Med-El and Nucleus CI24M interfaces, as well as for the current source 
interface for subjects with percutaneous access to their implanted electrodes.   

• MATLAB routines receive basic speech processor parameters directly from the same speech 
processor specification (“spec”) files used by the monitor program during stimulus presentation 
or in the speech processor control mode (see Figure 20 in Appendix 2 for an example).  These 
basic parameters are number of channels (left/right), stimulation rate per channel (left/right), 
stimulation order of channels (left/right), and synchronization settings.  They define in which 
order and at what times the speech processor channel output waveforms are sampled into pulse 
amplitudes. 

• Input of additional speech processor parameters (filter characteristics, maplaw, etc.) through the 
command line or function parameters in MATLAB. 

• Generation of “normalized” pulse amplitudes when sampling channel output signals in MATLAB 
into an amplitude sequence (AMP) file, with 0 corresponding to the threshold (THR) on each 
active electrode, and 1 corresponding to the most comfortable loudness level (MCL). 

• Optimization of AMP file format in terms of file size, by packing pulse amplitudes into a binary 
byte sequence.  Amplitude values are stored as 12-bit unsigned integers, so that two pulse 
amplitudes fit into one 24-bit DRAM memory word.  Given the native 24-bit signed fractional 
data format of the MOTOROLA DSP56301 (MOTOROLA, DSP 56300 Family Manual, Rev. 
3.0, 11/2000, section 3.3.1), 12-bit amplitude values are left aligned to bit #22 (after the decimal 
point) in the DSP, which corresponds to a “type cast” into a signed positive 13-bit fractional 
number in the range [0, 1 – 2-12] = [0, 0.999755859375]. 

• Mapping of normalized pulse amplitudes to actual dynamic ranges of active electrodes is done in 
the DSP through the following linear transformation: 

ampi = (MCLi – THRi) * normalized ampi + THRi,            i…electrode index                (1) 

With the bilateral Med-El and CI24M interfaces, the stimulus pulse amplitudes are scaled by a 
linear channel specific volume and a master volume factor, both ranging from 0 to 100%, before 
being sent to the implant.  All volume factors are independently adjustable for left and right sides.  
With the current source interface, only the channel specific volume is applied in the DSP, 
whereas the master volume is controlled through a potentiometer on the operator panel. 

The monitor program prepares channel data tables in the DSP (including THR/MCL and pulse 
duration values, stimulation order, and rate of channels) by scanning a speech processor spec file 
and downloading parameters to DSP memory.  Basic stimulation parameters (number of 
channels, stimulation rate, stimulation order, and synchronization settings) must match between 
the AMP file and the spec file and must be checked by the monitor program for each AMP file 
downloaded and streamed to the subject’s implant(s).  The operator controls AMP file downloads 
and execution and stimulation volumes through the monitor program. 

• Stimuli executed from a downloaded AMP file sequence are “embedded” in a background pattern 
of stimulation pulses at the specified rate and phase duration and at amplitudes 
THRi * voli * (100 + background balance)/100 voli…channel specific volume     (2) 
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 i … electrode index 
for the bilateral Med-El and CI24M interfaces, and  
THRi * (100 + background balance)/100 i…electrode index                        (3) 
 
for the current source interface.  In other words, for the time of the signal duration in the AMP 
file, stimulation pulse amplitudes are taken from the downloaded amplitude sequence, whereas 
outside of the stimulus, pulse amplitudes are constant and at the levels indicated above.  The 
background balance can be set from –100 to +20 for adjusting volume-scaled threshold pulse 
amplitudes anywhere from –100% to +20%.  In the case of the bilateral interfaces, a single 
background balance control applies to both left and right sides. 

• Support for unilaterally as well as bilaterally implanted subjects, i.e. ability to generate unilateral 
and bilateral amplitude sequence files.  Ability to play a unilateral AMP file sequence bilaterally 
by reproducing the stimulus pulse sequence on both sides (normalized amplitudes in the stimulus 
pulse sequence are scaled to the appropriate electrical dynamic ranges of each electrode on both 
ipsilateral and contralateral sides). 

• Option to synchronize and specify a delay of relative pulse onset timing between the two sides for 
bilateral implants. 

• Support for single-channel (monophonic) as well as dual-channel (stereophonic) wave file input 
signals. 

 

Figure 1 shows the flow of events from generating pulse amplitude sequence files (AMP files) out of 
digital wave file recordings in MATLAB, through downloading them into the DSP, to transmitting them 
as a stream of stimulation pulses to the subject’s implant(s) when executing the processed stimulus. 
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Figure 1:  Paradigm of the streaming mode implementation and operation 
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DSP program 

The basic DSP program structure of the streaming mode, both for the bilateral Med-El and CI24M 
interfaces and for the parallel current source interface, is quite similar to the real-time processor DSP 
program structure described in section “DSP programs for bilateral speech processors” of Appendix 2.   
The essential difference is that in the streaming mode, pulse amplitudes are not derived through sampling 
of the channel output envelopes that are processed from the ADC input signal in real-time, but rather are 
taken from the AMP file pulse amplitude sequence downloaded into DSP memory. 

In the streaming mode, the monitor program runs through the following sequence of steps to set up the 
DSP memory and execute stimuli consisting of pulse sequences downloaded from pre-processed AMP 
files: 

1. Download DSP program code over the on-chip emulator (OnCE) port of the ADS56301 lab 
processor module (see Figure 10 of Appendix 2).  Start DSP program and command DSP into the 
streaming program mode. 

2. Open speech processor spec file containing patient-specific THR/MCL values and stimulation 
parameters, such as active electrodes, phase duration, and pulse rate.  Prepare tables (channel data 
tables) in DSP memory with all relevant parameters. 

3. Download binary amplitude sequence(s) contained in AMP file(s) into DSP external DRAM 
memory.  DRAM memory size is 1.5 Mbytes on the ADS56301. 

4. Start background stimulation of volume scaled THR pulses on all active electrodes. 

5. Execute stimulation sequences downloaded from AMP files in randomized order (for 16 or 24 
medial consonant tests) or sequential order (sentence tests).  Record results for consonant tests 
(sentences are scored manually).  If necessary, download AMP file for each new stimulus after 
the execution of the previous one. 

 
DSP memory organization and pulse data transfer to implant interfaces 
During stimulation, the DSP retrieves biphasic pulse parameters such as electrode address, phase 
duration, and pulse gap from the channel data tables initialized by the monitor program and transfers them 
to the implant interface for execution.  Pulse amplitudes are scaled to electrode THR and MCL levels 
according to equation (1) and scaled by a volume factor that is adjustable through the monitor program, 
before being sent to the interface.  With the bilateral implant interfaces, the interface triggers an interrupt 
in the DSP in order to request new pulse parameters, for either the left or right side.  The frequency of the 
interface requests is determined by the overall pulse rate on each side.  With the current source interface, 
the pulse output timing is controlled by a timer in the DSP.  This timer triggers the events when current 
pulse amplitudes (in 12-bit signed format) are being written to the interface. 

 
Channel data table format for parallel current source interface 
The streaming mode for the current source interface supports both interleaved and simultaneous pulse 
processors.  Stimulation pulse data are arranged in two channel data tables in DSP memory:  One for 
stimulus pulses at address range Y:$0 - Y:$3FF and one for background pulses in address range Y:$400 - 
Y:$7FF.   
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1. Tables for interleaved, simultaneous and virtual CIS processors 
 
 
                   Bit #23 

Y:$0  V 
C 
I 
S 

 
# of simultaneous electrodes: 1...N 

      
    Bit  
   #23 

0: simultaneous: N amplitude values from 
DRAM for N simultaneous pulses 
1: VCIS: one amplitude value from DRAM 
for N simultaneous VCIS pulses.  Amplitude 
weight factors are MCL-THR values 

  0 MCL-THR for electrode 1 in cycle   
  THR for electrode 1 in cycle  Bit 0: pulse polarity negative phase first (-/+) 
 

1st pulse 
phase 

 

 0:-/+ 
1:+/- 

Pointer to channel specific amplitude 
multiplier in table (X:$E0) 
VCIS: Pointer to same multiplier for all N 
simultaneous pulses 

  #23 1: pulse polarity positive phase first (+/-) 

  Electrode 1 address   
  . 

. 

. 

          Repeat N times for N simultaneous  
           pulses on N electrodes (common  
           return electrode for N electrodes) 

  Return electrode address   
  Timer 0 pulsewidth (PW) count (channel specific)   
  # of simultaneous electrodes:  1...N   

2nd  Electrode 1 address  
pulse 
phase  

 . 
. 
. 

      Repeat N times for N  
       simultaneous pulses 

  Return electrode address   
  # of simultaneous electrodes:  1...N   
  Electrode 1 address   

Zero 
outputs 

 

 . 
. 
. 

       Repeat N times for N  
       simultaneous pulses 

  Return electrode address    
Pulse   Timer 0 count for pulse delay (0 if no delay)    
delay   Next 1...N (simultaneous) pulses in stimulation     

  order    
 
 
 
Channel specific volume table: 
 

X:$E0 Volume factor channel 1 
· Volume factor channel 2 
:   : 

X:$FFmax Volume factor channel (number of channels) 
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One use of simultaneous pulses in in virtual CIS (VCIS) strategies, where two or more adjacent electrodes 
are stimulated simultaneously to obtain a perceived pitch distinct from that of any electrode alone.   
 
As an example of the relationship between the channel data table and the spec file, consider a VCIS 
processor in which channel 1 stimulates electrodes 1 and 2 simultaneously with respect to return electrode 
8, with electrode 2 receiving a stimulus that is one half the amplitude delivered to electrode 1 and of 
opposite polarity.  The corresponding spec file would reflect this situation in the first line of its >VCIS 
section: 
 
  >VCIS 
  8,1:100,2:-50 
  . . . 
 
Later in the spec file, the first two lines of the psychophysics section would contain the THR and MCL 
values for electrodes 1 and 2, respectively: 
 
 
  >psycho 
  50 100 
  75 150 
  . . . 
 
The corresponding channel data table would contain amplitude values calculated using the THR and MCL 
data for each electrode along with the appropriate VCIS weight multipliers.  Its first nine entries would 
contain the following information (with appropriate settings of bit 23 where relevant): 
 
 

Y:$0 2   [number of simultaneous electrodes for channel 1] 
. 1.0 · (100-50) · DACunits/µA   [electrode 1 MCL-THR] 
. 1.0 · (50) · DACunits/µA    [electrode 1 THR] 
. $E0  [pointer to VCIS channel 1 amplitude multiplier] 
. address for electrode 1  
. -0.5 · (150-75) · DACunits/µA   [electrode 2 MCL-THR] 
. -0.5 · (75) · DACunits/µA    [electrode 2 THR] 
. $E0  [pointer  to VCIS channel 1 amplitude multiplier] 
. address for electrode 2  

Y:$9 address for return electrode 8  
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2. Tables for conditioner CIS and background stimulation 
 
 

                            Bit #23 
Y:$0...3FFmax         condi- 
                           tioner 

  

0 
 

# of simultaneous electrodes: 1...N  

Y:$400...7FFmax back- 
                         ground     
 

  
1 

 Pointer 
    to 
constant  

conditioner pulse amplitude for 
conditioner THR pulse amplitude for 
background 

 

  Dummy word $0  
 
 

1st pulse phase 
 

  
0:-/+ 
1:+/- 

Pointer to 
volume 

multiplier for 

  conditioner pulses:    
  X:CMULTSCI=X:$4  
  background pulses:    
  X:BMULTSCI=X:$8  

                       0: pulse polarity negative  
                           phase 1st (-/+) 
         Bit #23   1: pulse polarity positive 
                           phase 1st (+/-) 

  Electrode 1 address   
  . 

. 

. 

        Repeat N times for N simultaneous 
          pulses on N electrodes (common 
          return electrode for N electrodes) 

  Return electrode address  
  Timer 0 pulsewidth (PW) count (channel specific)  
  # of simultaneous electrodes:  1...N  
  Electrode 1 address  

2nd pulse phase   . 
. 
. 

     Repeat N times for N  
       simultaneous pulses 

  Return electrode address  
  # of simultaneous electrodes:  1...N  
  Electrode 1 address  

Zero outputs 
 

 . 
. 
. 

     Repeat N times for N  
       simultaneous pulses 

  Return electrode address  
Pulse delay  Timer 0 count for pulse delay (0 if no delay)  

   Next 1...N (simultaneous) pulses in stimulation   
  order  

 
 
 Conditioner amplitude table 
 
X:$40 Conditioner amplitude 1 

⋅ Conditioner amplitude 2 
: : 

X:$5Fmax Conditioner amplitude (number of electrodes) 
 
 
Background stimulation amplitude table (THR amplitudes)* 
 
X:$80 THR amplitude(s) channel 1 

⋅ THR amplitude(s) channel 2 
: : 

X:$DFmax THR amplitude(s) channel (number of channels) 
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*Note:  For virtual CIS, background data for one virtual channel consist of N subsequent electrode 
amplitude values 
 
 
Channel data table modulo values (values for Mx registers) 
 
Stimulus channel data table modulo:  X:TBL = X:$E 
Background stimulus channel data table modulo:  X:BKGTBLM = X:$B 
 
3. NOTE:  Channel data tables imply common return electrode for N simultaneous pulses on N 

electrodes 
 
 
Channel data table format for bilateral Med-El and CI24M interfaces 
 

1. Channel data table format for Med-El interface: 
 
X:$100 MCL1 – THR1 THR1 pVolTbl1 MDIST1 DRN1 for Med-El 
LEFT MCL2 – THR2 . . . . . . . . . . . . THR, MCL 

 . . .     values are in least 
                                          significant bits 
X:$200 
RIGHT 
 

2. Channel data table format for CI24M interface: 
 
X:$100 MCL1 - THR1 THR1 pVolTbl1 PulseWord1 PulseWord2 for CI24M 
LEFT MCL2 - THR2 . . . . . . . . . . . . THR, MCL 

 . . .     values are in least 
                                               significant bits 
X:$200 
RIGHT 
 
Channel data table modulo values:   LEFT     X:$58 
                      RIGHT  X:$59 
 
 

3. Channel data tables for background stimulation with Med-El 
 
             LEFT   X:$400 $0 THR1 pVolTbl1 MDIST1 DRN1  
             RIGHT X:$500 $0 THR2 : : :  

       
 

4. Channel data tables for background stimulation with CI24M 
 
            LEFT    X:$400 $0 THR1 pVolTbl1 PulseWord1 PulseWord2  
            RIGHT X:$500 $0 THR2 : : :  
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5. Background channel data table modulo: LEFT     X:$56 
      RIGHT  X:$57 
 
Channel specific volume tables:   X:$340 - X:$35F  LEFT   for Med-El and CI24M 
(same as previous)     X:$360 - X:$37F  RIGHT 
 

6. Overall volume:  Stimulus: X:$32 LEFT,  X:33 RIGHT 
  Background: X:$34 LEFT,  X:35 RIGHT 

 
Stimulus execution 
Stimuli that are executed from amplitude sequences downloaded into DRAM memory are embedded in 
background stimulation running at the stimulus pulse rate.  Background stimulation can be started and 
stopped at any time through dedicated byte commands given by the monitor program on the host PC and 
sent to the DSP over the serial COM port connection (see Figure 10 in Appendix 2).  The embedding of 
stimuli is realized in the DSP by dynamically redirecting the channel data table read pointer(s) at the end 
of the background stimulation table(s) to the beginning of the stimulus channel data table, if a dedicated 
stimulus execute serial command had been received from the monitor.  At the end of the stimulus, the 
channel data table pointer(s) automatically fall back from the stimulus table(s) into the background 
channel data table(s).  For the bilateral Med-El and CI24M interfaces, a stimulus can be executed either 
on one side only or bilaterally. 

Pulse amplitude sequences are stored in AMP files sequentially in the order in which they are sampled 
from the channel output signals.  Thus, it is necessary that the following parameters match between the 
amplitude sequence in an AMP file and the carrier pulses generated in the implant(s), so that the 
waveforms modulated onto the carrier pulses are a true representation of the channel output signals 
sampled into the AMP file in MATLAB: 

• Number of channels 

• Stimulation order of channels 

• Stimulation rate per channel (sampling rate of channel envelopes).  For bilateral stimuli, the onset 
of the carrier pulses (samples) must be synchronized between the two sides. 

• Synchronization setting and delay between sides (for bilateral stimuli) 

Figure 2 shows oscilloscope traces of the pulse trains on channels 1 and 8 of an 8-channel standard CIS 
processor on a Med-El C40+ implant, right at the transition from background stimulation at –30% of THR 
to an overall stimulus volume of 100%.  The stimulus amplitude sequence (file M0510.amp) has been 
processed from a wave file recording of the medial consonant ‘ASA’ (file M0510.wav).  Figure 3 shows 
the same consonant’s channel output waveforms over the whole duration of the stimulus, embedded in 
background stimulation pulses, this time at THR + 0% background balance (and still 100% overall 
stimulus volume). 
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Figure 2: Oscilloscope traces of pulse trains on channels 1 (top) and 8 (bottom) of an 8-channel standard 
CIS processor with medial consonant ASA at the transition from background stimulation to stimulus 
onset 

 
 

 

Figure 3: Oscilloscope traces of pulse train envelopes on channels 1 (top) and 8 (bottom) of an 8-channel 
standard CIS processor for a medial consonant ASA (M0510.amp).  Overall stimulus duration is 860 ms, 
including 140 ms of leading “silence.”  See Figure 9 for the corresponding channel envelope signals as 
processed and displayed in MATLAB. 
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In order to maximize the download speed for high data volume AMP files from the host PC that runs the 
monitor program to the DSP, a parallel interface connection has been implemented (see Figure 10 in 
Appendix 2).  A high download speed is particularly important for smooth test administration using pre-
processed AMP files, where the amount of data that needs to be downloaded can be on the order of 1 
Mbyte or more.  Before the parallel interface was available, data downloads at runtime from the host PC 
into the DSP memory were realized through a standard serial COM port connection.  Because of the 
limited transfer rate of a serial connection (the maximum baud rate is 115200 bits per sec), only small 
data transfers were practical.  The parallel connection interface allows a much higher data throughput.  It 
connects the PC LPT1 port, operated in ECP mode to the HI32 host port on the DSP56301, which is 
operated in general-purpose I/O (GPIO) mode and serviced in the DSP code through polling.  The parallel 
interface DSP code has been implemented as described in the MOTOROLA Application Note AN2085, 
“ECP Standard Parallel Interface for DSP56300 Devices”, Rev.0, 11/2000. 

 

User interface 

In the streaming mode, the monitor is responsible for downloading the DSP data, including the 
stimulation pulse sequence and the DSP channel data tables.  It also provides an interface for the 
administration of speech reception tests with consonants, sentences, and other materials. 

 
Downloading patient specific information 
A speech processor specification file, similar to the ones used to load real-time speech processors (see 
section “Setup and control of unilateral and bilateral speech processors in the monitor” in Appendix 2), is 
used to read patient specific data.  Spec files for the real-time mode can also be used in the streaming 
mode, though the streaming mode will not use all the information in the spec file.  The streaming mode 
requires: 

• Implant type 

• Channel information including electrode, threshold, MCL, and pulse width 

• Rate of stimulation 

• Synchronization mode for bilateral processors 

• Channel order table 

In addition to the channel data tables, patient thresholds, and MCL information, the streaming mode also 
loads a background stimulation data table.  This is to simulate the constant stimulation that the subject 
receives in a real time processor even though (s)he is receiving no audio input.  A dedicated background 
balance user interface controls the volume of the background pulses.  Background volume for both left 
and right side is scaled according to the balance setting and the stimulus volume for the respective side 
(see the discussion of the streaming mode design for details).  Once a test is started, the background 
pulses continue to be presented, even when loading a new AMP file, as long as the spec file is not 
changed. 
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The streaming mode can run in two ways – in the debug mode or using a streamplan file.  In the debug 
mode, several AMP files to be downloaded into the DSP are added at the end of the speech processor spec 
file.  When this is the case, the AMP files are loaded one at a time in sequence and the operator can repeat 
the currently loaded one as needed, or instruct the monitor to load and execute the next one.  More 
frequently, the operator opens a “streamplan” text file, which has been prepared ahead of time.  The 
streaming mode form displays the streamplan file and the patient specification file in separate memo 
pages as shown in Figure 4.  The red highlighted line in the streaming plan page indicates the present 
condition that the monitor is loading or that is being tested.  Each line in the streamplan file contains all 
the information needed to run one test.  Each line includes: 

• Patient identification 

• Speech processor specification filename and path 

• Directory where AMP files are stored 

• Test information: 

o Noise condition: quiet, front, left, or right 

o Male or female talker 

o Type of test: 

� Medial consonant identification test: 16 English, 24 English, or 16 German 

� CUNY or HINT English sentences or OLSA German sentences [Oldenburger 
Satztest] 

 
Once the streamplan file is open, the monitor will open the speech processor spec file and attempt to load 
the stimulation pulse sequence files.  The monitor needs to verify that each AMP file loaded is compatible 
with the speech processor specifications.  It verifies that both have the same specifications for: 

• Synchronization settings for bilateral condition 

• Number of channels 

• Order of stimulation 

• Rate of stimulation 

• Implant interface  
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Figure 4:  The streaming mode user interface:  The line shown in red in the stream plan memo page 
identifies the currently loaded test 

 
Consonant tests  
When running a consonant test, the monitor will verify whether all the token AMP files fit into the DSP’s 
memory at once.  There are 3 exemplars for each consonant, so for a bilateral speech processor in a 24 
consonant test, it will try to download 144 files into DSP memory.  If all the tokens do not fit into 
memory, it will load one at a time during the patient testing procedure.  If all tokens fit into memory, the 
monitor keeps a record of the memory address where each token starts, together with its length.  It will 
need this information to instruct the DSP to properly play each token individually.  For a bilateral 
processor, the monitor instructs the DSP to play either the same or two different stimulation pulse 
sequences on the two sides, depending on whether a single- or dual-sequence AMP file is encountered 
(see specification of AMP file format on p. 23). 
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Figure 5:  Subject practice display for a 24 consonant test 

 

The subject can use the practice form to listen to consonants in order to familiarize her/himself with the 
task or to allow the volume to be set at a comfortable level.  That form appears on a second monitor, 
leaving the control window available to the operator for changes in volume, if necessary.  This is 
essentially the same form the subject will encounter during the test (see Figure 5), but here (s)he has 
command of what is played.  The subject clicks on a button in the form and the consonant corresponding 
to that button is played.  When the subject is finished practicing, the form is closed and the test can be 
started. 

For the consonant test another form is opened, almost identical to the one used for practice.  The monitor 
uses the same randomization files used for consonant tests with real-time processors, randomizing among 
tokens and exemplars with the tokens presented in sets to facilitate statistical analysis.  The test is 
completed when each token has been played 5 times.  The control window has a Test Stats memo page in 
which the operator can monitor the subject’s performance.  It displays the token presented, the subject’s 
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answer, total number of tokens presented, and percent correct thus far.  The monitor logs all the subject’s 
answers into a result text file, which will later be used by other programs to run analysis on the data. 

Once the test is completed, the monitor will write the test information and date into a text file named 
“streamdone”, which maintains a complete history of all the streaming mode tests that were run.  The 
current line in the streaming plan form is then erased and the monitor analyzes the next line, checking 
whether new information or new AMP files need to be loaded.  The monitor is then ready to run a new 
test. 

 

Sentence tests   
The streamplan file defines the type of sentence test that will be run and the list number to use.  Each list 
has 10-12 sentences (depending on the material used), which are loaded and played sequentially.  Practice 
sentences are used for volume set-up.  For this test the subject does not need a display.  The operator 
scores the test by hand and has control of the progression of the test.  The sentence AMP file downloaded 
is displayed in the status window.  The test is finished when the monitor has loaded all the sentences in 
the list.  It will write the test information and date into the streamdone text file, and proceed to the next 
line in the streamplan file. 

 

Processing of digitized speech recordings in MATLAB 
 
 
MATLAB program MakeAMP.m 
Speech recordings in digital wave file format are processed in MATLAB using the script MakeAMP.m.  
This program converts monophonic or stereophonic wave file recordings into single- or dual-sequence 
amplitude sequence files (AMP files) for unilateral or bilateral presentation in the streaming mode. 
Digitized speech signals retrieved from a wave file are processed according to one of several different 
speech processing strategies.  The resulting multi-channel output signals are sampled into a linear 
sequence of pulse amplitudes at the specified stimulation rate by sampling the parallel output channels in 
an interleaved fashion across channels in the specified stimulation order.  MakeAMP scans basic 
stimulation parameters (such as unilateral or bilateral condition, number of channels, pulse rate, and 
stimulation order) from a speech processor spec file, like those used in the monitor program to set-up and 
run speech processors in real-time.  The type of speech processing strategy and related parameters are 
read from the command line, if not provided as input arguments to MakeAMP.  In the case of bilateral 
processing, independent sets of strategy parameters, including different speech processing strategies, are 
supported on the left and right side. 

An important feature of MakeAMP is the ease with which it can be extended to integrate new processing 
strategies or implement variations of existing ones.  Adding a new processing strategy merely requires 
adding a new strategy function call to MakeAMP.  A strategy function is a MATLAB program that takes 
a signal vector and its sampling rate as input arguments and returns the channel output signals as output 
arguments.  Strategy parameters are usually entered from the command line, if not provided as optional 
input arguments to the strategy function. 

During processing, MakeAMP logs all parameters, such as signal processing strategy and strategy 
parameters, stimulation parameters scanned from a spec file, the spec file name, and input wave files 
processed to a log-file.  For each AMP file being generated, the log-file also records signal duration in 
ms, maximum normalized channel output amplitude and rms-amplitude, number of pulses, and number of 
24-bit DSP words of the resulting binary pulse amplitude sequence on each side. 
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Figure 6: Flowchart of the processing steps in MakeAMP.m.  A program listing is provided in  
Appendix 3. 
 

21 



For a unilateral condition (unilateral speech processor spec file), a single pulse amplitude sequence is 
generated from each wave file input and stored to an AMP file (if stereo information is included, either 
the left or right signal channel must be selected).  Generally AMP files bear the same file name as the 
wave files from which they are derived, except that file extensions .WAV are replaced with .AMP. 

For a bilateral condition (bilateral speech processor spec file), either single or dual pulse amplitude 
sequences can result, depending on wave file inputs and processing parameters.  True stereo wave files 
with different signals on left and right channel (dichotic input conditions) always result in two linear 
amplitude sequences, the first one for the left implant and the second one for the right implant.  For 
monophonic wave file signals or stereo wave files with identical signals on the left and right channel 
(diotic input conditions), the resulting two pulse amplitude sequences for the left and right implants are 
identical if the following conditions are satisfied: 

1. Same processing strategy and identical strategy parameters on the left and right side 

2. Same number of channels on the left and right side 

3. Same stimulation order on the left and right side 

4. Same pulse rate per channel on the left and right side 

5. Synchronized stimulation pulses, with no relative offset between the two sides 

Conditions 1 and 2 are sufficient for channel output signals to be identical on the left and right side and 
conditions 2-4 guarantee that the carrier pulses, which are modulated in amplitude with the channel output 
signals, occur simultaneously on the two sides for the whole stimulus duration.  An essential requirement 
is also that pulse amplitudes as sampled in MakeAMP are normalized and that the linear scaling to the 
electrode specific THR and MCL levels occurs in the DSP. 

When the pulse amplitude sequences for left and right implants are identical, MakeAMP stores only one 
sequence in the AMP file.  This saves download time and memory space in the DSP.  When executed 
bilaterally, the sequence of normalized pulse amplitudes is retrieved twice in the DSP, for dynamic range 
scaling on left and right side. 

Table 1 summarizes the cases for unilateral and bilateral processing conditions and the resulting single-
sequence or dual-sequence AMP files. 

 
Implant 
interface  

Speech processor 
spec file Wave file input AMP file generated by 

MakeAMP.m 
Current Sources, 
Med-El, CI24M Unilateral Mono Single-sequence 

Current Sources, 
Med-El, CI24M Unilateral 

Stereo. Channel signal to 
be processed has to be 
specified. 

Single-sequence 

Med-El, CI24M Bilateral True stereo Dual-sequence 

Med-El, CI24M Bilateral 
Mono or stereo with 
identical signals on the left 
and right channels 

Single-sequence, if strategy 
parameters and stimulation 
parameters (number of channels, 
rate, order, rdelay = 0 µs) on the 
left and right side are identical 
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Med-El, CI24M Bilateral 
Mono or stereo with 
identical signals on the left 
and right channels 

Dual-sequence, if strategy 
parameters or stimulation 
parameters (number of channels, 
rate, order, rdelay ≠ 0 µs) on the 
left and right side are different 

Table 1:  AMP files resulting from different speech processor spec files and wave file inputs 

 
Specification of AMP file format 
AMP files, as generated in MakeAMP, are mixed ASCII text and binary files.  They consist of a leading 
ASCII header section, followed by a single or dual binary amplitude sequence section. 

The ASCII header section consists of a sequence of tags.  Tags start with a '>' character, followed by a tag 
identifier.  One or more lines containing the tag data for that tag follow a tag line.  Vector data are 
specified one element per line.  Data lines are delimited by the next tag line or by the end of the file. 
Comment lines can be inserted anywhere in the header by starting the line with an asterisk. 

The ASCII header section terminates with the tag ">start bin", which designates the starting point of the 
binary amplitude sequence.  The ">start bin" tag includes a CR (0x0D) and LF (0x0A) character, i.e. the 
binary amplitude sequence does not start earlier than two bytes after the tag string. 

AMP files containing a single or dual pulse amplitude sequence have a different format, which is 
specified below. 

Single-sequence AMP files 

 
>system 
(Implant interface string.  Can be either “new_currents”, “medel”, or “ci24m”) 
>length 
(Stimulus length in ms, rounded to an integer) 
>pulsecount 
(Number of pulses.  Applies to both left and right sides in case of bilateral presentation) 
>implrate 
(Implemented stimulation rate in pulses per second, per channel, rounded to an integer.  Applies 
to both sides in case of bilateral presentation) 
>order 
(Stimulation order of channels.  Applies to both sides in case of bilateral presentation) 
>cyctim 
(Pulse onset times in µs for each pulse in stimulation cycle, relative to cycle start.  Numbers are 
floats, rounded to 2 decimals.  Applies to both sides in case of bilateral presentation) 
>start bin 
(Single pulse amplitude sequence in binary format.  Binary sequence contains unsigned 12-bit 
amplitudes in packed, high bit first format, i.e. 2 amplitude values fill up 3 bytes.  For an odd 
pulsecount, 12 zero-bits are added to make a 24-bit DSP DRAM word full) 
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Dual-sequence AMP files 

 
>system 
(Implant interface string.  Can be either “medel” or “ci24m”) 
>length 
(Stimulus length in ms, rounded to integer number) 
>lpulsecount 
(Number of pulses on left side) 
>rpulsecount 
(Number of pulses on right side) 
>limplrate 
(Implemented stimulation rate per channel on left side, rounded to integer number) 
>rimplrate 
(Implemented stimulation rate per channel on right side, rounded to integer number) 
>lorder 
(Stimulation order of channels on left side) 
>rorder 
(Stimulation order of channels on right side) 
>lcyctim 
(Pulse onset times in µs for each pulse in stimulation cycle on left side, relative to cycle start.  
Numbers are floats, rounded to 2 decimals) 
>rcyctim 
(Pulse onset times in µs for each pulse in stimulation cycle on right side, relative to cycle start.  
Numbers are floats, rounded to 2 decimals) 
>rdelay 
(Delay of stimulation cycle start on right side in µs, relative to cycle start on left side.  Delay is 
positive (right delayed versus left) or negative (left delayed versus right) float, rounded to 2 
decimals) 
>start bin 
[Binary pulse amplitude sequence for left side.  Byte sequence is zero-filled to make last 24-bit 
DSP DRAM word full] 
[Binary pulse amplitude sequence for right side.  Byte sequence is zero-filled to make last 24-bit 
DSP DRAM word full] 

 
Note: Due to implant pulse timing constraints, the pulse rate per channel that can actually be 
implemented in a given implant system might differ slightly from the rate specified in the speech 
processor spec file that is scanned in MakeAMP.  Thus, the implant interface system and the implemented 
(as opposed to the specified) pulse rate are inserted into the AMP file header by MakeAMP.  When the 
monitor program downloads an AMP file, it accepts only files in which the implemented rate, the number 
of channels, and the stimulation order match the rate, number of channels, and stimulation order set up by 
the monitor when starting the background stimulation for embedding stimuli whose pulse amplitudes are 
retrieved from downloaded AMP files.  This crosscheck in the monitor program is an important safety 
feature.  It ensures that an AMP file can never be streamed out to the subject implant(s) at an 
incompatible rate or stimulation order, or on a wrong number of electrodes (this would result in a 
potentially hazardous distortion of the stimulus). 
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Example of a single-sequence AMP file and its log-file 

The following example shows the ASCII header of a single-sequence AMP file for the medial consonant 
utterance ‘ASA’ in quiet (file M0510.amp), as generated by MakeAMP from a monophonic wave file 
input from file M0510.wav.  The input spec file is for a bilateral 8-channel Med-El processor.  Strategy 
and stimulation parameters are identical on the left and right sides, thus the same amplitude sequence 
results on both sides (case 4 in Table 1).  Figure 3 shows oscilloscope traces of the pulse train envelope 
signals on channels 1 and 8 of AMP file M0510.amp, as streamed to a Med-El C40+ implant detector. 

 
* Amplitude sequence file for streaming mode on ADS56301 Lab System. 
* File contains unilateral amplitude sequence and was generated 
* by MakeAMP.m version 2.4. 
* Input wave file name: 
*   E:\AudioData\vcv\hrtf\Mixed_ramp_+5dB\M0510.wav 
* Input wave file mode: 
*   Stereo with identical signals on left and right channel -> Mono 
* Signal processing strategy: 
*   stdCIS 
* ADSMonitor speech processor spec file scanned for processor parameters: 
*   C:\rtisys\SpecFiles\DS2\DS2_1 
* Spec file parameters: 
*   Number of channels: 8 left 
*                       8 right 
*   Stimulation rate per channel: 1515 pps left 
*                                 1515 pps right 
*   Stimulation order:  1  5  2  6  3  7  4  8 left 
*                       1  5  2  6  3  7  4  8 right 
*   Synchronization mode: sync, no delay between sides 
* Spec file results in identical nchn, order, implRate and cyctim 
* (with rdelay = 0) on both left and right side. Thus, this AMP file, 
* generated from a wave file in mono input mode, is unilateral. 
* 
>system 
MedEl 
* Stimulus duration in msecs 
>length 
863 
* Number of deterministic pulse amplitudes in stimulus 
>pulsecount 
10464 
* Implemented rate in pps per channel 
>implrate 
1515 
>order 
1 
5 
2 
6 
3 
7 
4 
8 
* Onset times of pulses within stimulation cycle in us, relative to cycle start 
>cyctim 
0.00 
81.67 
163.33 
245.00 
326.67 
410.00 
493.33 
576.67 
* Pulse amplitude sequence in binary format 
>start bin 
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The contents of the log-file pertaining to the AMP file header shown above (from file M0510.amp) are 
shown below (only the line logged for processing of AMP file M0510.amp is shown at the end): 

 
* Log file of amplitude sequence files generated for streaming mode 
* on ADS56301 Lab System. 
* Files were generated by MakeAMP.m version 2.4. 
* 
* Input directory for wave files: 
*   E:\AudioData\vcv\hrtf\Mixed_ramp_+5dB\ 
* 
* Output directory for amp files: 
*   E:\AudioData\vcv\hrtf\Mixed_ramp_+5dB\MedEl_stdCIS_8L1515_8R1515_s\ 
* 
* ADSMonitor speech processor spec file scanned for processor parameters: 
*   C:\rtisys\SpecFiles\DS2\DS2_1 
* 
* Implant interface specification in spec file: 
*   MedEl 
* 
* Spec file parameters: 
*   Number of channels: 8 left 
*                       8 right 
*   Stimulation rate per channel: 1515 pps left 
*                                 1515 pps right 
*   Stimulation order:  1  5  2  6  3  7  4  8 left 
*                       1  5  2  6  3  7  4  8 right 
*   Synchronization mode: sync, no delay between sides 
* 
* Signal processing strategy: 
*   stdCIS left and right side 
* 
* Strategy parameters for left and right side: 
*   inputGain    : 1.35869 
*   LeqRef       : -9 
*   nchn         : 8 
*   eqcutoff     : 1200 
*   eqord        : 1 
*   fl           : 350 
*   fu           : 5500 
*   bpord        : 6 
*   gainBPout    : 1 
*   lpcutoff     : 200 
*   lpord        : 4 
*   rect         : 'full' 
*   gainMAPin    : 4 
*   pwr          : -0.0001 
*   thr          : 0 
*   mcl          : 1 
*   Nmaplaw      : 1024 
*   intp         : 'on' 
 
Wave file -> Amp file (duration, max chnl output amp/rms, no. of pulses, no. of DSP words) 
------------------------------------------------------------------------------------------- 
... 
> Stereo wave file M0510.wav has identical signals on left and right channel and will be processed in 
mono mode. 
M0510.wav -> M0510.amp (863 ms, 0.924/0.557, 10464 = 0x28E0 pulses, 5232 = 0x1470 DSP words) 
... 
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Streaming of AMP files in the monitor program with a speech processor spec file 
Table 2 shows possible combinations of speech processor spec files and AMP files.  Generally, a given 
AMP file can be used on all implant interfaces where number of channels (unilateral or bilateral), 
implemented pulse rate, stimulation order, and synchronization settings (for bilateral interfaces only) 
match between the AMP file and the speech processor spec file through which background stimulation for 
embedding the stimulus pulse sequence was set up in the monitor program. 

 
Implant 
interface  

Speech processor 
spec file AMP file Safety check in monitor program 

Current Sources, 
Med-El, CI24M Unilateral Single-

sequence 

Execute unilateral stimulus from pulse amplitude 
sequence, if number of channels, implemented 
rate, and stimulation order match 

Med-El, CI24M Unilateral Dual-
sequence 

Execute unilateral stimulus from pulse amplitude 
sequence on side specified in unilateral spec file, if 
number of channels, implemented rate, and 
stimulation order match 

Med-El, CI24M Bilateral Single-
sequence 

Execute bilateral stimulus by playing same pulse 
amplitude sequence on both left and right side, if 
number of channels, implemented rate, and 
stimulation order match and if pulses occur 
simultaneously on left and right side (i.e. same 
pulse onset times on both sides and no relative 
delay). 

Med-El, CI24M Bilateral Dual-
sequence 

Execute bilateral stimulus from pulse amplitude 
sequences if number of channels, implemented 
rate, relative delay (i.e. pulse onset times), and 
stimulation order match on left and right side 

Table 2:  Possible combinations of speech processor spec files and AMP files in the streaming mode 

 
 
Signal processing strategy implementations in MATLAB 
A number of signal processing strategies, including a standard CIS strategy, have been implemented in 
MATLAB.  Table 3 shows the currently available strategy functions and their basic design features.  All 
of these strategy functions can be called from within MakeAMP. 

 
Strategy 

function name  Properties 

stdCIS 

Standard CIS strategy, consisting of the following processing blocks: 
Pre-emphasis high-pass filter 
Bank of Butterworth band-pass filters 
Full- or half-wave rectifier and low-pass filter as envelope extractor 
Instantaneous power maplaw compression 
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stdihcCIS 

CIS strategy, where envelope extraction stage is replaced by processing stage that 
implements the inner hair cell (IHC) model (Meddis, 1986; Meddis, 1988): 

Pre-emphasis high-pass filter 
Bank of Butterworth band-pass filters 
Meddis IHC model stage as envelope extractor 
Instantaneous power maplaw compression (typically reduced compression) 

stdihclpCIS 

CIS strategy, where envelope extraction stage is replaced by the Meddis IHC model 
and a subsequent low-pass filter stage: 

Pre-emphasis high-pass filter 
Bank of Butterworth band-pass filters 
Meddis IHC model stage, followed by low-pass filter, as envelope extractor 
Instantaneous power maplaw compression (typically reduced compression) 

stdenvihcCIS 

CIS strategy, where envelope extraction stage is composed of rectifier and low-pass 
filter, followed by Meddis IHC model: 

Pre-emphasis high-pass filter 
Bank of Butterworth band-pass filters 
Full- or half-wave rectifier, low-pass filter and Meddis IHC model stage as 
envelope extractor 
Instantaneous power maplaw compression (typically no or reduced 
compression) 

stdhpCIS 

CIS strategy, where envelope extraction stage is composed of a rectifier and low-pass 
filter, followed by a high-pass stage designed to enhance signal onsets and simulate 
auditory nerve-like adaptation properties: 

Pre-emphasis high-pass filter 
Bank of Butterworth band-pass filters 
Full- or half-wave rectifier, low-pass filter, and high-pass adaptation stage 
Instantaneous power maplaw compression 

cpCIS 

CIS strategy, where Butterworth band-pass filter bank is replaced by a bank of 
nonlinear DRNL filters (Meddis, O’Mard, Lopez-Poveda, 2001; Lopez-Poveda, 
Meddis, 2001): 

Pre-emphasis high-pass filter 
Bank of nonlinear DRNL band-pass filters 
Full- or half-wave rectifier and low-pass filter as envelope extractor 
Instantaneous power maplaw compression (typically reduced compression) 

cpihcCIS 

CIS strategy with bank of nonlinear DRNL filters and Meddis IHC model as 
envelope extraction stage: 

Pre-emphasis high-pass filter 
Bank of nonlinear DRNL band-pass filters 
Meddis IHC model stage as envelope extractor 
Instantaneous power maplaw compression (typically reduced compression) 

cpihclpCIS 

CIS strategy with bank of nonlinear DRNL filters and Meddis IHC model/low-pass 
filter as envelope extraction stage: 

Pre-emphasis high-pass filter 
Bank of nonlinear DRNL band-pass filters 
Meddis IHC model stage, followed by low-pass filter, as envelope extractor 
Instantaneous power maplaw compression (typically reduced compression) 
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cpenvihcCIS 

CIS strategy with bank of nonlinear DRNL filters and envelope extraction stage, 
composed of rectifier and low-pass filter, followed by Meddis IHC model: 

Pre-emphasis high-pass filter 
Bank of nonlinear DRNL band-pass filters 
Full- or half-wave rectifier, low-pass filter and Meddis IHC model stage as 
envelope extractor 
Instantaneous power maplaw compression (typically linear, applying only 
output gain) 

Table 3:  Strategy functions implemented in MATLAB 

 

All strategy implementations in Table 3 can be called as functions in MakeAMP.  A signal vector, 
sampling rate, and strategy parameters are provided as input arguments and a matrix of channel output 
signals is returned as the output argument. 

Strategy functions can also be run as standalone programs, by simply executing the function directly 
within the MATLAB command environment.  In this case, an input wave file and strategy parameters are 
requested interactively and all signals from the input signal through the various processing stages to the 
final channel output signals are plotted in a sequence of graphs.  Also, signal rms-amplitudes and [min, 
max] amplitude ranges are displayed in the MATLAB command window throughout the processing 
stages.  As an additional tool for signal analysis, all plot windows have the capability of zooming into 
signal segments and plotting and analyzing signal spectrograms. 

Plot windows generated by strategy functions executed in standalone mode also provide buttons for 
displaying spectrograms and for playing signals at the output of all processing stages as sound.    Another 
feature of the standalone execution mode of strategy functions is the ability to play signals.  In the case of 
channel output envelope signals, a paradigm of acoustically simulating speech reception with cochlear 
implants is applied.  Bands of noise, amplitude-modulated by the respective channel envelope signals, are 
added together and played as sound.  Noise bands are derived by filtering white noise, through the same 
band-pass filter that is used in the signal processing strategy, to derive the channel output envelope signal 
of that particular channel. 

The following figures show the plots generated in stdCIS when run in the standalone mode for the medial 
consonant input ‘ASA’ from wave file M0510.wav.  Signal rms-amplitudes and [min, max] amplitude 
ranges as displayed in the MATLAB command window throughout all processing stages are also shown.   
Processing parameters are 8 channels, with a 1st-order high-pass at cutoff frequency of 1200 Hz, 8 
equally-spaced band-pass filters of 6th order on a logarithmic scale from 350 to 5500 Hz, full-wave 
rectification, a 4th-order low-pass filter at cutoff frequency 200 Hz for envelope extraction, and a maplaw 
compression power of –0.0001.  Note the match between the compressed channel output signals for 
channels 1 and 8 in Figure 9 (black) and the stimulus pulse train envelopes on channels 1 and 8 in Figure 
3.  The AMP file used to generate the stimulation waveforms in Figure 3 has been derived from the same 
input wave file M0510.wav, using the strategy and parameters indicated above. 
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Figure 7:  Plot of input signal ‘ASA’ from file M0510.wav (top) and corresponding output signal of pre-
emphasis high-pass filter (bottom) 
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Figure 8: Bandpass filter output signals (bipolar, blue) and corresponding envelopes (unipolar, red) of 
channels 1 through 8 for medial consonant ‘ASA’ 
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Figure 9:  Envelope extraction output signals (lower, red) and compressed envelopes (upper, black) of 
channels 1 through 8 for medial consonant ‘ASA’.  See Figure 3 for the oscilloscope traces of channels 1 
and 8 as captured during streaming of the AMP file that was derived from the same consonant in 
MATLAB. 
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The following shows the MATLAB command window output, as generated during the standalone 
execution of strategy function stdCIS with input wave file M0510.wav and parameters taken from 
strategy parameter structure stratpar{1}.  The output shows signal rms-amplitudes and [min, max] 
amplitude ranges through all processing stages of the input signal. 
 
>> stratpar{1} 
 
ans =  
 
    inputGain: 1.3587 
       LeqRef: -9 
         nchn: 8 
     eqcutoff: 1200 
        eqord: 1 
           fl: 350 
           fu: 5500 
        bpord: 6 
    gainBPout: 1 
     lpcutoff: 200 
        lpord: 4 
         rect: 'full' 
    gainMAPin: 4 
          pwr: -1.0000e-004 
          thr: 0 
          mcl: 1 
      Nmaplaw: 1024 
         intp: 'on' 
 
>> stdcis(stratpar{1}) 
 
Processing input wave file 'M0510.wav' at fs = 44.1 kHz according to standard CIS strategy... 
Stereo input signal specified. Selected left channel for processing. 
DC compensating and Leq-scaling input signal with gain 1.36. 
Equalizing signal with Butterworth highpass filter of order 1 and cutoff frequency 1200 Hz. 
Analyzing signal with bank of 8 Butterworth bandpass filters of order 6 and range 350-5500 Hz. 
Channel 1: Butterworth bandpass filter at [350, 494] Hz 
     Filter input signal range:  [  -0.4089548,   0.3972495 ], rms: 0.0745608 
     Filter output signal range: [  -0.0652551,   0.0616001 ], rms: 0.0094280 
 
Channel 2: Butterworth bandpass filter at [494, 697] Hz 
     Filter input signal range:  [  -0.4089548,   0.3972495 ], rms: 0.0745608 
     Filter output signal range: [  -0.1958718,   0.1900900 ], rms: 0.0411206 
 
Channel 3: Butterworth bandpass filter at [697, 983] Hz 
     Filter input signal range:  [  -0.4089548,   0.3972495 ], rms: 0.0745608 
     Filter output signal range: [  -0.1621509,   0.1670289 ], rms: 0.0417575 
 
Channel 4: Butterworth bandpass filter at [983, 1387] Hz 
     Filter input signal range:  [  -0.4089548,   0.3972495 ], rms: 0.0745608 
     Filter output signal range: [  -0.0963249,   0.1000811 ], rms: 0.0139269 
 
Channel 5: Butterworth bandpass filter at [1387, 1958] Hz 
     Filter input signal range:  [  -0.4089548,   0.3972495 ], rms: 0.0745608 
     Filter output signal range: [  -0.0346579,   0.0400986 ], rms: 0.0053111 
 
Channel 6: Butterworth bandpass filter at [1958, 2762] Hz 
     Filter input signal range:  [  -0.4089548,   0.3972495 ], rms: 0.0745608 
     Filter output signal range: [  -0.0595480,   0.0589883 ], rms: 0.0100559 
 
Channel 7: Butterworth bandpass filter at [2762, 3898] Hz 
     Filter input signal range:  [  -0.4089548,   0.3972495 ], rms: 0.0745608 
     Filter output signal range: [  -0.1158118,   0.1162614 ], rms: 0.0118430 
 
Channel 8: Butterworth bandpass filter at [3898, 5500] Hz 
     Filter input signal range:  [  -0.4089548,   0.3972495 ], rms: 0.0745608 
     Filter output signal range: [  -0.3173908,   0.3308889 ], rms: 0.0347280 
 
Extracting signal envelopes with full-wave rectifier and 
 Butterworth lowpass filter of order 4 and cutoff frequency 200 Hz. 
 Channel output signal ranges after envelope extraction: 
   Envelope signal range of channel 1:                         [  0.0000000, 0.0416566 ], rms: 0.0084312 
   Envelope signal range of channel 2:                         [  0.0000000, 0.1267423 ], rms: 0.0369546 
   Envelope signal range of channel 3:                         [  0.0000000, 0.1060866 ], rms: 0.0372608 
   Envelope signal range of channel 4:                         [  0.0000000, 0.0526441 ], rms: 0.0119623 
   Envelope signal range of channel 5:                         [  0.0000000, 0.0157263 ], rms: 0.0040980 
   Envelope signal range of channel 6:                         [  0.0000000, 0.0324987 ], rms: 0.0087562 
   Envelope signal range of channel 7:                         [  0.0000000, 0.0513290 ], rms: 0.0099987 
   Envelope signal range of channel 8:                         [  0.0000000, 0.1469376 ], rms: 0.0290124 
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Applying gain = 4 to envelope signals before going into maplaw compression stage. 
Compressing signal envelopes with power-maplaw p = -0.0001, N = 1024 and linear interpolation. 
 Channel output signal ranges after maplaw compression: 
   Maplaw output signal range of channel 1:                    [  0.0000000, 0.7423775 ], rms: 0.3781120 
   Maplaw output signal range of channel 2:                    [  0.0000000, 0.9023051 ], rms: 0.5331152 
   Maplaw output signal range of channel 3:                    [  0.0000000, 0.8767004 ], rms: 0.5572129 
   Maplaw output signal range of channel 4:                    [  0.0000000, 0.7759691 ], rms: 0.4084730 
   Maplaw output signal range of channel 5:                    [  0.0000000, 0.6032336 ], rms: 0.3427093 
   Maplaw output signal range of channel 6:                    [  0.0000000, 0.7068038 ], rms: 0.4163818 
   Maplaw output signal range of channel 7:                    [  0.0000000, 0.7723370 ], rms: 0.4256139 
   Maplaw output signal range of channel 8:                    [  0.0000000, 0.9235915 ], rms: 0.4563326 
Processing finished. 
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IV. Plans for the next quarter 

Among the activities planned for the next quarter are:  

• Full implementation of the Advanced Bionics Corp. Bilateral CII Bionic Ear research interface 
for conducting bilateral speech reception and psychophysical studies with CII implant subjects.  
The research interface will provide access to the full capabilities of the CII implant system for 
parallel simultaneous pulsatile stimulation at high rates. 

• Enhancement of the parallel multi-channel stimulation capabilities of the current source interface 
system.  Development of an intermediate hardware interface between the ADS56301 signal 
processor and the current source interface to allow for parallel stimulation on up to 24 electrodes 
at high rates. 

• Implementation of subject training procedures within the psychophysical task monitor programs.  

• Continuing studies with local subjects ME16 and ME22, implanted bilaterally with Med-El 
Tempo+ devices. 

• Three weeks of studies with return subject ME-15, July 14 – August 1. 

• A return visit by consultant Enrique Lopez-Poveda from Salamanca, Spain, July 17-30, to 
coincide with the visit of subject ME-15. 

• A visit by Craig Buchman, MD, Associate Professor, Chief, Division of Otology/Neurotology 
and Skull Base Surgery, UNC-CH, Chapel Hill, NC, August 1. 

• Two weeks of studies with return subject ME-3, August 4-15. 

• Attendance by Blake Wilson, Dewey Lawson, Lianne Cartee, Reinhold Schatzer, Xiaoan Sun and 
Robert Wolford at the 2003 Conference on Implantable Auditory Prostheses (CIAP 2003), 
Asilomar CA, August 17-22. 

• A presentation by Blake Wilson on “Comparisons among new approaches for representing speech 
information with cochlear implants” at CIAP 2003. 

• A poster presentation by Reinhold Schatzer on “A Novel CI speech processing structure for 
closer mimicking of normal auditory functions” at CIAP 2003. 

• Two weeks of studies with return subject ME-10, August 25-September 5. 

• Initial surgeries for at least two of the Nucleus Contour Electrode percutaneous study patients at 
Duke University Medical Center, Durham, NC. 

• Two weeks of studies with return subject ME-19, September 22- October 3. 
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Appendix 1:  Summary of reporting activity for this quarter  

 

Publications 
 
Wilson BS, Lawson DT, Müller JM, Tyler RS, Kiefer J:  Cochlear implants:  Some likely next steps. 
Annu Rev Biomed Eng 5: 207-249, 2003. 

Loeb GE, Wilson BS:  Cochlear prosthesis.  In Adelman G, Smith BH (eds.), Encyclopedia of 
Neuroscience, 3rd edition.  Amsterdam: Elsevier. 
 
 

Invited Presentations 
 
Wilson BS, Brill SM, Cartee LA, Cox JH, Lawson DT, Schatzer R, Sun X, Wolford RD:  Recent progress 
and likely next steps in the development of cochlear implants.  VII International Conference on Cochlear 
Implants and Related Audiological Sciences, Warsaw – Kajetany, Poland, May 22-25, 2003.  

Wilson BS, Lawson DT, Brill SM, Wolford RD, Schatzer R, Kiefer J, Pfennigdorff T, Pok M, Tillein J, 
Gstöttner W, Baumgartner W-D, Gilmer C, Pillsbury HC:  Results from speech reception studies. 
Satellite Symposium on “Partial deafness cochlear implantation,” VII International Conference on 
Cochlear Implants and Related Audiological Sciences, Warsaw – Kajetany, Poland, May 22-25, 2003. 

Wilson BS, Brill SM, Cartee LA, Cox JH, Lawson DT, Schatzer R, Sun X, Wolford RD:  Recent and 
future cochlear implant stimulation strategies.  Conference celebrating 25 Years of Cochlear Implants in 
Vienna, Vienna, Austria, June 19, 2003. 
 

Chaired Sessions 
 
Hochmair E, Wilson B, Lenhardt M, Czyzewski A (Co-Chairs):  Session on “Cochlear and Brain Stem 
Implants and Related Audiological Problems.  VII International Conference on Cochlear Implants and 
Related Audiological Sciences, Warsaw – Kajetany, Poland, May 22-25, 2003. 

Wilson B, Skarzynski H (Co-Chairs):  Satellite Symposium on “Partial deafness cochlear implantation.”  
VII International Conference on Cochlear Implants and Related Audiological Sciences, Warsaw – 
Kajetany, Poland, May 22-25, 2003. 
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Appendix 2:  Bilateral interfaces and control programs 
 
In this appendix we provide a description of the hardware and software tools that have been developed 
and implemented over the course of the last several quarters to extend the functionality and optimize the 
performance of our speech laboratory system in terms of bilateral stimulation capabilities.  These new 
tools significantly extend our ability to perform a variety of speech reception and psychophysical test 
measures our bilateral implant interfaces. 

 

Design Objectives 

1. Full control of bilateral Med-El C40/C40+, Nucleus CI22 and CI24M implants, by means of: 

• Bilateral, real-time CIS speech processor.  Features include: 

o Ability to exactly synchronize pulsatile stimulation on both sides, either on a pulse-to-
pulse basis, or synchronization of stimulation cycles over all channels on one side. 

o Specifiable relative offset of bilateral stimulation pulses with synchronized processors in 
multiples of the smallest time step supported by the implant. 

o Support for mono- and stereophonic audio input with bilateral stimulation. 

o Flexible way of controlling and modifying processor parameters, such as number of 
channels, filter characteristics, maplaw compression, rate, and subject specific threshold 
and most comfortable loudness levels, within and across channels. 

• Bilateral pulse train generation for psychophysical measurements.  Features include: 

o Control of synchronization and relative delay of bilateral pulse bursts in multiples of the 
smallest time step supported by the implant, for both constant amplitude and sinusoidally 
amplitude modulated (SAM) pulse bursts. 

o Control of amplitude differences in bilateral pulse trains in multiples of the smallest 
amplitude step size supported by the implant. 

o User interface for generation of single pulse trains for basic psychophysical 
measurements. 

o User interface for administration of interaural timing difference (ITD) and interaural 
amplitude difference (IAD) tests.  Support for interaural phase difference tests for 
bilateral SAM pulse trains. 

 

Organization of the laboratory 

Figure 10 shows a block diagram of the speech lab instrumentation setup.  The heart of the laboratory 
system is a 100-MHz Motorola DSP56301 development board (ADS56301), which recently replaced a 
less powerful 66-MHz ADS56301 platform.  Interface systems for the following implants are available 
and can be connected to the DSP board via a generic parallel bus interface: 
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• Bilateral interface for Nucleus CI22 implants 

• Bilateral interface for Nucleus CI24M implants 

• Bilateral interface for Med-El C40/C40+ implants 

• Laboratory current source system for direct stimulation of implanted electrodes in subjects with 
percutaneous connectors 

Recently, we have obtained the latest version of the Bilateral CII Bionic Ear research interface from 
Advanced Bionics Corp.  Full implementation of that system will provide us with the capability to 
interface with all currently available clinical cochlear implant systems. 

The ADS56301 is connected via 3 interfaces to a host PC running a monitor program, which downloads 
program codes and stimulation data/parameters and controls program execution in the Digital Signal 
Processor (DSP).  The monitor program runs in a 32-bit Windows environment and implements a 
graphical interface for a variety of tasks and procedures under the test administrator’s control, which will 
be described later.  The OnCE port interface allows the monitor program to initialize the DSP with 
programs and data in its reset state, i.e. when no DSP program is running, and to start and stop DSP 
program execution.  The RS-232 connection to the controlling PC’s COM port is used as a byte-oriented 
two-way communication path with a software handshake between DSP and monitor at runtime, e.g. to 
dynamically modify the stimulation parameters such as volume setting in running speech processors. 
Finally, the parallel connection to the host PC’s LPT port is a dedicated high-throughput data download 
channel from PC to DSP, that is used in the streaming mode at runtime to quickly download large pulse 
data sequences. 

Currently, the DSP supports up to 3 different stimulation modes in conjunction with the various implant 
interfaces.  These program modes are real-time speech processor emulators, psychophysics, and 
streaming mode.  In the speech processor emulation mode, the DSP executes a CIS algorithm, processing 
the audio input signal to the ADC in either monophonic (for unilateral and bilateral speech processors) or 
stereophonic (bilateral speech processors only) input mode.  As shown in Figure 10, audio input signals 
are fed to the DSP board (lab processor) through a serial connection from an off-board ADC subsystem.  
This subsystem is based on a commercial Burr-Brown DEM-PCM1760 evaluation fixture, containing an 
enhanced noise-shaping 20-bit stereo analog-to-digital converter.  The ADC samples the analog input at a 
rate of 48 kHz per side.  A wide variety of stereo and monophonic signal sources can be routed to the 
DSP analog inputs through a 14-channel audio mixing panel.  These include standalone sources (operator 
headset microphone, room microphone, two audio cassette tape decks) as well as sources under the 
control of a second PC (video laser-disk player, audio CD-player, and embedded sound card).  The 
second PC controls presentation of recorded or synthesized stimuli (e.g. speech tokens, noise) from these 
sources as well as video presentation of images from the video-laser disk for sound-plus-vision speech 
testing. 

For psychophysical experiments, the DSP generates pulsatile stimulation patterns set up by the monitor 
program in DSP memory under operator control.  In the streaming mode, the monitor downloads off-line 
generated stimulation sequences to DSP memory, for subsequent delivery by the DSP.  Stimulation 
sequences typically are derived from speech test materials in digital format, such as a set of medial 
consonant or sentence audio files. 
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Figure 10:  Block diagram of speech reception laboratory system with ADS56301 signal processor core 

 
Interface to Nucleus CI22 Implants 

The Nucleus CI22 implant provides sequential pulsatile stimulation through arbitrary bipolar pairs 
selected from 22 electrodes per ear.  For safety reasons, the stimulation pulses must be biphasic with no 
residual current, i.e. the pulse widths of negative phase and positive phase should be equal.  The CI22 
implant interface receives pulse data through a parallel interface from the ADS56301 lab processor and 
generates amplitude modulated radio frequency bursts for power and data transmission to left and right 
inputs through a pair of inductive coils.  

Our CI22 interface was previously connected to a dual DSP56001 laboratory processor controlled by 
DOS monitor programs.  Recently, new DSP assembly programs were created to connect the CI22 
interface to the more powerful DSP56301 laboratory processor, in order to take advantage of the extra 
processing power.  The monitor programs of the CI22 interface were also upgraded to the Windows 
operating system to incorporate the CI22 implant into our unified user interface.  Extensive verification 
and system tests of both the psychophysical and real-time speech processing mode have been completed 
for the newly developed system.  

The CI22 implant uses an expanded or sync-electrode-mode-amplitude (SEMA) radio frequency data 
protocol, in which electrode, return electrode, amplitude, phase 1, and phase 2 information is encoded as 
radio frequency modulated bursts (see US patent 4,532,930).  The maximum aggregate stimulation pulse 
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rate depends upon electrode configurations and amplitudes in addition to the pulse width.  Using 40 
µs/phase pulses, it can theoretically range from 2,685 pulses/s to 6,868 pulses/s.  

The amplitude command can take the values from 0 to 239 clinical levels where the actual output current 
in the implant can be found in the output current table of each implant.  The output current grows 
exponentially as the clinical level linearly increases from 0 to 239, which to some extent mimics the 
nonlinear loudness growth of normal hearing with respect to stimulation intensity.  It is noteworthy that 
this nonlinear relationship between clinical level and output current makes it complicated to scale the 
stimulating current.  Usually a look-up table is needed to find the clinical level for the linearly scaled 
current.  

Because the radio frequency (RF) modulated signal is transmitted to the CI22 implant by an inductively 
coupled coil, the actual number of RF cycles received by the implant might not be the same as the number 
transmitted for a variety of reasons.  Temporal redundancy is applied in the encoding of electrode and 
mode information such that the system is tolerant of up to ±4 RF cycles of variation in burst length.  
Amplitude and pulse widths are also affected by this transmission distortion.  However, these variations 
are not as critical as those of electrode and mode, and there is no redundancy mechanism for amplitude 
and pulse width bursts. 

Prior to the appearance of the first phase of a biphasic pulse in the implant, a sync burst, an electrode 
burst, a mode burst, an amplitude burst, and a pulse width burst have to be transmitted to the implant.  A 
data value is encoded as the duration of each burst, i.e. the number of radio frequency cycles within each 
burst.  The overhead of burst transmission time dramatically limits the overall stimulation rate.  
Moreover, the variation in electrode, mode and amplitude will change the actual timing of a pulse, 
making it extremely difficult to synchronize the pulses for bilateral implants.  This difficulty is solved in 
the new DSP program for the CI22 implant interface, allowing synchronous control of bilateral CI22 
receiver/stimulators.  

It takes 6 bursts for the implant to generate one biphasic pulse: one sync burst and 5 data bursts 
(electrode, mode, amplitude, phase 1, and phase 2).  The DSP has one timer for each implant to maintain 
the pulse rate by sending the first (sync) burst of each new pulse.  The CI22 interface hardware relieves 
the laboratory DSP of the additional task of timing and counting the pulses in each command burst sent to 
the implanted circuits.  The interface appears to the DSP as two separate memory spaces, one for each 
implant, which are loaded with the appropriate counts to generate the next control word bursts to each 
side.  Within the interface, counters are loaded with those numbers and then decremented as the output 
pulses are generated.  When a counter reaches zero, the interface generates an interrupt to the DSP, 
indicating readiness for the next burst count for that implant, and then begins to count down the minimum 
inter-burst interval.  At the end of the interval, the interface will repeat this sequence if a new count has 
been loaded.  Therefore, transmissions of data bursts are triggered by the interrupt requests from the 
interface.  When a phase 2 burst is sent to the implant, the interface will send the 6th interrupt request to 
the DSP as well.  If the DSP controls the pulse rate, it just ignores this interrupt request and waits for the 
next timer interrupt to send the first command burst of the next pulse to the interface.  Otherwise, the DSP 
can send the first command burst of next pulse in response to the 6th interrupt request from the interface, 
to achieve the maximum stimulation rate possible. 

 The CI22 implant expects a value within a certain range for each burst.  For example, the sync burst 
should be between 1and 8 RF cycles, the amplitude burst between 16 and 255, and phase width bursts 
between 12 and 1,024.  After receiving a valid burst, the implant will advance to the next state to wait for 
the next valid burst.  If an invalid burst is received during any stage of a current pulse, the implant will 
abandon the current pulse and go to the initial state for a new pulse, i.e. waiting for the sync burst of the 
next pulse. 
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Comparison of CI22, CI24M and Med-El interfaces 

The implant interfaces for Nucleus CI22 and CI24M implants, and Med-El’s COMBI 40 and COMBI 40+ 
implants in our speech processor laboratory represent three different techniques of digital logic circuit.  
The way they communicate with the laboratory DSP is also different.  The DSP programs that control 
these interfaces are designed to accommodate the requirements of each of these devices.  Generally 
speaking, the more the interface can do, the simpler the DSP program.  Before introducing the DSP 
programs for each implant, it may be helpful to present an overview of these interfaces.  

The CI22 interface is built from discrete electronic components such as logic gates, registers, and 
resistors.  It communicates with the DSP through a general-purpose parallel port.  While the CI22 
interface relieves the laboratory DSP of part of the burden of generating the RF transmitter signals, the 
DSP has to keep the timing for a desired pulse rate and provide as many as six command words in 
response to six external interrupt requests to generate each pulse in the implant.  

The hardware of the CI24M interface is based on a Motorola DSP56303 EVM board with a clock rate of 
80 MHz.  Transmission of biphasic pulse definition data from the ADS56301 laboratory processor to the 
interface is accomplished through a synchronous serial connection.  Two of the three synchronous 
transmitters of the second ESSI interface available on the DSP56303 chip (TX0 and TX1) are used to 
generate the modulation signal for the RF carrier.  The modulated signals are directly fed to the implant 
transmitters.  The DSP56303 on the EVM board maintains an internal biphasic pulse data buffer for each 
side.  Whenever a buffer can be filled with new data, the EVM interrupts the ADS56301 DSP over the 
ESSI connection, requesting new pulse data for that side.  Concurrently, the EVM continuously reads the 
data buffers to combine and output the implant modulation signals for both implants on TX0 and TX1. 
Because of the DSP56303 chip on board, the CI24M interface can accomplish much more complex tasks 
than the CI22 interface.  The ADS56301 processor only needs to send two words of pulse data to the 
interface in response to the ESSI interrupt request.  

The Med-El interface exploits a Field Programmable Gate Array (FPGA) technique to provide signals for 
its C40 and C40+ implants. The gate array connects to the DSP on the ADS56301 laboratory system 
through a parallel bus.  The DSP controls the FPGA by writing to its registers.  Separate registers are used 
to control stimulation to each ear.  During startup, the DSP processor initializes the FPGA control and 
pulse data registers.  Whenever the FPGA is ready to receive data for the next biphasic pulse, it generates 
an interrupt to the DSP (a dedicated interrupt is used for each side).  In response to such an interrupt, the 
DSP writes three registers, which define electrode, current source reference, amplitude, pulse duration, 
and inter-pulse interval for a single biphasic pulse on one side.  The FPGA takes these data to generate the 
appropriate command bursts for each transmitter.   

 

Interface for percutaneous implants 

Our interface to percutaneous electrode systems is designed for direct stimulation of implanted electrodes 
in subjects with percutaneous connectors.  High pulse repetition rates (up to 10 kpulses/s/channel) and 
correspondingly short pulse widths (10-15 µs/phase) are supported.  The interface consists of 24 
independent signal DACs and current sources, which can be allocated to arbitrary combinations of 24 
electrodes in one or both ears. 

 Compared with interfaces for Nucleus and Med-El implants, our current source interface can provide 
simultaneous stimulation to any combination of up to 24 electrodes, rather than only one electrode at any 
given time.  Also, the timing of pulse phases in different electrodes are completely independent of each 
other in our interface, whereas other interfaces require that both phases of a biphasic pulse be finished 
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before a new biphasic pulse can be generated on any electrode.  These features allow for investigation of 
various overlapping stimulation strategies and pulsatile strategies which utilize two or more intracochlear 
electrodes simultaneously.  

One stimulation strategy that exploits the simultaneous stimulation feature of the interface is the use of 
conditioner pulses, which are high rate pulse trains with fixed amplitude.  Conditioner pulses are 
generated simultaneously at a constant rate on all active electrodes, while stimulation pulses that are 
modulated in amplitude with the CIS channel output envelopes are interleaved between the conditioner 
pulses and across electrodes.  The aim is to produce stochastic independence across the excited neural 
population, like that found in normal hearing but lacking in electrically stimulated hearing, at least using 
conventional stimuli. 

Another stimulation strategy that exploits the capabilities of the percutaneous interface is virtual channel 
CIS (VCIS), where two or more adjacent electrodes are stimulated simultaneously to shift the perceived 
pitch with respect to the corresponding single-electrode percepts.  Additional “virtual” channels can be 
produced in this way without increasing the number of electrodes. 

Other novel stimulation strategies made possible by the percutaneous interface are under investigation 
and will be described in subsequent reports.  Further hardware improvements are under way, involving 
the addition of a field-programmable gate array (FPGA) between the ADS56301 signal processor and the 
current source interface to enable higher stimulation rates, shorter pulse widths, a higher number of 
simultaneous stimulation channels, and/or to free additional DSP processing resources for complex 
speech processing algorithms. 

 

DSP programs for bilateral psychophysics (CI22, CI24M, Med-El) 

The DSP programs for CI22, CI24M and Med-El implants are similar in structure.  They all consist of 
three parts: the diagnosis mode, psychophysics mode, and speech-processor mode.  Within each mode, 
the program flows of the three implants are also similar.  We shall use the CI22 implant as an example to 
describe the DSP programs used with all three implants. 

The monitor PC downloads the DSP program through an ISA slot to the on-chip emulator (OnCE) port of 
the DSP.  When the CI22 DSP program starts, it enters a diagnosis mode where the operator can control 
the flow of the program or request hardware/software information from the DSP.  In the diagnosis mode, 
the user can choose to go to the debug mode, reset the DSP, check the processor identification or software 
version, download data from PC to DSP or upload data from DSP to PC.  These control commands and 
download/upload data streams are transmitted through the serial connection between the COM port of the 
PC and the serial communication interface (SCI) port of the DSP.  The DSP program keeps polling the 
SCI port for new instruction when it is idle and immediately sends back any received bytes to the monitor 
PC.  The user can choose to enter a psychophysics or speech-processor stimulation mode from the 
diagnosis mode using dedicated SCI commands.  When the user exits the psychophysics mode or the 
speech-processor mode, the DSP program returns to the diagnosis mode. 

Upon entering the psychophysical mode, the DSP program first clears both left/right background and 
pulse data tables to ensure that no random data will be sent to the implant, sets priority levels for core and 
peripheral interrupts, and then goes to a foreground loop of polling the SCI port for commands and data 
from the monitor PC.  The user can set up pulse data tables in the DSP X/Y memories and also control the 
configurations of left/right side stimulation from the monitor PC.  The user can also start or stop the 
delivery of stimulation pulses through SCI commands, as specified from the monitor PC.  To keep the 
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implant powered, background pulses with minimum amplitude are sent when no explicit stimulation is 
taking place. 

When the DSP program receives the command to start a pulse sequence, it enables and sets 
Timer0/Timer1 in the DSP according to the pulse rates for the left/right side, so that a timer interrupt 
occurs at the moment that a new pulse should be sent to either side.  The DSP sends a sync command to 
the interface in the timer interrupt service routine to initiate a sequence of IRQA/IRQB interrupt requests 
from the interface for the left/right side.  In response to the first interrupt request from the interface, the 
DSP sends the electrode command to the interface in the IRQA/IRQB interrupt service routine.  The 
interface generates a 2.5MHz radio frequency modulated burst whose width is determined by the value of 
the electrode command.  This burst is sent to the implant through a transmitter coil.  When the electrode 
burst is completed, the interface sends another interrupt request to the DSP to ask for a mode command.  
In this way, the interface sequentially obtains the remaining amplitude, phase width 1, and phase width 2 
commands from the DSP for each stimulus pulse.  

In the psychophysical mode, sequences of pulses are sent to the implant to obtain measures of the 
threshold, most comfortable loudness level (MCL), tone perception of each electrode, interaural timing 
differences (ITDs), and interaural amplitude differences (IADs) using selected bilateral pairs of 
electrodes.  Usually the patterns of stimulation pulses used in psychophysical testing have less amplitude 
and frequency variation than is present in processed speech signals.  A pulse data table is generated by the 
operator in the monitor PC which includes all the information that is needed to make each pulse for a 
given stimulation pattern.  In this pulse data table, each command of electrode, return electrode, 
amplitude, or pulse width is a 24-bit word.  In addition to the pulse information words, several command 
words are also available for use in the pulse data table, such as a repeat command to make periodic 
pulses, a synchronization command to synchronize pulses between the two sides, and an end-of-table 
command to terminate the current stimulation pattern.  Arbitrary delays can be assigned to either side to 
produce synchronized pulses.  

Synchronization between sides of bilateral implants is critical for measurements of sensitivity to 
interaural timing or amplitude differences.  The CI22 interface does not provide the function of 
synchronization.  Instead, the DSP program for the CI22 implant has to synchronize the pulses to both 
sides in the DSP timer interrupt service routine if a synchronization command is encountered in the pulse 
data table.  The synchronization of CI22 implants is complicated even more by the fact that the actual 
timing of a pulse after the pulse start command (sync burst) is a function of its electrode address, mode 
and amplitude.  To synchronize the timing of pulses to both sides, the DSP program needs to make 
adjustments to the pulse timing with respect to its electrode, mode, and amplitude variation while still 
maintaining the prescribed pulse rate. 

The interfaces for CI24M and Med-El implants are more sophisticated than the CI22 interface in that the 
interfaces are capable of providing synchronized pulse data for bilateral implants.  When the interfaces 
receive a synchronization command from one side, they will wait for the synchronization command from 
the other side before they send pulse data to the implants.  The Med-El interface can be used for COMBI 
40+ implants, COMBI 40 implants, and even a combination of these two implants.  For mixed implants, 
synchronization becomes complicated even with the synchronization function of the interface because of 
the different clock rates of the two implants.  When the interface sends pulse data to both implants at the 
same time, the faster COMBI 40+ receives the data earlier and starts a pulse earlier than the COMBI 40.   
Alignment pulses, with zero amplitude and with different durations, are sent before the actual pulse data 
to offset such time differences, resulting in simultaneous pulses at both sides. 
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DSP programs for bilateral speech processors (CI22, CI24M, Med-El) 

Unlike the psychophysics mode, in which pre-determined pulse patterns are sent to the interfaces, the 
speech-processor mode receives real-time speech samples from an analog-to-digital converter (ADC), 
processes these digitized samples in real-time according to a given signal processing strategy, like the 
continuous interleaved sampling strategy (CIS), and sends the strategy output to electrodes in a chosen 
stimulation order.  Such differences in functionality make the DSP program structure of the speech-
processor mode fundamentally different from that of the psychophysical mode.  The foreground loop of 
the DSP program keeps checking if a new speech sample has arrived from the ADC.  When a new sample 
arrives, the DSP program starts the CIS filtering and other operations. 

The ADC alternately transfers left and right samples to the DSP through an enhanced synchronous serial 
interface (ESSI 0).  Each sample includes one word containing the 20-bit sample value and one word 
identifying whether the sample is from the left or right side.  Each ADC transmission results in 2 words 
being written to DSP memory:  One word contains the 20-bit sample value and a second word identifies 
whether the sample is from the left or right side.  Availability of the left/right word for each ADC sample 
allows the DSP to detect any failure of processing to keep up with the output pulse rate and, in that event, 
shut down in an orderly way. 

The sampling rate of the ADC is 48 kHz per side, but the filters for the CIS processing are designed to run 
at 24 kHz, so the speech samples are first down-sampled from 48 kHz to 24 kHz.  For both left and right 
sides, two input samples are down-sampled to one by using anti-aliasing filters.  The 24 kHz samples go 
through a pre-emphasis equalization high-pass filter before being processed through a bank of band-pass 
filters, followed by a rectification/low-pass filter envelope extraction stage and an instantaneous maplaw 
compression stage. 

Several types of interrupts with different priority levels are used in the speech-processor mode.  ADC 
samples are sent to DSP memory by an ESSI 0 data-receive interrupt.  In order not to miss any input 
samples, this interrupt has the highest priority level of 2.  With the CI22 implant interface, Timer0/Timer1 
interrupts with a priority level of 1 occur at the pulse rate on the left/right side to start generating a new 
pulse.  IRQA/IRQB interrupts with priority level 1 are used by the interface to request pulse data from the 
DSP.  The monitor PC communicates with the DSP through a SCI data-receive interrupt of priority level 
0.  This interrupt has the lowest priority level in order not to interfere with receiving input samples and 
sending pulse data to the interface. 

After CIS filtering, the channel output envelope signals are sampled to a stimulation amplitude vector 
with each element corresponding to one distinct frequency band and channel.  Each channel is usually 
assigned to one electrode.  Rather than all active electrodes being stimulated simultaneously, they are 
usually stimulated sequentially in a specified order.  If necessary, some electrodes can even be stimulated 
more than once during each stimulation cycle.  To accomplish these assignments, a channel data table is 
used for each side.  For the CI22 implant, the channel data table for each stimulation pulse consists of a 
group of 7-word blocks ordered according to the stimulation order of the channels.  The 7 words in each 
block are electrode, mode, pointer to CIS filter output, pointer to maplaw table, pointer to channel-
specific volume factor, pulse width 1, and pulse width 2 of a channel.  

 
 
Monitor program task for single-burst psychophysics 

The monitor program runs in a Windows 98 environment, enabling us to use the Motorola library 
functions for accessing the DSP through the Motorola OnCE interface.  The program’s design is based on 
object-oriented programming techniques and it is implemented in C++ in the Borland C++ Builder 5 
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development environment.  The monitor is a menu driven graphical interface that allows the operator to 
perform a variety of tasks and procedures for controlling the DSP and any of its interfaces.  The DSP 
needs slightly different data for each of the different interface systems.  The monitor has separate classes 
for each of these different systems, but the classes’ interface to the rest of the program is the same in each 
case.  Taking advantage of object programming, all the monitor’s different task programs can be used 
with all the interfaces, so long as the implant being interfaced can support the particular mode of 
stimulation involved. 

 

The psychophysics program  

This program enables operators to send pulse trains and increase or decrease the stimulus amplitude to 
obtain threshold, comfortable levels, or other levels.  It can be used unilaterally or bilaterally but can only 
generate one pulse train at a time.  This program is generally used to acquire threshold and MCL levels 
for speech processors and/or other psychophysical tests.  It can also be used for informal pitch 
discrimination, scaling, and pitch-matching tests, allowing stimulation with any of a set of different pulse 
trains pre-defined in a table.  Up to 44 separate pulse trains can be defined, allowing for all electrodes in a 
bilateral CI24M patient to be stimulated in one session. 

Different kinds of pulse-train definitions are possible: 

• Bi-phasic, charge-balanced pulses. 

• Tri-phasic, charge-balanced pulses.  (Percutaneous systems only) 

• Sinusoidally modulated pulse trains, with the operator defining the modulation rate and depth of 
modulation in the table. 

• Pulse trains comprised of pulses with different pulse widths.  (An example is shown in Figure 11, 
where token 1 will have 3 different pulse widths.  The first pulse will have a pulse width of 30 
µs/phase, followed by a pulse with 40  µs/phase and one with 100  µs/phase and then the cycle is 
repeated.  The period is defined from the middle of one pulse -- at the change of phase -- to the 
middle of the next pulse.   The shortest pulse receives the amplitude defined in the table while the 
others receive amplitude inversely proportional to their pulse widths to maintain constant charge 
across pulses.) 

• Pulse trains with biasing pulses in the background.  (The biasing pulses or conditioners are 
defined separately and run at a different rate than the foreground pulses.  The conditioners can be 
multiple electrodes running simultaneously or sequentially at a high rate.  The amplitude of each 
conditioner electrode is specified separately, as illustrated in Figure 12.  Once conditioners are 
enabled in the psychophysics tests they run continuously in the background until the operator 
stops conditioner stimulation.)  (Percutaneous systems only) 

• Virtual channels where more than one electrode is stimulated to produce a pitch percept different 
from that obtained with any of the electrodes alone.  (Figure 13 shows a separate pop up window 
which appears to help the operator enter the VCIS channel specifications.  Up to 6 electrodes can 
be defined for monopolar stimulation with a corresponding multiplier.  In the example shown, the 
operator is trying to produce a lower pitch percept than stimulating electrode 1 alone.)  
(Percutaneous systems only) 
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Figure 11:  Psychophysics form displayed for Med-El interface 
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Figure 12:  Conditioner pop-up window used to define fast conditioner-pulse stimulation for 
psychophysics tests 

 
 

 

Figure 13:  Virtual-channel pop-up window to help the operator specify virtual channels in 
psychophysics tests 
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The operator sets up the pulse train specifications in the table, chooses the active channel with the 
corresponding radio button, and then presents the stimuli using the play, increment, or decrement buttons.   

The pulse trains defined in the psychophysics program table, human subject identification code, and 
implant type specification can be saved into a text file.  This file can be used to help generate speech 
processor spec files, to reload the information to the psychophysics form at a later time, or as a basis for 
running other psychophysics tasks, such as scaling and ranking tests, as indicated below. 
 

Other psychophysical tasks 

Other tools that run a variety of psychophysical tests in the monitor include: 

• Scaling test - can be used for pitch scaling, loudness scaling, or discrimination tests.  It uses a text 
file generated by the psychophysics test from its stimulus table to present one pulse train at a time 
in a random order.  After the subject hears a stimulus train, (s)he enters a number describing the 
sound.  According to the instructions given, this number can be anywhere between 0 and 100, 
specifying a pitch level, scaling factor, or loudness. 

• Ranking test - similar to the scaling test but with two or more bursts presented sequentially and 
the subject choosing which sound was higher in pitch, louder, or different.  The ranking test can 
be used for pitch or loudness ranking according to the instructions and set-up of the test. 

• Forward masking test - uses a four alternative forced choice paradigm to obtain a threshold using 
a masker and probe or the probe alone.  Both the probe and masker can be an unmodulated pulse 
train, a modulated pulse train, or a single pulse.  The stimuli can be delivered to a single 
monopolar electrode, or to electrodes in a variety of other configurations, including “virtual 
channel” configurations. 

 

Monitor program task for bilateral psychophysics  

 

Lateralization tests 

The lateralization program is used to measure the bilateral subject’s ability to lateralize on the basis of 
some difference between pulse trains delivered to the two sides.  The two pulse trains are specified by the 
operator in a table on the form (see Figure 14) and can be sinusoidally modulated bursts or simple pulse 
trains.  The operator must calibrate the pulse train amplitudes before starting a test, by stimulating the two 
electrodes simultaneously and adjusting their amplitudes until the subject perceives the sound at midline. 

The lateralization form is shown in Figure 14.  In this example we have a subject with bilateral Med-El 
implants.  The pulse trains are defined in the table with the following parameters: 

• Electrode and side – to run a lateralization test the sides must be different. 

• Rate – normally this is the same rate for both electrodes, but the operator has the ability to specify 
any rate possible with the implant and pulse width specified. 

• Pulse width 
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• Output amplitude specified in either µA or clinical units. 

• Modulation rate and depth of modulation can be defined for sinusoidally modulated bursts or set 
to 0 for simple pulse trains.  Modulated bursts will start at phase angle 0 unless otherwise 
specified in the phase page of the Lateralization Test Type box. 

• Burst length is the length of one pulse train burst defined in ms.  During one presentation the 
pulse train is generated 3 times with a delay between bursts in ms, as specified in the Time 
Between Burst edit box.  Figure 15 shows the 3 presentations of a 300 ms burst with a delay of 
500 ms between the bursts. 

 
 
 
 
 

 
 
Figure 14:  Lateralization test form set up for ITD test on a bilateral Med-El subject 
 

51 



 

Figure 15:  Oscilloscope traces of the full 3 bursts in an ITD test as specified in Figure 14.  The upper 
trace corresponds to the left side and the lower trace to the right. 

 
 
Three different tests can be run from the Lateralization form, they include: 

• Interaural timing difference (ITD) 

• Interaural amplitude difference (IAD) 

• Interaural modulation phase difference (IPD) 
 

Interaural timing difference tests 

The operator chooses the number of presentations in a subtest in the Randomization Length list box and 
defines the time delay between the start of the two bursts in µs.  In the example shown in Figure 14, the 4 
presentations are randomized for one subtest run with a 400 µs delay between the start of the first and 
second bursts on the two sides.  Figure 16 shows in detail the beginning of the pulse train; the same delay 
will appear in all three bursts presented.  The subject then reports whether the sound is more to the left or 
to the right.  The operator records the answer by pressing button one or two, corresponding to the first 
(usually left) or second (usually right) token definition in the table.  The total number of tests, total 
number of correct answers, percent correct, and position in the test are displayed in the Memo box and 
logged to a file if enabled on the form.  Double clicking the DeltaT box will highlight that entry box.  
Once this is done the Increment and Decrement buttons (as well as the +/- keys on the keyboard) will 
increment or decrement the time delay by the specified step on the form.  The operator can now easily 
change the time delay and continue the tests.    If the delay or any other burst specification is changed, the 
percent-correct score is reset to 0; otherwise it continues to generate a value using all the previous test 
data.   
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Figure 16:  Oscilloscope traces of beginning of trains shown in Figure 15 at higher time resolution.  The 
right side stimulation (lower trace) begins 400 µs after the left side stimulation (upper trace). 

 
 
 
Interaural amplitude difference tests 

Interaural amplitude difference tests may be run manually, with the operator changing the amplitude of 
one pulse train definition at a time.  No randomization list is used; the operator manually changes the 
levels up and down being careful always to leave one electrode’s amplitude set equal to its reference 
amplitude level.  The levels presented are compared to reference levels specified for each pulse train 
(these are set to amplitude levels that together produce a midline percept) to determine whether the 
subject’s lateralization response is correct. The operator then manually changes the amplitude of either 
electrode with the +/- buttons and plays the new stimulus.  Output amplitude difference with respect to 
reference levels is normally started around 4 clinical units and decreased until the subject cannot reliably 
report the side with an amplitude advantage.  (Separate software also is available to measure sensitivities 
to IADs using automated procedures, see e.g. QPR 1, NIH project N01-DC-8-2105, 1998.) 
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Figure 17:  IAD test window, showing the tab where operator specifies reference amplitudes 

 

 

 

Interaural modulation phase difference tests 

For phase difference tests, the operator defines 2 modulated pulse trains and balances the amplitudes to 
obtain a midline percept when both are presented simultaneously and starting at the same phase.  The 
operator defines a phase shift between the tokens in degrees.  Tok1 and Tok2 referenced in the 
lateralization phase tab (see Figure 18) do not refer to the electrodes defined in the table but to the “first 
token” and to the “second token” as defined in a randomization list (this test uses the same randomization 
lists as the time difference test).  Thus phase shifts become randomized between the two pulse train 
definitions.  The subject reports whether the sound is more to the left or to the right.  The correct answer 
should be the side corresponding to the token with the leading phase.  Figure 19 shows a close-up of the 
starting phases for the test specified in Figure 18.  Because the upper trace corresponding to the left side is 
lagging by 90 degrees in this example, the subject should hear the sound as coming more from the right.   
Once again the monitor shows the percent correct and total number of runs.  Once a randomization set is 
completed, the operator changes the phase shift if desired and continues until the subject cannot reliably 
report the side with leading phase. 
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Figure 18:  Lateralization form set-up for phase difference tests 
 

 

Figure 19:  Oscilloscope traces of the start of the pulse trains for the phase difference test specified in 
Figure 18.  The upper trace shows the left side, the lower trace the right side, and the relative phase delay 
(randomly applied to either side) is 90 degrees and has been applied to the left side here. 
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Setup and control of unilateral and bilateral speech processors in the monitor  

The speech processor loading tool in the monitor program downloads unilateral and bilateral processors in 
the same manner.  The download procedure is similar for all interfaces.  The operator opens a speech 
processor specification file, which is displayed in the bottom memo pad of the form.  If needed, the spec 
file can be modified within the memo pad and the modified version saved as a new spec file. 

The speech processor spec file is the heart of the process, as it defines the DSP speech processor program, 
parameter variables, and all patient-specific data needed for the monitor to download and run the 
processor.  Figure 20 is a sample spec file for a bilateral Med-El 8-channel processor.  The lines starting 
with an asterisk are comments and are ignored by the monitor.  Any line starting with greater than sign is 
a key word that the monitor looks for.  If a particular key word is not found a default value is used, if one 
exists, or an error message will appear to inform the operator of the missing data.  The spec files contain 
the following information: 

• Implant type identification – if bilateral, both sides need to be specified. 

• ADC input mode – mono or stereo.  If not specified, mono is assumed. 

• Load files – DSP program/filter coefficient files. 

• Channel definition - this includes electrode, threshold,  MCL value, and pulse width in µs.  (The 
data format varies among interfaces.  For a bilateral processor, channels must be specified for 
both sides.) 

• Rate of stimulation - for a bilateral processor rates must be specified for each side.   

• Rectification method – full-wave or half-wave rectification for each side.  If not specified, full-
wave is assumed. 

• Channel stimulation order – order must be defined separately for each side. 

• Maplaw input gain – if not specified, a gain of 0x1ffe is used. 

• Maplaw exponential – Either a single exponential to be used  for all channels or a separate 
exponential for each channel.  If bilateral, both sides must be defined. 

• Conditioner information – only for percutaneous systems.  Provide the conditioner specifications 
including electrodes, rate, pulse widths, and output levels. 

• Mode - for bilateral processors only.  Specifies whether the processors are to run synchronously 
or independently.  Synchronous processors can be specified further to be synchronized at the start 
of each channel order cycle (allowing synchronization of two processors with different numbers 
of channels), or to be synchronized at every pulse.   If synchronous, a delay for either side in µs 
can also be specified.   

 

Figure 20, an example of a specification file for an 8-channel bilateral speech processor, is presented on 
the following pages. 
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* CT6             6/11/2003 3:22PM 

* 

* System:         ADS56301 Lab system with Windows ADSMonitor 

* Interface:      Bilateral MED-EL XILINX interface 

* Implants:       C40P left and right 

* CIS processor:  stereo input, bilateral, synchronous 8/8 channel processor 

*                 BP filters 1-8 assigned to electrodes 1,3,5,6,7,8,9,11 left 

*                 BP filters 1-8 assigned to electrodes 1,2,4,5,6,7,8,10 right 

* EQ filter:      1st order HP at 1.2 kHz cutoff 

* BP filters:     6th order, log. spacing in range 350 - 5500 Hz left 

*                 6th order, log. spacing in range 350 - 5500 Hz right 

* Env. extractor: full-wave rectifier and 4th order LP at 200 Hz cutoff 

* Stimul. params: 1515 pps per electrode left, 

*                 1515 pps per electrode right, 

*                 staggered stimulation order 

* 

>system 

MedEl 

>implant left 

c40p 

>implant right 

c40p 

* ADC input mode 

>input 

stereo 

* DSP program and filter configuration CLD files 

>load files 

d:\dsp563\medel\ADS1XIL.cld 

d:\dsp563\Filtersets\ADSbilateral\S88N2004.cld 

*Channel definitions - eles  current range  thres  mcl  pw[us] 

>channels left 

1 2 8 92 26.7 

3 2 7 87 26.7 

5 1 16 124 26.7 

6 1 13 125 26.7 

7 2 6 69 26.7 

8 2 6 70 26.7 

9 2 7 69 26.7 

11 1 19 112 26.7 

>channels right 

1 2 7 112 26.7 

2 2 7 109 26.7 

3 2 8 100 26.7 

5 2 9 90 26.7 

6 2 7 85 26.7 

7 2 9 79 26.7 
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8 2 9 77 26.7 

10 2 10 76 26.7 

* Rate in pulses per second 

>rate left 

1515 

>rate right 

1515 

* Rectification in envelope extractor: 

* use full-wave (default) 

*>rect left 

*half 

*>rect right 

*half 

* Channel order: 

* Numbers here designate channel numbers as defined in the 

* channel definition tables, not electrode numbers 

>order left 

1 

5 

2 

6 

3 

7 

4 

8 

>order right 

1 

5 

2 

6 

3 

7 

4 

8 

* Maplaw input gain 

* Commented out, so use default value 8191 = 0x1FFF 

* >gain left 

* 9010 

* >gain right 

* 9010 

* Map exponents 

>map left 

-0.0001 

>map right 

-0.0001 

* Synchronization settings: 
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* synchronize pulses on both sides, no delay 

>mode 

sync 

 

Figure 20:  Example of a specification file for an 8-channel bilateral speech processor 

 

 

 

The monitor uses the information in the spec file to generate the appropriate channel tables, initialize 
variables, and generate the compression tables for the DSP.  There are times when the rate specified in the 
specification file cannot be attained.  This might be due to large pulse width definitions or the rate may 
have to be modified in order to synchronize both sides.  The monitor will inform the operator in a pop-up 
window of the closest rate it was able to implement.  The implemented rate, any default values used, and 
other status information is displayed in the status memo of the form. 

The monitor generates an individual compression table or maplaw for each of the channels.  It uses the 
threshold (THR) and MCL values as well as the maplaw exponential defined in the spec file to calculate a 
table with 1024 entries.    

The equation used for the compression tables is: 

11024exp −
−

=
THRMCLa                                         exp1024*aMCLk −=

knanout += exp*)(  

where "exp" is the power exponential defined in the specification file and is normally -.0001 (to produce a 
close approximation to logarithmic mapping).  1024 is the total number of entries in the table and n is the 
table index from 1 to 1024. 

Pressing the Go button sends a command to the DSP to start the speech processor.  In the transcutaneous 
systems the volume of the speech processor is controlled by software.  One or two volume control boxes 
will appear in the form depending on whether the speech processor is unilateral or bilateral.  For 
percutaneous systems, the volume is controlled by hardware in the operator’s control box.  For a speech 
processor with conditioner pulses in the background, the software controls the amplitude of the 
conditioner and a similar volume box as seen in the form in Figure 21 will appear.  The stop button will 
send a command to the DSP to stop processing in an orderly way, after which a new spec file can be 
loaded. 
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Figure 21:  Speech processor download form 
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Appendix 3: Source code listing 

MakeAMP.m 
function stratpar = MakeAMP(varargin) 
% stratpar = MakeAMP( ... ) 
% 
% Processes wave files, according to specified strategy, taking speech 
% processor parameters from specified ADSMonitor spec file and from either 
% the command line or a strategy parameter structure function argument, if 
% supplied. The resulting output files are amplitude sequence files for 
% use with the ADS56301 streaming mode. 
% 
% Processing parameters scanned from the spec file: 
%   - Implant interface system 
%   - Number of channels 
%   - Pulse rate per channel 
%   - Stimulation order of electrodes 
%   - VCIS channel information (if present) 
% 
% All remaining signal processing parameters are entered from the 
% command line or supplied via parameter structure argument (see below). 
% 
% Function calling syntax: 
% 
% MakeAMP( [strategy[, specfile[, wavfile[, side]]]] ) 
% 
%   strategy  String or cell array containing 1 (for unilateral spec files) or 2 (for bilateral 
%             spec files) of the following signal processing strategy strings: 
%             'stdCIS'      Standard CIS algorithm (Butter BP filter bank, 
%                           LP/rectifier as envelope extractor) 
%             'cpCIS'       CIS with bank of nonlinear DRNL filters and 
%                           LP/rectifier as envelope extractor) 
%             'stdihcCIS'   CIS with Meddis IHC model as envelope extractor 
%             'stdihclpCIS' CIS with Meddis IHC model/LP filter as envelope extractor 
%             'stdhpCIS'    CIS with adaptation HP stage after envelope extractor 
%             'cpihcCIS'    CIS with bank of nonlinear DRNL filters and 
%                           Meddis IHC model as envelope extractor 
%             'cpihclpCIS'  CIS with bank of nonlinear DRNL filters and 
%                           Meddis IHC model/LP filter as envelope extractor 
%             The selected signal processing strategy will be applied to both 
%             left and right side for bilateral processors. 
%             If omitted, the processing strategy is interactively enquired 
%             from the command line. For bilateral processors, 2 different 
%             strategies can be selected for left and right side in this case. 
%             Signal processing parameters are the also enquired interactively 
%             from the command line. 
% 
%   specfile  ADSMonitor speech processor spec file containing parameters 
%             like number of channels, stim. order, stim. rate. If 
%             omitted, file requester is opened. 
% 
%   wavfile   Name of Microsoft wave sound file. If omitted, file requester 
%             for selecting 1 or more wave files is opened. 
% 
%   side      Side which is HRTF processed with stereo input wave files ('left' or 'right'). 
%             If not specified and stereo file is encountered, a message box is 
%             openend to ask for side. 
% 
% MakeAMP( strategy, stratpar[,specfile[, wavfile[, side]]] ) 
% 
%   strategy  Same as above 
% 
%   stratpar  Cell array containing 1 (for unilateral spec files) or 2 (for bilateral 
%             spec files) parameter structures. A parameter structure contains some or 
%             all parameters relevant to signal processing strategy (see below for 
%             definition of parameter structure). Structure elements not defined are set 
%             to default. If argument is omitted, parameters not in [ ] relevant for the 
%             selected strategy must be interactively entered from the command line. 
% 
%     Field       Description                                        Default   Strategy 
% 
%     strategy    Strategy designation                               stdCIS    All 
%     inputGain   Input gain for scaling average impulse Leq of           1    All 
%                 input signals (as calculated with splmeter.m) to LeqRef dB 
%     LeqRef      Reference impulse Leq SPL in dB                        -9    All 
%     eqcutoff    Equalization HP cutoff frequency in Hz               1200    All 
%     eqord       Equalization HP filter order                            1    All 
%     fl/BFmin    Lowest cutoff freq fl in Hz of BP filter bank, or     350    All 
%                 lowest best frequency for DRNL filter bank (alternatively, 
%                 fl/fu can be specified for DRNL filter bank also) 
%     fu/BFmax    Highest cutoff freq fu in Hz of BP filter bank, or   5500    All 
%                 highest best frequency for DRNL filter bank 
%     gainBPin    Input gain into DRNL filter bank                        1    cpCIS, cpihcCIS, cpihclpCIS 
%     bpord       BP filter order (for acoust. sim. in 'cp..' strategies) 6    All 
%     gainBPout   BP filter output gain                                   1    All 
% 
%     DRNLParSet  'manual'    Parameter set values must be entered manually    cpCIS, cpihcCIS, cpihclpCIS 
%                             through the command line. Default values are the DRNL 
%                             regression parameters entered when option 'manual' was last 
%                             used. Same as 'avghumregH' (see below), these parameters are 
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%                             for a "normalized" DRNL filter implementation, assuming a 
%                             fractional number representation. 
%                             This is the default used when DRNLParSet is ommitted. 
%                'avghumregH' Parameter set developed during Enrique's visit in Nov 2002 
%                             with no input scaling into DRNL filter, but an output scaling 
%                             by H(BF). This "normalized" parameter set is based on 
%                             'avghumreg' and moves the DRNL IO-curve into a range ]0, 1] 
%                             suitable for an implementation using fractional numbers. 
%                             This option must be used together with DRNLgain = 'normqb' 
%                             or 'normqa'. See labbook 2, p. 24-27 for details. 
%                 'avghumreg' Uses human cochlea parameters derived for average of 
%                             6 normal hearing subjects using linear regression curve fitting, 
%                             as described in Lopez-Poveda/Meddis (2001), "A human nonlinear 
%                             cochlear filterbank". Note that unlike all other parameter sets, 
%                             this one implies a cascade of 3 (as opposed to 2) gammatone 
%                             filters in the linear DRNL path. 
%                 'yohumreg'  Uses human cochlea parameters derived for subject YO 
%                             using linear regression curve fitting, as described in 
%                             Lopez-Poveda/Meddis (2001), "A human nonlinear cochlear filterbank". 
%                 'avghum'    Uses human cochlea parameters derived for average of 6 
%                             normal hearing subjects, as described in Lopez-Poveda/Meddis 
%                             (2001), "A human nonlinear cochlear filterbank". 
%                 'yohum'     Uses human cochlea parameters derived for subject YO, 
%                             as described in Lopez-Poveda/Meddis (2001), "A human nonlinear 
%                             cochlear filterbank". 
%                 'human'     Uses parameters for human cochlea described in 
%                             Lopez-Poveda/Meddis, "A computational model for simulating 
%                             basilar-membrane nonlinearity in subjects with normal and 
%                             impaired hearing". 
%                 'animal'    Uses parameters for animal cochleae described in Meddis/O'Mard, 
%                             2001, "A computational algorithm for computing nonlinear auditory 
%                             frequency selectivity". 
%                 NOTE:       With the last 4 options, for intermediate best frequencies BF not 
%                             contained in the parameter sets, the DRNL filter parameters are 
%                             derived through linear interpolation. Values outside the range of 
%                             BF are extrapolated. 
%     DRNLgain    'normqb'    DRNL output scaling of IO functions at BF so     cpCIS, cpihcCIS, cpihclpCIS 
%                             that DRNL output is 1 for an input amplitude of 1 
%                             across channels (output of 1 corresponds to MCL output). 
%                             Requires  additional output scaling with H and LPcompgain 
%                             and can only be used with DRNLParSet 'manual' or 'avghumregH'. 
%                             For details see labbook 2, p. 24-27. 
%                             This is the default used when DRNLgain is ommitted. 
%                 'normqa'    DRNL output scaling of IO functions at BF so that THR is the same 
%                             across channels and occurs at an input amp of ~1.58e-5. Requires 
%                             additional output scaling with H and LPcompgain and can only be used 
%                             with DRNLParSet 'manual' or 'avghumregH'. 
%                 'norm'      In this implementation, the input gain g in the linear path is 
%                             absorbed into the nonlinear compression coefficients a and b, by 
%                             normalizing them to g = 1: a -> a/g, b -> b/g, g = 1. Thus, the 
%                             linear gain g is 1 and no gain multiplication is necessary. Note 
%                             that all signals through the stages of this DRNL filter are 1/g times 
%                             the magnitude of the corresponding signals in function DRNLfilter.m, 
%                             which includes the gain multiplication with g as found in 
%                             Lopez-Poveda/Meddis. 
%                             Thus, even if a is still > 1, due to the nonlinear compression 
%                             taking min(a*x, b*x^v) for each sample and b being < 1, all 
%                             signals should be < 1. 
%                 'std'       Includes gain multiplication stage in the linear DRNL path, yielding 
%                             a DRNL filter as described in Meddis/O'Mard and Lopez-Poveda/Meddis. 
%   [ DRNLbwspec  'std'       With this option, DRNL bandwidth parameters      cpCIS, cpihcCIS, cpihclpCIS 
%                             BWlin/BWnl are not interpreted as 3dB bandwidths 
%                             of the gammatone filters of 1st order found in 
%                             the DRNL filter cascades, but as "bandwidth" b, according 
%                             to the impulse-response definition of a gammatone filter: 
%                                h(t) := a*t^(ord-1) * exp(-2*pi*b*t) * cos(2*pi*fc*t + phi) 
%                                        fc  ... center frequency [Hz] 
%                                        b   ... bandwidth [Hz] 
%                                        ord ... order 
%                                        a   ... linear gain (usually a=1) 
%                                        phi ... phase (usually phi=0) 
%                             For that, function gammatone.m is called. 
%                             This is the default for DRNLbwspec. 
%                 '3dB'       With this option, DRNL bandwidth parameters BWlin/BWnl are 
%                             interpreted as 3dB bandwidths of the gammatone filters of 
%                             1st order in the DRNL cascades (gammatone3dB.m is called - 
%                             see also gtBW3dB.m for more details). 
%     DRNLiirimpl 'imp'       Uses the impulse invariant transformation        cpCIS, cpihcCIS, cpihclpCIS 
%                             from continuous-time s-domain to discrete-time z-domain for 
%                             implementing the gammatone filter as digital IIR filter. 
%                             This is the default for DRNLiirimpl. 
%                 'bil'       Uses the bilinear transformation from continuous-time s-domain 
%                             to discrete-time z-domain for implementing the gammatone filter 
%                             as digital IIR filter. 
%                 'inv'       Uses the MATLAB generalized IIR filter design function invfeqz.m 
%                             for implementing the gammatone filter as discrete-time IIR filter. 
%                             NOTE: This function may yield non-monotonous frequency responses.  ] 
% 
%     rect        Envelope extraction rectifier ('full' or 'half')    'full'   stdCIS, cpCIS 
%     lpcutoff    Envelope extraction LP cutoff frequency in Hz         200    stdCIS, stdihclpCIS, cpCIS, cpihclpCIS 
%     lpord       Envelope extraction LP filter order                     4    stdCIS, stdihclpCIS, cpCIS, cpihclpCIS 
% 
%     IHCmodel    IHC model 'A' or 'B', as described in Meddis, 1986.  'B'    stdihcCIS, stdihclpCIS, cpihcCIS, cpihclpCIS 
%     IHCParSet   'manual'      Parameter values must be entered manually      stdihcCIS, stdihclpCIS, cpihcCIS, cpihclpCIS 
%                               through the command line. Default values are the 
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%                               parameters entered when option 'manual' was last used. 
%                               This is the default when IHCParSet is ommitted. 
%                 'Meddis90MSR' Model parameters for medium spontaneous rate 
%                               auditory nerve fiber, published in JASA 87(4): 
%                               pp. 1813-1816, 1990 (only for Model B). 
%                 'Meddis90HSR' Model parameters for high spontaneous rate 
%                               auditory nerve fiber, published in JASA 87(4): 
%                               pp. 1813-1816, 1990 (only for Model B). 
%                 'Meddis87'    Model parameters described in Meddis, 1987 
%                               (only for Model B). 
%                 'Meddis86'    Model parameters described in Meddis, 1986 
%                               (for Model A or B). 
%   [ IHCinput    'norm'        Normalized input signal (in range [-1,1]). 
%                               IHCinput is predefined to 'norm' here. 
%                 'model'       Input rectification/compression function k(s(t)) 
%                               is identical to the one in Meddis 1986, 1987, 
%                               i.e. the input signal is unnormalized.            ] 
%     gainLPin    Envelope extraction LP filter input gain              200    stdihclpCIS, cpihclpCIS 
% 
%     AdaptPar    Structure containing the following adaptation parameters:    stdhpCIS 
%                 tau    Array of time constants in ms of HP filters  [1 10] 
%                 gain   Gains applied to outputs of HP filters        [5 1] 
%                 clamp  If 1, negative output of HP filter is clipped [1 0] 
%     gainMAPin   Maplaw input gain                          1, 200 *ihcCIS    All 
%     pwr         Maplaw power        -0.0001 stdCIS, 0.7 stdihc*, 1 cp*CIS    All 
%   [ thr         THR value. Default value is 0 for having                0    All 
%                 normalized output signals in range [THR,MCL] = [0,1]. 
%     mcl         MCL value. Default value is 1.                         1    All ] 
%     Nmaplaw     Number of maplaw function samples                    1024    All 
%     intp        Maplaw interpolation ('on' or 'off')                  'on'   All 
% 
%   specfile  Same as above 
% 
%   wavfile   Same as above 
% 
% Output argument: 
% 
%   stratpar  Cell array with 1 (unilateral AMP files) or 2 (bilateral AMp files) structures 
%             containing all parameters used in signal processing strategy. 
%             If appropriate, some or all of the following sub-structures are added 
%             to structure elements as defined above: 
%             DRNLRegrPar      Structure with parameter set vectors used in regression/interpolation 
%                              to get actual parameter values at the given BFs. 
%             DRNLParValues    Structure with actual parameters of all DRNL filters in bank. 
%                              Structure elements are vectors containing DRNL parameters for 
%                              channels 1:parspec.nchn. 
%             IHCParValues     Structure containing all IHC parameter values. 
% 
% Reinhold Schatzer, 2002, 2003 RTI 
 
% History: 
% 
% Version 2.4b, 06/25/03 
%    - Updated function help to reflect possiblity to specify DRNL filter bank 
%      frequency range as [BFmin, BFmax]. 
% 
% Version 2.4, 06/19/03 
%    - Added support for completely different strategies on left and right side 
%      with bilateral spec files. 
%    - Added strategy string field to strategy parameter structure (by maintaining 
%      backward compatibility with older parameter structures). 
% 
% Version 2.3, 06/17/03 
%    - Added strategy 'stdhpCIS'. 
%    - Displaying progress bar before calculation of avg SPL and inputGain now. 
%    - inputGain and LeqRef are saved to mat-file inputGain.mat in each wave file 
%      directory now and can be retrieved later. 
% 
% Version 2.2, 05/15/03 
%    - Optimized processing of AMP files for stereo noise left/right wave file 
%      pairs, where left/right channel signal in noise left wave file is identical 
%      to right/left channel signal in noise right wave file. If also the spec 
%      file AND strategy parameters are identical on both sides, the right/left 
%      side AMP sequence in the noise right AMP file will be identical to the 
%      left/right side AMP sequence in the noise left AMP file. That is, the 
%      noise right AMP file can be generated by simply switching left and right 
%      AMP sequencies as calculated for the noise left AMP file. 
% 
% Version 2.1, 04/24/03 
%    - Added possibility to scale wave file input signals to have average impulse Leq 
%      (as calculated with splmeter.m) of LeqRef dB. LeqRef is defined as constant 
%      in getStratParameters.m. 
%    - Fixed "Index exceeds matrix dimension" error in writing stratpar to log file 
%      for special case that mono or false stereo wave file is being processed as 
%      1st input with identical stratpar on left and right side. 
% 
% Version 2.0, 04/04/03 
%    - A raised cosine ramp of tramp msecs is now applied to wave file input signals 
%      to get a smooth signal on/offset. 
%    - Added support for bilateral MedEl and CI24M interfaces. 
%    - For strategies 'cp*CIS', all DRNL parameters are written to log file now, 
%      for strategies '*ihc*CIS', all IHC parameters. 
%    - Input dialog for output directory is always openend now, using same default as before. 
%    - Added progress bar. 
%    - Added max rms channel output for each wave file processed to log file. 
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%    - Cell array stratpar with strategy parameter structures is saved to mat file now. 
% 
% Version 1.2, 10/22/02 
%    - Added strategy functions stdihclpCIS and cpihclpCIS. 
%    - Fixed DOS md call to work with spaces in directory path, too. 
% 
% Version 1.1, 10/03/02 
%    - Updated function help text. 
%    - Command window output recorded in file clipping.txt, if maplaw 
%      clipping occurs during processing of input wave file. 
%    - Added length of amp words in hex to logfile.txt. 
%    - Sorting list of wav files now before processing them. 
% 
% Version 1.0, 09/25/02 
%    - The beginning 
 
% 
% Constant definitions (change values here) 
% 
versionstr = '2.4';     % version string for amplitude sequence file header 
DSPMemBufSize = hex2dec('80000');   % ADM56301 DRAM memory size in 24-bit words 
% Number of bits for amplitude values in amplitude sequence output file for NewCS. 
% Note that this number must be an integer fraction of 24, e.g. 8, 12 or 24. 
nAmpSeqBitsNewCS = 12; 
% Number of bits for amplitude values in amplitude sequence output file for MedEl/CI24M. 
% The normalized amplitude is linear in the range [0,1]. For MedEl, 7-bit amplitude ranges 
% [THR, MCL] are linear too, so that a linear transformation (MCL-THR)*normAmp + THR is fine 
% and would require only 7 bits for the normalized amplitude. 
% For the CI24M, only the nominal output current in uA is linear, but NOT the output amplitude 
% specified in CL. Actually, output in uA increases exponentially with output in CL. Therefore, 
% the normalized, linear amplitude in range [0,1] can only be transformed to a linear range 
% [THR, MCL] with THR, MCL in uA, using a linear transformation (MCL-THR)*normAmp + THR. The 
% linear transformation from normalized amplitude to [THR, MCL] cannot be done to THR, MCL in CL. 
% Since the CI24M amplitude range in uA is [10, 1750] uA, 11 bits (2^12-1 = 2047) are required 
% for the normalized amplitude to keep precision. Therefore, a linear range [0,1] using 12 bits 
% for the normalized amplitudes is used with for MedEl and CI24M implants, to be able to interchange 
% AMP files btw. these 2 implants, and also the NewCS (which uses 12-bit normalized amps, too). 
nAmpSeqBitsBilat = 12; 
 
% Parameters for raised cosine ramp applied to wave file signals for smooth signal onset/offset 
tramp    = 10;          % duration of onset/offset ramp in msecs 
 
% 
% Check input arguments 
% 
if nargin >= 2 & iscell(varargin{2}) 
   syntax2 = 1;         % function called following convention 2 (stratpar{} provided) 
   maxnargin = 5; 
else 
   syntax2 = 0; 
   maxnargin = 4; 
end 
if nargin > maxnargin 
   error('Too may input arguments.'); 
end 
if nargin < maxnargin   % side argument 
   side = 0;            % ask for side later, if stereo wave file is encountered 
elseif ~ischar(varargin{maxnargin}) 
   error('Incorrect function call. Type ''help MakeAMP'' for help.'); 
else 
   if strcmpi(side, 'right') 
      sideidx = 2;      % right side signal is in column 2 of matrix returned by wavread() 
   else 
      sideidx = 1;      % left side signal is in column 1 of matrix returned by wavread() 
   end 
end 
if nargin < maxnargin-1 % wavfile argument 
   [wavfiles, wavfilepath] = uigetfiles('*.wav', 'Open wave file(s) to process (Ctrl/Shift click for multiple files)...'); 
   if isempty(wavfiles) 
      error('Sorry, need wave file in order to continue.'); 
   end 
   wavfiles = sort(wavfiles); 
elseif ~ischar(varargin{maxnargin-1}) 
   error('Incorrect function call. Type ''help MakeAMP'' for help.'); 
else 
   wavefile = varargin{maxnargin-1}; 
   if ~exist(wavefile, 'file') 
      error(sprintf('Input wave file ''%s'' not found.', wavefile)); 
   end 
   [path, name, ext] = fileparts(wavefile);  % separate path from wave file name 
   wavfiles{1} = [name ext];     % save wave file name in cell array with 1 element (like uigetfiles does) 
   wavfilepath = [path filesep]; % add directory separtator character '\' to end of path (like uigetfiles does) 
   clear wavefile path name ext 
end 
if nargin < maxnargin-2    % specfile argument 
   [specfilename, specfilepath] = uigetfile({'*.*','All Files (*.*)'}, 'Open ADSMonitor spec file ...'); 
   if specfilename == 0 
      error('Sorry, need spec file in order to continue.'); 
   else 
      specfile = [specfilepath specfilename]; 
      clear specfilepath specfilename 
   end 
elseif ~ischar(varargin{maxnargin-2}) 
   error('Incorrect function call. Type ''help MakeAMP'' for help.'); 
else 
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   specfile = varargin{maxnargin-2}; 
   if ~exist(specfile, 'file') 
      error(sprintf('Input wave file ''%s'' not found.', specfile)); 
   end 
end 
if syntax2                 % stratpar argument with cell array of parameter structure(s) 
   stratpar = varargin{maxnargin-3};  % check later 
end 
if nargin > 0 
   if ~iscell(varargin{1}) & ~ischar(varargin{1})  % strategy argument with cell array of strategy string(s) 
      error('Incorrect function call. Type ''help MakeAMP'' for help.'); 
   else 
      if iscell(varargin{1}) 
         strategy = varargin{1}; 
      else 
         strategy{1} = varargin{1}; 
      end 
      for i = 1:length(strategy) 
         switch lower(strategy{i}) 
            case {'stdcis','cpcis','stdihccis','stdihclpcis','stdhpcis','cpihccis','cpihclpcis'} 
            otherwise 
               error('Incorrect function call. Type ''help MakeAMP'' for help.'); 
         end 
      end 
   end 
end 
DRNLParLogged = 0;   % flag to write detailed DRNL parameters to log file on their first availability 
IHCParLogged  = 0;   % flag to write detailed IHC parameters to log file on their first availability 
 
% Open diary file to record clipping warning messages. If no clipping 
% occurs, diary file will be deleted, otherwise it will be moved to output 
% directory later. 
clippingFile = [getenv('TEMP') filesep 'clipping.txt'];  % clipping.txt in PC's TEMP directory path 
diary off                  % make sure diary mode is off (i.e. that diary file is not read-only) 
if exist(clippingFile, 'file') 
   delete(clippingFile);   % make sure there is no old diary file, to which info would be appended 
end 
diary(clippingFile); 
lastwarn('');  % clear last warning msg string to recognize if we get a warning 
 
% 
% Get parameters nchn, stimulation order and rate from spec file. Also, get 
% actually implemented rate implRate, pulse onset times cyctim and header 
% texts for AMP files. 
% 
[spec, implRate, cyctim, unilatAmpHeader, bilatAmpHeader] = SpecRead(specfile); 
% Set bilatSpecFile flag 
switch lower(spec.system) 
   case 'new_currents' 
      bilatSpecFile = 0; 
%       interfacestr = 'New Current Source interface'; 
   case {'medel', 'ci24m'} 
      if strcmpi(spec.side, 'bilateral') 
         bilatSpecFile = 1; 
         % If one side is delayed, check for how much. We only accept delays up to 
         % the duration of 1 stimulation cycle on each side. 
         eps = 1e-7;                % min. relative difference for compares of delay doubles 
         cycdurus = 1e6./implRate;  % duration of stimulation cycles in microsecs 
         if spec.rdelay < 0 & abs(spec.rdelay) - cycdurus(1) > eps  % left side delayed 
            error(sprintf(['Left side delay is too big. Only delays up to the duration of 1 stimulation cycle are accepted.\n' 
... 
                           'Please reduce delay in spec file ''%s.'''], specfile)); 
         end 
         if spec.rdelay > 0 & spec.rdelay - cycdurus(2) > eps       % right side delayed 
            error(sprintf(['Right side delay is too big. Only delays up to the duration of 1 stimulation cycle are accepted.\n' 
... 
                           'Please reduce delay in spec file ''%s.'''], specfile)); 
         end 
      else 
         bilatSpecFile = 0; 
      end 
%       interfacestr = 'bilateral MedEl/CI24M interfaces'; 
end 
 
% For bilateral processors, use same strategy on right side as on left side as 
% a default, if only one strategy designation was provided as input argument. 
if bilatSpecFile & nargin > 0 & length(strategy) == 1 
   strategy{2} = strategy{1}; 
end 
 
% If strategy parameter structure(s) are not provided as argument or are emtpy, 
% get parameters from command line by calling getStratParameters() without 
% 2nd argument. Otherwise, call getStratParameters() with structure(s) as 2nd 
% argument and let the function check them and fill the rest with default values. 
if ~syntax2 
   % Get unilateral or left stratpar, respectively. Append  'ampl'/'ampr' to strategy string 
   % to prevent getStratParameters from asking for NCHN (we'll get NCHN from spec file) 
   if bilatSpecFile 
      disp('Please enter processing strategy parameters for LEFT side first:'); 
      disp(' '); 
   end 
   if nargin == 0    % true, if no strategy input argument provided 
      par = input(['Strategy - 1 = stdCIS: Regular CIS\n' ... 
                   '           2 = stdihcCIS: CIS with Meddis IHC\n' ... 
                   '           3 = stdihclpCIS: CIS with Meddis IHC and LP\n' ... 
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                   '           4 = stdhpCIS: CIS with Blake''s adaptation stage\n' ... 
                   '           5 = cpCIS: CIS with DRNL filter bank\n' ... 
                   '           6 = cpihcCIS: CIS with DRNL bank and Meddis IHC\n' ... 
                   '           7 = cpihclpCIS: CIS with DRNL bank and Meddis IHC/LP (1): ']); 
      if isempty(par) 
         strategy{1} = 'stdCIS'; 
         par = 1; 
      else 
         switch par 
            case 1 
               strategy{1} = 'stdCIS'; 
            case 2 
               strategy{1} = 'stdihcCIS'; 
            case 3 
               strategy{1} = 'stdihclpCIS'; 
            case 4 
               strategy{1} = 'stdhpCIS'; 
            case 5 
               strategy{1} = 'cpCIS'; 
            case 6 
               strategy{1} = 'cpihcCIS'; 
            case 7 
               strategy{1} = 'cpihclpCIS'; 
            otherwise 
               strategy{1} = 'stdCIS'; 
               par = 1; 
         end 
      end 
   end 
   stratpar{1} = getStratParameters(['ampl' strategy{1}]);  % left nchn is set later 
   % Get right stratpar in case of bilateral spec file 
   if bilatSpecFile 
      disp(' '); 
      disp('Please enter processing strategy parameters for RIGHT side:'); 
      disp(' '); 
      if nargin == 0    % true, if no strategy input argument provided 
         ans = input(sprintf(['Strategy - 1 = stdCIS: Regular CIS\n' ... 
                      '           2 = stdihcCIS: CIS with Meddis IHC\n' ... 
                      '           3 = stdihclpCIS: CIS with Meddis IHC and LP\n' ... 
                      '           4 = stdhpCIS: CIS with Blake''s adaptation stage\n' ... 
                      '           5 = cpCIS: CIS with DRNL filter bank\n' ... 
                      '           6 = cpihcCIS: CIS with DRNL bank and Meddis IHC\n' ... 
                      '           7 = cpihclpCIS: CIS with DRNL bank and Meddis IHC/LP (%i): '], par)); 
         if isempty(ans) | ans < 1 | ans > 7 
            ans = par;  % default same as on left side 
         end 
         switch ans 
            case 1 
               strategy{2} = 'stdCIS'; 
            case 2 
               strategy{2} = 'stdihcCIS'; 
            case 3 
               strategy{2} = 'stdihclpCIS'; 
            case 4 
               strategy{2} = 'stdhpCIS'; 
            case 5 
               strategy{2} = 'cpCIS'; 
            case 6 
               strategy{2} = 'cpihcCIS'; 
            case 7 
               strategy{2} = 'cpihclpCIS'; 
         end 
      end 
      if strcmpi(strategy{1}, strategy{2}) 
         ans = input(sprintf(['Shall parameters just entered for LEFT side also be used on RIGHT side (y/n, default: y)? ']), 
's'); 
         if isempty(ans) 
            ans = 'y'; 
         end 
         if strcmpi(ans(1), 'n') 
            stratpar{2} = getStratParameters(['ampr' strategy{2}]); 
         else 
            stratpar{2} = stratpar{1}; % right nchn is set later 
         end 
      else 
         stratpar{2} = getStratParameters(['ampr' strategy{2}]); 
      end 
   end   % if bilatSpecFile 
else 
   stratpar = varargin{2}; 
   if isstruct(stratpar{1}) 
      if ~isfield(stratpar{1}, 'strategy') % for compatibility with older parameter structures that do not contain strategy field 
         stratpar{1}.strategy = strategy{1}; 
         stratpar{1} = orderfields(stratpar{1}, [length(fieldnames(stratpar{1})) 1:length(fieldnames(stratpar{1}))-1]); 
      elseif ~strcmpi(strategy{1}, stratpar{1}.strategy) 
         error(sprintf('Parameter structure in input argument ''stratpar{1}'' does not match selected strategy ''%s''.', ... 
               strategy{1})); 
      end 
      stratpar{1} = getStratParameters(['ampl' strategy{1}], stratpar{1});  % check unilateral/left stratpar structure 
   else 
      error('Input argument stratpar{1} is not a structure. Type ''help MakeAMP'' for help'); 
   end 
   if bilatSpecFile 
      if isstruct(stratpar{2}) 
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         if ~isfield(stratpar{2}, 'strategy') % for compatibility with older parameter structures that do not contain strategy 
field 
            stratpar{2}.strategy = strategy{2}; 
            stratpar{2} = orderfields(stratpar{2}, [length(fieldnames(stratpar{2})) 1:length(fieldnames(stratpar{2}))-1]); 
         elseif ~strcmpi(strategy{2}, stratpar{2}.strategy) 
            error(sprintf('Parameter structure in input argument ''stratpar{2}'' does not match selected strategy ''%s''.', ... 
                  strategy{2})); 
         end 
         stratpar{2} = getStratParameters(['ampr' strategy{2}], stratpar{2}); % check right stratpar structure 
      else 
         error('Input argument stratpar{2} is not a structure. Type ''help MakeAMP'' for help'); 
      end 
   end 
end 
stratpar{1}.nchn = spec.nchn(1);    % set nchn element in unilateral/left strategy structure 
if bilatSpecFile 
   stratpar{2}.nchn = spec.nchn(2); % set nchn element in right strategy structure 
   % Make sure stratpar{2} has same inputGain settings as those entered so far for stratpar{1} 
   stratpar{2}.inputGain = stratpar{1}.inputGain; 
   stratpar{2}.LeqRef = stratpar{1}.LeqRef; 
end 
 
% 
% Get name of and create output directory for amplitude sequence files. 
% Default is a subdirectoy in the folder where wave files are taken from, 
% named according to the following convention: 
% <system>_<strategy><nchn>_<rate>pps                      for unilateral AMP files 
% <system>_<strategy>_<Lnchn>L<Lrate>_<Rnchn>R<Rrate>_s|a  for synch|asynch bilateral AMP files 
%     <system>       Implant interface system string ('NewCS', 'MedEl' or 'CI24M') 
%     <strategy>     Strategy string ('stdCIS', 'cpCIS', 'stdihcCIS', 'stdihclpCIS', 'cpihcCIS' or 'cpihclpCIS') 
%     <nchn>         Number of channels 
%     <rate>         Nominal pulse rate in pps (can differ for simult./multirate processors) 
% (    <pulsepattern> String describing stimulation pulse pattern ('intlvd' for regular, 
%                     cond. or vcis processors, 'simult' for simult. pulse processor. 
%                     Note that regular, conditioner and vcis processors with same nchn, 
%                     stim. order and pulse rate can all use the same, identical 
%                     amplitude sequence files. The ADSMonitor takes care of 
%                     setting up the DSP channel data tables accordingly for the 
%                     3 different types of processors).                                  ) 
outputdir = wavfilepath; 
switch lower(spec.system) 
   case 'new_currents' 
      outputdir = [outputdir 'NewCS']; 
   otherwise 
      outputdir = [outputdir spec.system]; 
end 
if bilatSpecFile 
   if strcmpi(spec.syncmode, 'no sync') 
      cSync = 'a'; 
   else 
      cSync = 's'; 
   end 
   if strcmpi(strategy{1}, strategy{2}) 
      outputdir = sprintf('%s_%s_%uL%u_%uR%u_%c', outputdir, strategy{1}, stratpar{1}.nchn, spec.rate(1), ... 
                          stratpar{2}.nchn, spec.rate(2), cSync); 
   else 
      outputdir = sprintf('%s_%s%uL%u_%s%uR%u_%c', outputdir, strategy{1}, stratpar{1}.nchn, spec.rate(1), ... 
                          strategy{2}, stratpar{2}.nchn, spec.rate(2), cSync); 
   end 
else 
   outputdir = sprintf('%s_%s%u_%upps', outputdir, strategy{1}, stratpar{1}.nchn, spec.rate); 
end 
%outputdir = sprintf('%s_%s%u_%upps_', outputdir, strategy{1}, stratpar{1}.nchn, spec.rate); 
%if length(spec.order) == length([spec.order{:}])   % true for order vector with no simult. pulses 
%   outputdir = [outputdir 'intlvd']; 
%else 
%   outputdir = [outputdir 'simult']; 
%end 
outputdir = inputdlg('Please enter full name of the output directory where AMP files will be saved:', ... 
                     'Enter output directory name...', 1, {outputdir}); 
if isempty(outputdir) 
   error('No output directory specified.'); 
end 
outputdir = outputdir{1}; 
createdir = 1; 
if exist(outputdir, 'dir') 
   % Output directory already exists - check if it is empty, and if not, get new 
   % output directory name 
   if length(eval('dir(outputdir)')) > 2 
      newoutdir = inputdlg(['This directory already exists and is not empty. Please enter a different ' ... 
                            'output directory or path to prevent files from being overwritten:'], ... 
                            'Enter different output directory...', 1, {outputdir}); 
      if isempty(newoutdir) | strcmpi(newoutdir{1}, outputdir) 
         error('No new output directory specified.'); 
      else 
         outputdir = newoutdir{1}; 
         clear newoutdir 
      end 
   else   % directory exists and is empty, so don't try to create it 
      createdir = 0; 
   end 
end 
if createdir 
   [exitcode, message] = dos(sprintf('md "%s"', outputdir)); 
   if ~isempty(message)    % exitcode is 0 even in case of error 
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      error(sprintf('Error creating output directory %s:\n%s', outputdir, message)); 
   end 
   clear exitcode message 
end 
 
% 
% Calculate input gain for all wave files in selection to scale them to an 
% average impulse Leq (as calculated with splmeter.m) of stratpar.LeqRef dB. 
% This makes sure that wave file input signals that were mixed at different SNRs - 
% which typically have different digital gains (or rms energies) - go into the 
% CIS signal processing with approximately the same signal energy level. The average 
% impulse Leq is used as signal level measure, because the impulse Leq is the most 
% "constant" measure, in particular for sentences with pauses btw. words. Also, 
% differences in Leq for wave files in quiet and in noise (at a given SNR, with 
% the same output gain applied to signals in quiet and mixed with noise) are 
% smallest for impulse Leq values. 
% 
 
% Show progress bar and disable TeX interpretation of progress bar text 
hWaitBar = waitbar(0, '', 'Name', 'Generating AMP files...'); 
set(get(findobj(hWaitBar, 'Type', 'axes'), 'Title'), 'Interpreter', 'none'); 
 
if isempty(stratpar{1}.inputGain)   % inputGain is still empty if we need to adjust avg. Leq LeqRef dB 
   % Look for inputGain*.mat file(s) in wave file directory and retrieve inputGain from there, if found 
   inputGainFiles = dir([wavfilepath 'inputGain*.mat']); 
   if length(inputGainFiles) > 0    % true if at least 1 file found 
      if length(inputGainFiles) > 1 
         aGainFiles = struct2cell(inputGainFiles); 
         [sel, ok] = listdlg('Name', 'Select input gain file...', ... 
                             'ListString', aGainFiles(1,:), ... 
                             'SelectionMode', 'single', ... 
                             'ListSize', [150 71]); 
      else 
         sel = 1; 
      end 
      % Get inputGain and corresponding LeqRef from file 
      if ~isempty(sel) 
         load([wavfilepath inputGainFiles(sel).name]); 
         if isempty(inputGain) & ~isnumeric(inputGain) & isempty(LeqRef) 
            error('Error retrieving inputGain/LeqRef from mat file in wave file directory.'); 
         end 
         if LeqRef == stratpar{1}.LeqRef  % use loaded inputGain only if LeqRef corresponds 
            stratpar{1}.inputGain = inputGain; 
            if bilatSpecFile 
               stratpar{2}.inputGain = inputGain; 
            end 
         end 
      else  % user pressed cancel in list dialog 
         warning('No input gain file selected. inputGain will be calculated from average SPL of wave file selection.'); 
      end 
   end 
   if isempty(stratpar{1}.inputGain)   % inputGain is still empty if LeqRef in mat-file did not match 
      % Calculate slow, fast and impulse Leq SPLs for all wave files in selection. 
      % Option 'mono' is used to include only mono and false stereo (left channel = 
      % right channel) wave files the calculation of the Leq SPL values. That is, 
      % for wave file with added directional noise, only wave file in quiet and with 
      % noise from the front are included in determining the average Leq level. 
      Leq = avgSPL('mono', 'off', wavfiles, wavfilepath); 
      % Scaling factor to move average input impulse Leq to LeqRef dB. Is < 1, if Leq > LeqRef 
      stratpar{1}.inputGain = 10^((stratpar{1}.LeqRef - Leq.imean)/20); 
      if bilatSpecFile 
         stratpar{2}.inputGain = stratpar{1}.inputGain;  % same Leq scaling parameters on both channels 
         stratpar{2}.LeqRef    = stratpar{1}.LeqRef;     %  (Leq processed in 'mono' mode) 
      end 
      % Save inputGain and LeqRef to mat-file 
      inputGain = stratpar{1}.inputGain; 
      LeqRef = stratpar{1}.LeqRef; 
      if exist([wavfilepath 'inputGain.mat'], 'file') 
         directory = cd; 
         cd(wavfilepath); 
         [filename, pathname] = uiputfile('*.mat', 'Enter new file name for saving inputGain (and LeqRef)...'); 
         if isequal(filename,0) | isequal(pathname,0) 
            warning('inputGain and LeqRef have not been saved to mat-file.') 
         end 
         cd(directory); 
      else 
         filename = 'inputGain.mat'; 
      end 
      if ~isequal(filename,0) 
         save([wavfilepath filename], 'inputGain', 'LeqRef'); 
      end 
   end 
   clear filename inputGain LeqRef 
end   % if isempty(stratpar{1}.inputGain) 
 
% 
% Log everthing to string logstr, which is written to log file at end 
% 
clear logstr 
% logstr = sprintf(['* Log file of amplitude sequence files generated for streaming mode\r\n' ... 
%                   '* with %s on ADS56301 Lab System.\r\n'], interfacestr); 
logstr = sprintf(['* Log file of amplitude sequence files generated for streaming mode\r\n' ... 
                  '* on ADS56301 Lab System.\r\n']); 
logstr = sprintf('%s* Files were generated by MakeAMP.m version %s.\r\n*\r\n', logstr, versionstr); 
logstr = sprintf('%s* Input directory for wave files:\r\n*   %s\r\n*\r\n', logstr, wavfilepath); 
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if side  % true if side provided as function argument 
   logstr = sprintf('%s* Signal channel processed in stereo wave files (selected via MakeAMP input argument):\r\n*   
%s\r\n*\r\n',... 
                    logstr, side); 
end 
logstr = sprintf('%s* Output directory for amp files:\r\n*   %s\r\n*\r\n', logstr, [outputdir filesep]); 
logstr = sprintf('%s* ADSMonitor speech processor spec file scanned for processor parameters:\r\n*   %s\r\n*\r\n', ... 
                 logstr, specfile); 
logstr = sprintf('%s* Implant interface specification in spec file:\r\n*   %s\r\n*\r\n', ... 
                 logstr, spec.system); 
if bilatSpecFile 
   idx = strfind(bilatAmpHeader, sprintf('*\r\n'));   % look for empty comment line 
   logstr = sprintf('%s%s', logstr, bilatAmpHeader(1:idx+2)); 
else 
   idx = strfind(unilatAmpHeader, sprintf('*\r\n'));   % look for empty comment line 
   logstr = sprintf('%s%s', logstr, unilatAmpHeader(1:idx+2)); 
end 
if bilatSpecFile 
   if strcmpi(strategy{1}, strategy{2}) 
      logstr = sprintf('%s* Signal processing strategy:\r\n*   %s left and right side\r\n', logstr, strategy{1}); 
   else 
      logstr = sprintf('%s* Signal processing strategy:\r\n*   %s left side, %s right side\r\n', logstr, strategy{1}, 
strategy{2}); 
   end 
   if isequal(stratpar{1}, stratpar{2})   % true for identical stratpar on left and right 
      logsides = 1; 
      logsidestr = {' for left and right side'}; 
   else 
      logsides = 2; 
      logsidestr = {' for left side' ' for right side'}; 
   end 
else 
   logstr = sprintf('%s* Signal processing strategy:\r\n*   %s\r\n', logstr, strategy{1}); 
   logsides = 1; 
   logsidestr = {''}; 
end 
for i = 1:logsides 
   logstr = sprintf('%s*\r\n* Strategy parameters%s:\r\n', logstr, logsidestr{i}); 
   fields = fieldnames(stratpar{i});   % cell array of structure field names 
   values = struct2cell(stratpar{i});  % cell array of field values 
   for j = 1:length(values) 
      if isnumeric(values{j}) 
%         if length(values{j}) > 1   % vectors 
%            vecstr1 = sprintf('*   %-13s: [', fields{j}); 
%            vecstr2 = sprintf(' %4g', values{j}); 
%            vecstr  = sprintf('%s%s ]\r\n', vecstr1, vecstr2); 
%            logstr  = sprintf('%s%s', logstr, vecstr); 
%            clear vecstr vecstr1 vecstr2 
%          else                      % scalars 
         logstr = sprintf('%s*   %-13s: %g\r\n', logstr, fields{j}, values{j}); 
%          end 
      elseif isstruct(values{j})    % structures 
         if strcmp(fields(j), 'AdaptPar') % do DRNL and/or IHC substructures later, when they contain valid data 
            logstr = sprintf('%s*   %-13s:\r\n', logstr, fields{j}); % line '*   AdaptPar     :' 
            subfields = fieldnames(values{j});        % cell array of substructure field names 
            subvalues = struct2cell(values{j});       % cell array of field values 
            for j = 1:length(subvalues) 
%                  if isnumeric(subvalues{j}) | islogical(subvalues{j}) 
%                     if length(subvalues{j}) > 1      % vectors 
                     vecstr1 = sprintf('*          %-6s: [', subfields{j}); 
                     vecstr2 = sprintf('%3g ', subvalues{j}); 
                     logstr  = sprintf('%s%s%s]\r\n', logstr, vecstr1, vecstr2); 
                     clear vecstr1 vecstr2 
%                     else                             % scalars 
%                        insstr = sprintf('%s*       %-6s: %g\r\n', insstr, subfields{j}, subvalues{j}); 
%                     end 
%                  else                                % strings 
%                     insstr = sprintf('%s*          %-6s: ''%s''\r\n', insstr, subfields{j}, subvalues{j}); 
%                  end 
            end 
         end 
      else                          % strings 
         logstr = sprintf('%s*   %-13s: ''%s''\r\n', logstr, fields{j}, values{j}); 
      end 
   end 
end 
nMaxWavNameLength = size(strvcat(wavfiles),2); 
logstr = sprintf('%s\r\nWave file%s-> Amp file (duration, max chnl output amp/rms, no. of pulses, no. of DSP words)\r\n', ... 
                 logstr, 32 * ones(1, max(nMaxWavNameLength - 8, 1))); 
logstr = sprintf('%s%s\r\n', logstr, 45 * ones(1, max(nMaxWavNameLength, 9) + 82));   % '-----' line 
 
disp(' '); 
 
% 
% Prepare parameters for CIS sampling of channel output signals 
% 
switch lower(spec.system) 
   case 'new_currents' 
      % Set number of bits for amplitude sequence values 
      nAmpSeqBits = nAmpSeqBitsNewCS; 
      % Duration of stimulation cycle through channels is per definition 1/rate, 
      % where rate is "pulse rate per channel": 
      % Example of extended (multirate) stimulation cycle:  1  3  1  2  1  4  (1  3 ...) 
      %                                                     <---   1/rate  ---> 
      cycdur = 1/implRate;                      % stimulation cycle duration in secs 

69 



      cyctim{1} = cyctim{1}*1e-6;               % pulse onset times must be in secs for sampling channel outputs 
      orderlen = length(spec.order);            % number of non-simultaneous pulses in stimulation order cell array 
      nAmpsPerCycle = length([spec.order{:}]);  % number of channel output amplitude values sampled in each stimulation cycle 
 
   case {'medel', 'ci24m'} 
      % Set number of bits for amplitude sequence values 
      nAmpSeqBits = nAmpSeqBitsBilat; 
      cycdur = 1./implRate;                     % duration of stimulation cycle(s) in secs 
      cyctim{1} = cyctim{1}*1e-6;               % pulse onset times must be in secs for sampling channel outputs 
      if bilatSpecFile 
         cyctim{2} = cyctim{2}*1e-6; 
         orderlen = [length(spec.order{1}) length(spec.order{2})]; % number of stimulation pulses within cycles 
      else 
         orderlen = length(spec.order{1}); 
      end 
      nAmpsPerCycle = orderlen;  % number of channel output amplitude values sampled in each stimulation cycle 
end 
% Set fwrite precision string for given pulse amp bit length and number of amps per 24-bit DSP word 
precstr = sprintf('ubit%u', nAmpSeqBits); 
nAmpsPerDSPWord = 24/nAmpSeqBits; 
 
% 
% Loop over wave files, process them according to selected strategy, and save 
% amplitude sequence files for given implant interface. 
% 
 
% Initialize boolean vector of files processed with all 0 
bProcessedWavFiles = logical(zeros(1,length(wavfiles))); 
 
for iwav = 1:length(wavfiles) 
 
   % 
   % Skip wave file, if AMP file was generated already, because of noise left/right 
   % wave file pair and identical spec file and strategy parameters on both sides. 
   % 
   if bProcessedWavFiles(iwav) 
      continue 
   end 
 
   % 
   % Open wave file and check if stereo 
   % 
   [path, wavname, ext] = fileparts(wavfiles{iwav}); 
   if ~strcmpi(ext, '.wav')   % check if we have wav file 
      warning(sprintf('File ''%s'' is not a wave file and is skipped.', wavfiles{iwav})); 
      continue 
   end 
   [signal, fs, bits] = wavread([wavfilepath wavfiles{iwav}]); 
 
   % Check if wave file signal is mono or stereo, and in the latter case also if 
   % signals on left and right are identical. Also check for possibility to make 
   % pair of noise left/right AMP files in one go. 
   makeLRAMPpair = 0;      % clear flag to make pair of noise left/right AMP files in one go 
   if size(signal,2) > 1 & ~all(signal(:,1) == signal(:,2)) 
      if bilatSpecFile     % true for stereo wave file with bilateral spec file 
         amphdrwavinput = 'Stereo'; 
         makebilatAMP = 1; % set flag to make bilateral AMP file 
         sameChnlOutputs = 0; % clear flag so that channel outputs are processed for both sides 
         % Check for the special case of identical strategy parameters AND identical spec file 
         % parameters (implRate, cyctim, order, and rdelay = 0 <=> unilatAmpHeader is not empty) 
         % on left and right side, and a wave file selection containing noise left/right wave 
         % file pairs, where typically channel signals are identical, but just switched. In 
         % this case the noise right AMP file can be simply generated by switching left and 
         % right AMP sequencies from the noise left AMP file. 
         if isequal(stratpar{1}, stratpar{2}) & ~isempty(unilatAmpHeader) & ... 
            lower(wavname(length(wavname))) == 'l' % wave files sorted -> L comes 1st 
            % Open corresponding noise right wave file, if it is in selection 
            wavnameR = [wavname(1:length(wavname)-1) 'R']; 
            wavfileR = [wavnameR ext]; 
            wavfileRbidx = strcmpi(wavfiles, wavfileR);   % returns logical index vector 
            if any(wavfileRbidx) 
               signalR = wavread([wavfilepath wavfileR]); 
               if size(signalR,2) > 1 & isequal(signal(:,1), signalR(:,2)) & isequal(signal(:,2), signalR(:,1)) 
                  makeLRAMPpair = 1;   % set flag to make pair of noise left/right AMP files in one go 
               end 
               clear signalR 
            end 
         end 
      else                 % true for stereo wave file with unilateral spec file 
         if ~side          % true if side was not provided as input argument 
            sidestr = questdlg('Wave file selection contains stereo input file(s). Which channel shall be processed?', ... 
                              'Channel selection', 'Left', 'Right', 'Left'); 
            if strcmp(sidestr,'Right') 
               sideidx = 2; 
            else 
               sideidx = 1; 
            end 
            side = 1;      % process selected side with all stereo input files 
            disp(sprintf('Selected %s side as channel to be processed with all stereo input wave files.', lower(sidestr))); 
            logstr = sprintf('%s> Selected %s side as channel to be processed with all stereo input wave files.\r\n', ... 
                             logstr, lower(sidestr)); 
         end 
         amphdrwavinput = sprintf('Stereo -> %s channel processed', sidestr); 
         signal = signal(:,sideidx); % process only data for selected side, i.e. mono input signal 
         makebilatAMP = 0; % clear flag, so that we make unilateral AMP file 
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      end 
   else                    % true for mono wave file or false stereo wave file (identical signals on left and right) 
      if size(signal,2) > 1 
         signal = signal(:,1);   % reduce stereo input to mono if signals on left and right side are identical 
         disp(sprintf(['> Stereo wave file %s has identical signals on left and right channel\n' ... 
                       '> and will be processed in mono mode.'], wavfiles{iwav})); 
         logstr = sprintf(['%s> Stereo wave file %s has identical signals on left and right channel and ' ... 
                           'will be processed in mono mode.\r\n'], logstr, wavfiles{iwav}); 
         amphdrwavinput = 'Stereo with identical signals on left and right channel -> Mono'; 
      else 
         amphdrwavinput = 'Mono'; 
      end 
      if bilatSpecFile     % true for mono (or false stereo) wave file with bilateral spec file 
         % Check for the following special cases with mono (or false stereo) wave file input 
         % in combination with a bilateral spec file: 
         % 1. Identical strategy and strategy parameters (including nchn) on both sides: 
         %    In this case, channel output signals on left and right side will be identical. 
         %    Thus, strategy function to calculate channel outputs needs to be called only once. 
         % 2. Identical strategy, strategy parameters AND identical spec file parameters 
         %    (implRate, cyctim, order, and rdelay = 0 <=> unilatAmpHeader is not empty): 
         %    In this case, channel output signals on the 2 sides AND samples derived through 
         %    CIS sampling of these channel outputs will be identical. Therefore, a unilateral 
         %    AMP file with only one pulse amplitude sequence (for the 2 sides) will be generated. 
         if isequal(stratpar{1}, stratpar{2}) 
            sameChnlOutputs = 1; % set flag to process channel outputs only once (case 1) 
            if ~isempty(unilatAmpHeader) 
               makebilatAMP = 0; % clear flag, so that we make unilateral AMP file (case 2) 
            else 
               makebilatAMP = 1; % set flag to make bilateral AMP file (case 1) 
            end 
         else 
            makebilatAMP = 1;    % set flag to make bilateral AMP file 
            sameChnlOutputs = 0; % clear flag so that channel outputs are processed for both sides 
         end 
      else                 % true for mono wave file with unilateral spec file 
         makebilatAMP = 0; % clear flag, so that we make unilateral AMP file 
      end 
   end 
 
   waitbar(sum(bProcessedWavFiles)/length(wavfiles), hWaitBar, sprintf('Processing wave file %s...', wavfiles{iwav})); 
   disp(sprintf('Processing wave file %s...', wavfiles{iwav})); 
 
   % Apply raised cosine ramp for smooth signal on/offset (multiply with scaling vector 
   % from 0 to 100% over tramp msecs at fs Hz) 
   if tramp > 0 
      ramp = sin(linspace(0,pi/2,fs*tramp/1000)) .^ 2'; 
      rampgain = ones(size(signal,1),1);     % fill in scaling factors 1 first for length of signal 
      rampgain(1:length(ramp)) = ramp;       % overwrite with startup ramp scaling factors 
      rampgain(size(signal,1) - length(ramp) + 1 : size(signal,1)) = ... 
         ramp(length(ramp):-1:1);            % overwrite with mirrored ramp noise scaling factors at end 
      signal(:,1) = rampgain .* signal(:,1); % ramp left channel signal 
      if size(signal,2) > 1 
         signal(:,2) = rampgain .* signal(:,2); % ramp right channel signal for stereo input 
      end 
   end 
 
   % Calculate length of stimulus and number of stimulus pulses 
   stimdur = size(signal,1)/fs;     % stimulus length in secs 
   nCycles = ceil(stimdur./cycdur); % number of stimulation cycles within stimulus length (rounded up) 
 
   % Check if binary amplitude sequence fits in DSP DRAM memory buffer 
   if makebilatAMP 
      % Number of 24-bit DSP words required for bilateral AMP sequence 
      nDSPWords = sum(nAmpsPerCycle.*nCycles/nAmpsPerDSPWord); 
   else 
      % Number of 24-bit DSP words required for unilateral AMP sequence 
      nDSPWords = nAmpsPerCycle(1)*nCycles(1)/nAmpsPerDSPWord; 
   end 
   if nDSPWords > DSPMemBufSize 
      ratiofit = DSPMemBufSize/nDSPWords; 
      warning(sprintf(['Wave file %s is skipped, because it is too long for ADS DRAM buffer\n'... 
                       '         and given pulse rate. Only %u%% of the signal (%u ms) fits into the DRAM memory.\n'... 
                       '         Try reducing wave signal duration or pulse rate.'], ... 
                       wavfiles{iwav}, floor(ratiofit*100), round(ratiofit*stimdur*1000))); 
      % Write to log file 
      logstr = sprintf('%s> %s skipped, because too long for DRAM memory (only %u%% or %u ms fit into DRAM)!!!\r\n', ... 
                       logstr, wavfiles{iwav}, floor(ratiofit*100), round(ratiofit*stimdur*1000)); 
      continue;   % process next wave file in for loop 
   end 
 
   % 
   % Process input signal according to processing strategy selected. 
   % Strategy functions return channel output signals, sampled at the same rate 
   % as the wave file input signal. Also, substructures in stratpar 
   % are filled with DRNL and/or IHC parameters that were used for 
   % the signal processing, where applicable. 
   % 
 
   % Process mono input or left channel with stereo input, using left (or unilateral) stratpar{1} 
   switch lower(strategy{1}) 
      case 'stdcis' 
         [chnloutputs{1}, fs, stratpar{1}] = stdCIS(signal(:,1), fs, stratpar{1}, 'off'); 
      case 'cpcis' 
         [chnloutputs{1}, fs, stratpar{1}] = cpCIS(signal(:,1), fs, stratpar{1}, 'off'); 
      case 'stdihccis' 
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         [chnloutputs{1}, fs, stratpar{1}] = stdihcCIS(signal(:,1), fs, stratpar{1}, 'off'); 
      case 'stdihclpcis' 
         [chnloutputs{1}, fs, stratpar{1}] = stdihclpCIS(signal(:,1), fs, stratpar{1}, 'off'); 
      case 'stdhpcis' 
         [chnloutputs{1}, fs, stratpar{1}] = stdhpCIS(signal(:,1), fs, stratpar{1}, 'off'); 
      case 'cpihccis' 
         [chnloutputs{1}, fs, stratpar{1}] = cpihcCIS(signal(:,1), fs, stratpar{1}, 'off'); 
      case 'cpihclpcis' 
         [chnloutputs{1}, fs, stratpar{1}] = cpihclpCIS(signal(:,1), fs, stratpar{1}, 'off'); 
   end 
   % Make sure right stratpar gets all left stratpar updates (BF, DRNL/IHCParValues), if we 
   % have bilateral spec file and identical specs were entered for stratpar{1} and stratpar{2}. 
   % The update is done here to make sure stratpar{2} is also updated in the special case that 
   % a unilateral AMP file is being generated (bilateral spec file with identical stratpar, 
   % but mono or false stereo wave file input). 
   if bilatSpecFile & sameChnlOutputs 
      stratpar{2} = stratpar{1}; 
   end 
   % Process right channel output signals for bilateral AMP file using right stratpar{2} (if necessary) 
   if makebilatAMP 
      if sameChnlOutputs   % true if right channel outputs are identical to left ones 
         chnloutputs{2} = chnloutputs{1}; 
      else 
         if size(signal,2) > 1 
            sigidx = 2;    % process right channel of stereo input signal for right side 
         else 
            sigidx = 1;    % process mono input signal for right side (which has other parameters than left side) 
         end 
         switch lower(strategy{2}) 
            case 'stdcis' 
               [chnloutputs{2}, fs, stratpar{2}] = stdCIS(signal(:,sigidx), fs, stratpar{2}, 'off'); 
            case 'cpcis' 
               [chnloutputs{2}, fs, stratpar{2}] = cpCIS(signal(:,sigidx), fs, stratpar{2}, 'off'); 
            case 'stdihccis' 
               [chnloutputs{2}, fs, stratpar{2}] = stdihcCIS(signal(:,sigidx), fs, stratpar{2}, 'off'); 
            case 'stdihclpcis' 
               [chnloutputs{2}, fs, stratpar{2}] = stdihclpCIS(signal(:,sigidx), fs, stratpar{2}, 'off'); 
            case 'stdhpcis' 
               [chnloutputs{2}, fs, stratpar{2}] = stdhpCIS(signal(:,sigidx), fs, stratpar{2}, 'off'); 
            case 'cpihccis' 
               [chnloutputs{2}, fs, stratpar{2}] = cpihcCIS(signal(:,sigidx), fs, stratpar{2}, 'off'); 
            case 'cpihclpcis' 
               [chnloutputs{2}, fs, stratpar{2}] = cpihclpCIS(signal(:,sigidx), fs, stratpar{2}, 'off'); 
         end 
      end 
   end 
   if makebilatAMP 
      disp(sprintf('   Maximum left-side channel output amplitude and rms from wave file %s:  %.3f, %.3f', ... 
                   wavfiles{iwav}, max(max(chnloutputs{1})), max(rms(chnloutputs{1})))); 
      disp(sprintf('   Maximum right-side channel output amplitude and rms from wave file %s: %.3f, %.3f', ... 
                   wavfiles{iwav}, max(max(chnloutputs{2})), max(rms(chnloutputs{2})))); 
   else 
      disp(sprintf('   Maximum channel output amplitude and rms from wave file %s: %.3f, %.3f', ... 
                   wavfiles{iwav}, max(max(chnloutputs{1})), max(rms(chnloutputs{1})))); 
   end 
 
   % Reserve column vector(s) for pulse amplitude values and intialize with 0. 
   % Length of vector(s) is an integer multiple of number of pulse amps per cycle. 
   % This guarantees a smooth transition to BKG stimulation at the end of the 
   % stimulus (amps at the stimulus end not filled in with sampled values 
   % remain at 0 and end up as THR pulses). 
   pulseamps{1} = zeros(nAmpsPerCycle(1).*nCycles(1), 1);    % unilateral or left side 
   if makebilatAMP 
      pulseamps{2} = zeros(nAmpsPerCycle(2).*nCycles(2), 1); % right side 
   end 
 
   % 
   % Resample channel output signals at channel's pulse rate to get 
   % sequence of biphasic pulse amplitudes for amplitude sequence file. 
   % Resampling is done by going pulse by pulse through the channel output 
   % waveforms, following the given stimulation order. If the pulse onset 
   % lies within the waveform sampling interval [nT, (n+1)T[, the waveform 
   % sample at time nT is taken. This simple "flooring" algorithm comes 
   % closest to what happens in a real-time speech processor implementation 
   % in the DSP (option 'floor'). 
   % Another option would be 'resample', which uses MATLAB's resample function to 
   % to resample the channout outputs at the overall stim. rate (function 
   % accepts only integer rates, i.e. a Med-El 18181.81... rate is rounded 
   % to 12*1515 = 18180 pps) - IS NOT IMPLEMENTED YET! 
   % 
 
   % Sample channel output waveforms into pulse amplitude vector. 
   % If pulse onset time t lies within the waveform sampling interval [nT, (n+1)T[, 
   % the waveform sample at time nT is taken. This simple "flooring" algorithm comes 
   % closest to what happens in a real-time speechprocessor implementation in the DSP. 
 
   % Sample left or unilateral side first 
   if makebilatAMP & spec.rdelay < 0   % check if left side is delayed 
      time = abs(spec.rdelay*1e-6);    % set start time > 0 secs on left side if left side is delayed 
   else 
      time = 0;                        % no delay on left side, so set start time to 0. 
   end 
   for i = 0:nCycles(1)-1                          % loop over stimulation cycles 
      for j = 1:orderlen(1)                        % loop over interleaved, non-simult. pulse onsets within 1 cycle 
         t = floor(fs*(time + cyctim{1}(j))) + 1;  % "time" index into matrix of channel output waveforms 
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%          t = round(fs*(time + cyctim{1}(j))) + 1;  % would be more exact than floor(), but not what DSP does 
         if t <= size(chnloutputs{1}, 1)           % check if index t is in range 
            if strcmp(spec.system, 'new_currents') % NewCS can have simultaneous pulses 
               amp = chnloutputs{1}(t, spec.order{j}); % get channel output waveform sample(s) at time t (spec.order(j) is 
                                                       %  vector of simult. channel numbers for simult. processor) 
            else 
               amp = chnloutputs{1}(t, spec.order{1}(j)); % get left/unilateral channel output sample at time t 
                                                          %  from channel j in stimulation cycle 
            end 
         else                                      % index t exceeds channel output matrix... 
            break;   % outer loop is always in last iteration here (leave last values in amp sequence that complete cycle at 0) 
         end 
         % Save sampled amplitude(s) in left/unilateral pulseamps vector 
         if strcmp(spec.system, 'new_currents')    % NewCS can have simultaneous pulses 
            pulseamps{1}(i*nAmpsPerCycle + length([spec.order{1:j-1}]) + 1 : ... 
                         i*nAmpsPerCycle + length([spec.order{1:j}])) = amp; 
         else 
            pulseamps{1}(i*nAmpsPerCycle(1) + j) = amp; 
         end 
      end 
      time = time + cycdur(1); 
   end 
 
   % Sample right side now for bilateral AMP files (not supported for NewCS interface) 
   if makebilatAMP 
      if spec.rdelay > 0            % check if right side is delayed 
         time = spec.rdelay*1e-6;   % set start time > 0 secs on right side if right side is delayed 
      else 
         time = 0;                  % no delay on right side, so set start time to 0. 
      end 
      for i = 0:nCycles(2)-1                          % loop over stimulation cycles 
         for j = 1:orderlen(2)                        % loop over interleaved, non-simult. pulse onsets within 1 cycle 
            t = floor(fs*(time + cyctim{2}(j))) + 1;  % "time" index into matrix of channel output waveforms 
%             t = round(fs*(time + cyctim{2}(j))) + 1;  % would be more exact than floor(), but not what DSP does 
            if t <= size(chnloutputs{2}, 1)           % check if index t is in range 
               amp = chnloutputs{2}(t, spec.order{2}(j)); % get right channel output sample at time t 
                                                          %  from channel j in stimulation cycle 
            else                                      % index t exceeds channel output matrix... 
               break;   % outer loop is always in last iteration here (leave last values in amp sequence that complete cycle at 
0) 
            end 
            % Save sampled amplitude in right pulseamps vector 
            pulseamps{2}(i*nAmpsPerCycle(2) + j) = amp; 
         end 
         time = time + cycdur(2); 
      end 
   end 
 
   % 
   % Write everything to amplitude sequence file 
   % 
 
   % Add more header information as well as >length, >(l|r)pulsecount and >start bin tags 
   % to amplitude header string returned by SpecRead.m. 
   % Pulsecount corresponds to length of pulseamps sequence(s), where stimulation cycles are 
   % completed at the end (i.e. nCycles * nAmpsPerCycles pulse amplitudes). 
   if ~makebilatAMP  % unilateral AMP file header 
      ampheader = [ ... 
%          sprintf('* Amplitude sequence file for streaming mode with\r\n* %s on ADS56301 Lab System.\r\n', interfacestr) ... 
         sprintf('* Amplitude sequence file for streaming mode on ADS56301 Lab System.\r\n') ... 
         sprintf('* File contains unilateral amplitude sequence and was generated\r\n* by MakeAMP.m version %s.\r\n', versionstr) 
... 
         sprintf('* Input wave file name:\r\n*   %s\r\n', [wavfilepath wavfiles{iwav}]) ... 
         sprintf('* Input wave file mode:\r\n*   %s\r\n', amphdrwavinput) ... 
         sprintf('* Signal processing strategy:\r\n*   %s\r\n', strategy{1}) ... 
         sprintf('* ADSMonitor speech processor spec file scanned for processor parameters:\r\n*   %s\r\n', specfile) ... 
         unilatAmpHeader ]; 
      % Find start and end position of 2 ampheader lines containing system info (including CR+LF) 
      [start, finish] = regexp(ampheader, '>system\s+(\w|\s)+\r\n'); 
      ampheader = [ ... 
         ampheader(1:finish) ... 
         sprintf('* Stimulus duration in msecs\r\n>length\r\n%u\r\n', round(stimdur*1000)) ... 
         sprintf('* Number of deterministic pulse amplitudes in stimulus\r\n>pulsecount\r\n%u\r\n', length(pulseamps{1})) ... 
         ampheader(finish+1:length(ampheader)) ... 
         sprintf('* Pulse amplitude sequence in binary format\r\n>start bin\r\n') ]; 
   else              % bilateral AMP file header 
      ampheader = [ ... 
%          sprintf('* Amplitude sequence file for streaming mode with\r\n* %s on ADS56301 Lab System.\r\n', interfacestr) ... 
         sprintf('* Amplitude sequence file for streaming mode on ADS56301 Lab System.\r\n') ... 
         sprintf('* File contains bilateral amplitude sequences and was generated\r\n* by MakeAMP.m version %s.\r\n', versionstr) 
... 
         sprintf('* Input wave file name:\r\n*   %s\r\n', [wavfilepath wavfiles{iwav}]) ... 
         sprintf('* Input wave file mode:\r\n*   %s\r\n', amphdrwavinput) ]; 
      if strcmpi(strategy{1}, strategy{2}) 
         ampheader = [ ... 
            ampheader ... 
            sprintf('* Signal processing strategy:\r\n*   %s left and right side\r\n', strategy{1}) ... 
            sprintf('* ADSMonitor speech processor spec file scanned for processor parameters:\r\n*   %s\r\n', specfile) ... 
            bilatAmpHeader ]; 
      else 
         ampheader = [ ... 
            ampheader ... 
            sprintf('* Signal processing strategy:\r\n*   %s left side, %s right side\r\n', strategy{1}, strategy{2}) ... 
            sprintf('* ADSMonitor speech processor spec file scanned for processor parameters:\r\n*   %s\r\n', specfile) ... 
            bilatAmpHeader ]; 
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      end 
      % Find start and end position of 2 ampheader lines containing system info (including CR+LF) 
      [start, finish] = regexp(ampheader, '>system\s+(\w|\s)+\r\n'); 
      ampheader = [ ... 
         ampheader(1:finish) ... 
         sprintf('* Stimulus duration in msecs\r\n>length\r\n%u\r\n', round(stimdur*1000)) ... 
         sprintf('* Number of deterministic pulse amplitudes on each side\r\n>lpulsecount\r\n%u\r\n', length(pulseamps{1})) ... 
         sprintf('>rpulsecount\r\n%u\r\n', length(pulseamps{2})) ... 
         ampheader(finish+1:length(ampheader)) ... 
         sprintf('* Bilateral pulse amplitude sequences in binary format\r\n>start bin\r\n') ]; 
   end 
 
   % Open amp output file in binary write mode using big-endian format (high byte first) 
   fid = fopen([outputdir filesep wavname '.amp'], 'wb', 'ieee-be'); 
   if fid == -1 
      error(sprintf('Couldn''t open output file %s.', [wavname '.amp'])); 
   end 
 
   % Write header information to amplitude sequence file first 
   fwrite(fid, ampheader); 
 
   % Round amplitude sequence(s) to unsigned integers of nAmpSeqBits bits and write to file 
   % by packing values into nAmpSeqBits-bit unsigned int format 
 
   % Write left/unilateral pulseamps to file first 
   if any(pulseamps{1} < 0) 
      warning(sprintf(['Found values < 0 in unilateral or left amplitude sequence derived from input wave file\n' ... 
                       '%s. These amplitude values were clipped to 0!'], wavfiles{iwav})); 
      pulseamps{1} = max(pulseamps{1}, 0); 
   end 
   if any(pulseamps{1} > 1) 
      warning(sprintf(['Found values > 1 in unilateral or left amplitude sequence derived from input wave file\n' ... 
                       '%s. These amplitude values were clipped to 1!'], wavfiles{iwav})); 
      pulseamps{1} = min(pulseamps{1}, 1); 
   end 
   % Write sequence of integer amps to file. If the last byte is not full, it would 
   % be filled with trailing 0-bits only when file is closed (that's true also for 
   % very large file size - tested file size of 15*10^6 bytes). 
   fwrite(fid, round(pulseamps{1} * (2^nAmpSeqBits - 1)), precstr); 
   % Fill up last 24-bit word in amplitude sequence with 0-amps. If a 0-amps is (are) added, 
   % they are NOT reflected in >pulsecount, which is still an integer multiple of nAmpsPerCycle. 
   nfill = nAmpsPerDSPWord*ceil(length(pulseamps{1})/nAmpsPerDSPWord) - length(pulseamps{1}); 
   for i = 1:nfill   % fill up 24-bit word with nfill zero pulse amps 
      fwrite(fid, 0, precstr); 
   end 
 
   % Write right pulseamps to bilateral AMP file now 
   if makebilatAMP 
      if any(pulseamps{2} < 0) 
         warning(sprintf(['Found values < 0 in right amplitude sequence derived from input wave file\n' ... 
                          '%s. These amplitude values were clipped to 0!'], wavfiles{iwav})); 
         pulseamps{2} = max(pulseamps{2}, 0); 
      end 
      if any(pulseamps{2} > 1) 
         warning(sprintf(['Found values > 1 in right amplitude sequence derived from input wave file\n' ... 
                          '%s. These amplitude values were clipped to 1!'], wavfiles{iwav})); 
         pulseamps{2} = min(pulseamps{2}, 1); 
      end 
      % Write sequence of integer amps to file. If the last byte is not full, it would 
      % be filled with trailing 0-bits only when file is closed (that's true also for 
      % very large file size - tested file size of 15*10^6 bytes). 
      fwrite(fid, round(pulseamps{2} * (2^nAmpSeqBits - 1)), precstr); 
      % Fill up last 24-bit word in amplitude sequence with 0-amps. If a 0-amps is (are) added, 
      % they are NOT reflected in >pulsecount, which is still an integer multiple of nAmpsPerCycle. 
      nfill = nAmpsPerDSPWord*ceil(length(pulseamps{2})/nAmpsPerDSPWord) - length(pulseamps{2}); 
      for i = 1:nfill   % fill up 24-bit word with nfill zero pulse amps 
         fwrite(fid, 0, precstr); 
      end 
   end 
 
   % Close amplitude sequence file and set flag that corresponding wave file was processed 
   fclose(fid); 
   bProcessedWavFiles(iwav) = 1; 
 
   % If we have noise left/right wave file pair with identical spec file and 
   % strategy parameters on left and right side, and if we just generated the 
   % noise left AMP file, make noise right AMP file now by simply switching 
   % left and right side AMP sequencies. 
   if makeLRAMPpair 
 
      % Display info (logged later, after everything's logged for noise left file) 
      waitbar(sum(bProcessedWavFiles)/length(wavfiles), hWaitBar, sprintf('Processing wave file %s...', wavfileR)); 
      disp(sprintf(['> Stereo wave file %s results in identical bilateral AMP sequence as wave file %s,\n' ... 
                    '> except that left and right AMP sequences are switched. Thus, AMP file for %s is generated by\n' ... 
                    '> simply switching left and right AMP sequences that were calculated for wave file %s.'], ... 
                    wavfileR, wavfiles{iwav}, wavfileR, wavfiles{iwav})); 
      disp(sprintf('Processing wave file %s...', wavfileR)); 
      disp(sprintf('   Maximum left-side channel output amplitude and rms from wave file %s:  %.3f, %.3f', ... 
                   wavfileR, max(max(chnloutputs{2})), max(rms(chnloutputs{2})))); 
      disp(sprintf('   Maximum right-side channel output amplitude and rms from wave file %s: %.3f, %.3f', ... 
                   wavfileR, max(max(chnloutputs{1})), max(rms(chnloutputs{1})))); 
 
      % Replace file name in ampheader 
      ampheader = strrep(ampheader, wavfiles{iwav}, wavfileR); 
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      % Open amp output file in binary write mode using big-endian format (high byte first) 
      fid = fopen([outputdir filesep wavnameR '.amp'], 'wb', 'ieee-be'); 
      if fid == -1 
         error(sprintf('Couldn''t open output file %s.', [wavnameR '.amp'])); 
      end 
 
      % Write header information to amplitude sequence file first 
      fwrite(fid, ampheader); 
 
      % Round amplitude sequence(s) to unsigned integers of nAmpSeqBits bits and write to file 
      % by packing values into nAmpSeqBits-bit unsigned int format 
 
      % Write right pulseamps of noise left file as left side AMP sequence to noise right 
      % AMP file, i.e. write them to AMP file first 
      fwrite(fid, round(pulseamps{2} * (2^nAmpSeqBits - 1)), precstr); 
      % Fill up last 24-bit word in amplitude sequence with 0-amps. If a 0-amps is (are) added, 
      % they are NOT reflected in >pulsecount, which is still an integer multiple of nAmpsPerCycle. 
      nfill = nAmpsPerDSPWord*ceil(length(pulseamps{2})/nAmpsPerDSPWord) - length(pulseamps{2}); 
      for i = 1:nfill   % fill up 24-bit word with nfill zero pulse amps 
         fwrite(fid, 0, precstr); 
      end 
      % Write left pulseamps of noise left file as right side AMP sequence to noise right AMP file 
      fwrite(fid, round(pulseamps{1} * (2^nAmpSeqBits - 1)), precstr); 
      % Fill up last 24-bit word in amplitude sequence with 0-amps. If a 0-amps is (are) added, 
      % they are NOT reflected in >pulsecount, which is still an integer multiple of nAmpsPerCycle. 
      nfill = nAmpsPerDSPWord*ceil(length(pulseamps{1})/nAmpsPerDSPWord) - length(pulseamps{1}); 
      for i = 1:nfill   % fill up 24-bit word with nfill zero pulse amps 
         fwrite(fid, 0, precstr); 
      end 
 
      % Close amplitude sequence file and set flag that corresponding wave file was processed 
      fclose(fid); 
      bProcessedWavFiles(wavfileRbidx) = 1; 
 
   end   % if makeLRAMPpair 
 
   % Insert data in vector BF and substructures DRNLRegrPar and DRNLParValues to log file for 
   % strategies cp*CIS, now that they were returned in stratpar by in the strategy function call. 
   if ~DRNLParLogged & (strcmpi(strategy{1}(1:2), 'cp') | strcmpi(strategy{2}(1:2), 'cp')) 
      DRNLParLogged = 1; 
      cpidx = find(strncmpi(strategy,'cp',2) == 1);   % vector of indices in stratpar{} where cp*CIS parameter structure(s) 
is(are) 
      % Determine number of how many cp*CIS parameter structures were logged (1, if stratpar{1} = stratpar{2}) 
      ncplog = length(strfind(logstr, '*   DRNLParSet')); 
      for i = 1:ncplog           % loop over how often BF info has to be inserted 
         BFstr1 = sprintf('*   %-13s: [', 'BF'); 
         BFstr2 = sprintf(' %d', round(stratpar{cpidx(i)}.BF)); 
         BFstr  = sprintf('%s%s ]\r\n', BFstr1, BFstr2); 
         offset = strfind(logstr, '*   DRNLParSet');  % find offset(s) of line start(s) where BF will be inserted 
         logstr = sprintf('%s%s%s', logstr(1:offset(i)-1), BFstr, logstr(offset(i) : length(logstr))); 
         clear BFstr BFstr1 BFstr2 
      end 
      for i = 1:ncplog  % loop over how often DRNLRegrPar info has to be inserted (only once, if stratpar{1} = stratpar{2}) 
         clear insstr   % make sure string that will be put together to be inserted in logstr is empty 
         insstr = sprintf('*   %-13s:\r\n', 'DRNLRegrPar'); 
         subfields = fieldnames(stratpar{cpidx(i)}.DRNLRegrPar);  % cell array of substructure field names 
         subvalues = struct2cell(stratpar{cpidx(i)}.DRNLRegrPar); % cell array of field values 
         for j = 1:length(subvalues) 
%            if isnumeric(subvalues{j}) 
%               if length(subvalues{j}) > 1      % vectors 
            vecstr1 = sprintf('*          %-6s: [', subfields{j}); 
            vecstr2 = sprintf('%8.5g ', subvalues{j}); 
            insstr  = sprintf('%s%s%s]\r\n', insstr, vecstr1, vecstr2); 
            clear vecstr1 vecstr2 
%               else                             % scalars 
%                  insstr = sprintf('%s*       %-6s: %g\r\n', insstr, subfields{j}, subvalues{j}); 
%               end 
%            else                                % strings 
%               insstr = sprintf('%s*          %-6s: ''%s''\r\n', insstr, subfields{j}, subvalues{j}); 
%            end 
         end 
         % Insert string insstr now 
         offset = strfind(logstr, '*   bpord'); % find offset(s) of line start(s) where DRNLRegrPar will be inserted 
         cpoffset = offset(cpidx(i));           % make sure '* bpord' offset is that where cp*CIS structure is logged, 
                                                %  in case both left and right structures are logged and only one is for cp*CIS 
         logstr  = sprintf('%s%s%s', logstr(1:cpoffset-1), insstr, logstr(cpoffset : length(logstr))); 
      end 
      for i = 1:ncplog  % loop over how often DRNLRegrPar info has to be inserted (only once, if stratpar{1} = stratpar{2}) 
         clear insstr   % make sure string that will be put together to be inserted in logstr is empty 
         insstr = sprintf('*   %-13s:\r\n', 'DRNLParValues'); 
         subfields = fieldnames(stratpar{cpidx(i)}.DRNLParValues);   % char array of substructure field names (filled with 
spaces) 
         subvalues = struct2cell(stratpar{cpidx(i)}.DRNLParValues);  % cell array of field values 
         for j = 1:length(subvalues) 
            vecstr1 = sprintf('*      %-10s: [', subfields{j}); 
            vecstr2 = sprintf('%8.5g ', subvalues{j}); 
            insstr  = sprintf('%s%s%s]\r\n', insstr, vecstr1, vecstr2); 
            clear vecstr1 vecstr2 
         end 
         % Insert string insstr now 
         offset = strfind(logstr, '*   bpord'); % find offset(s) of line start(s) where DRNLParValues will be inserted 
         cpoffset = offset(cpidx(i));           % make sure '* bpord' offset is that where cp*CIS structure is logged, 
                                                %  in case both left and right structures are logged and only one is for cp*CIS 
         logstr  = sprintf('%s%s%s', logstr(1:cpoffset-1), insstr, logstr(cpoffset : length(logstr))); 
      end 
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   end   % if ~DRNLParLogged & (strcmpi(strategy{1}(1:2), 'cp') | strcmpi(strategy{2}(1:2), 'cp')) 
 
   % Insert data in substructure IHCParValues to log file for strategies *ihc*CIS, 
   % now that they were returned in stratpar by in the strategy function call. 
   if ~IHCParLogged & (~isempty(strfind(lower(strategy{1}), 'ihc')) | ~isempty(strfind(lower(strategy{2}), 'ihc'))) 
      IHCParLogged = 1; 
      % Make vector of indices in stratpar{} where *ihc*CIS parameter structure(s) is(are) 
      if ~isempty(strfind(lower(strategy{1}), 'ihc')) 
         ihcidx = 1; 
      else 
         ihcidx = []; 
      end 
      if ~isempty(strfind(lower(strategy{2}), 'ihc')) 
         ihcidx = [ihcidx 2]; 
      end 
      offset = strfind(logstr, '*   IHCinput'); % find offset(s) of line(s) IHCinput to insert IHCParValues in following line 
      for i = 1:length(offset)   % loop over how often IHCParValues info has to be inserted (only once, if stratpar{1} = 
stratpar{2}) 
         nextlines = strfind(logstr(offset(i):length(logstr)), '*   '); % find offset of lines after IHCinput 
         offset(i) = offset(i) + nextlines(2) - 1; % offset of 1st line after line IHCinput 
         clear insstr            % make sure string that will be put together to be inserted in logstr is empty 
         insstr = sprintf('*   %-13s:\r\n', 'IHCParValues'); 
         subfields = fieldnames(stratpar{ihcidx(i)}.IHCParValues);  % char array of substructure field names (filled with spaces) 
         subvalues = struct2cell(stratpar{ihcidx(i)}.IHCParValues); % cell array of field values 
         for j = 1:length(subvalues) 
            if ischar(subvalues{j}) 
               insstr  = sprintf('%s*      %-10s: ''%s''\r\n', insstr, subfields{j}, subvalues{j}); 
            else 
               insstr  = sprintf('%s*      %-10s: %.14g\r\n', insstr, subfields{j}, subvalues{j}); 
            end 
         end 
         % Insert string insstr now 
         logstr  = sprintf('%s%s%s', logstr(1:offset(i)-1), insstr, logstr(offset(i) : length(logstr))); 
      end 
   end   % if ~IHCParLogged & (strfind(lower(strategy{1}), 'ihc') | strfind(lower(strategy{2}), 'ihc')) 
 
   % Add info about processed wave file and uni/bilateral amplitude sequence to log string 
   if ~makebilatAMP 
      logstr = sprintf('%s%s%s -> %s%s (%u ms, %.3f/%.3f, %u = 0x%X pulses, %u = 0x%X DSP words)\r\n', ... 
                       logstr, wavfiles{iwav}, 32 * ones(1, max(nMaxWavNameLength, 9) - length(wavfiles{iwav})), ... 
                       [wavname '.amp'], 32 * ones(1, max(nMaxWavNameLength, 8) - length(wavfiles{iwav})), ... 
                       round(stimdur*1000), max(max(chnloutputs{1})), max(rms(chnloutputs{1})), length(pulseamps{1}), ... 
                       length(pulseamps{1}), ceil(length(pulseamps{1})/2), ceil(length(pulseamps{1})/2)); 
   else 
      % Left-side amplitude sequence stats 
      logstr = sprintf('%s%s%s -> %s%s (%u ms, %.3f/%.3f, %u = 0x%X pulses, %u = 0x%X DSP words left)\r\n', ... 
                       logstr, wavfiles{iwav}, 32 * ones(1, max(nMaxWavNameLength, 9) - length(wavfiles{iwav})), ... 
                       [wavname '.amp'], 32 * ones(1, max(nMaxWavNameLength, 8) - length(wavfiles{iwav})), ... 
                       round(stimdur*1000), max(max(chnloutputs{1})), max(rms(chnloutputs{1})), length(pulseamps{1}), ... 
                       length(pulseamps{1}), ceil(length(pulseamps{1})/2), ceil(length(pulseamps{1})/2)); 
      % Right-side amplitude sequence stats 
      logstr = sprintf('%s%s (%u ms, %.3f/%.3f, %u = 0x%X pulses, %u = 0x%X DSP words right)\r\n', ... 
                       logstr, 32 * ones(1, max(nMaxWavNameLength, 9) + 4 + max(nMaxWavNameLength, 8)), ... 
                       round(stimdur*1000), max(max(chnloutputs{2})), max(rms(chnloutputs{2})), length(pulseamps{2}), ... 
                       length(pulseamps{2}), ceil(length(pulseamps{2})/2), ceil(length(pulseamps{2})/2)); 
   end 
   % If we have noise left/right wave file pair with identical spec file and 
   % strategy parameters on left and right side, and thus just generated the 
   % AMP file pairs, log info for noise right AMP file now. 
   if makeLRAMPpair 
      logstr = sprintf(['%s> Stereo wave file %s results in identical bilateral AMP sequence as wave file %s,\r\n' ... 
                        '> except that left and right AMP sequences are switched. Thus, AMP file for %s is generated by\r\n' ... 
                        '> simply switching left and right AMP sequences that were calculated for wave file %s.\r\n'], ... 
                        logstr, wavfileR, wavfiles{iwav}, wavfileR, wavfiles{iwav}); 
      % Left-side amplitude sequence stats 
      logstr = sprintf('%s%s%s -> %s%s (%u ms, %.3f/%.3f, %u = 0x%X pulses, %u = 0x%X DSP words right)\r\n', ... 
                       logstr, wavfileR, 32 * ones(1, max(nMaxWavNameLength, 9) - length(wavfileR)), ... 
                       [wavnameR '.amp'], 32 * ones(1, max(nMaxWavNameLength, 8) - length(wavfileR)), ... 
                       round(stimdur*1000), max(max(chnloutputs{2})), max(rms(chnloutputs{2})), length(pulseamps{2}), ... 
                       length(pulseamps{2}), ceil(length(pulseamps{2})/2), ceil(length(pulseamps{2})/2)); 
      % Right-side amplitude sequence stats 
      logstr = sprintf('%s%s (%u ms, %.3f/%.3f, %u = 0x%X pulses, %u = 0x%X DSP words left)\r\n', ... 
                       logstr, 32 * ones(1, max(nMaxWavNameLength, 9) + 4 + max(nMaxWavNameLength, 8)), ... 
                       round(stimdur*1000), max(max(chnloutputs{1})), max(rms(chnloutputs{1})), length(pulseamps{1}), ... 
                       length(pulseamps{1}), ceil(length(pulseamps{1})/2), ceil(length(pulseamps{1})/2)); 
      % Clear flag to make LR AMP file pair 
      makeLRAMPpair = 0; 
   end 
 
   clear chnloutputs pulseamps 
 
   waitbar(sum(bProcessedWavFiles)/length(wavfiles)); % update progress bar 
 
end   % for iwav = 1:length(wavfiles) 
 
% 
% Put out progress info and close log file 
% 
disp( '-------------------------------------------------------------------------------------' ); 
disp( sprintf( ' Processing completed on %s', datestr(now) ) ); 
disp( '-------------------------------------------------------------------------------------' ); 
logstr = sprintf(['%s\r\n-------------------------------------------------------------------------------------------\r\n' ... 
                  ' Processing completed on %s\r\n' ... 
                  '-------------------------------------------------------------------------------------------\r\n'], ... 
                  logstr, datestr(now)); 
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% 
% Open log file and write out logstr 
% 
logid = fopen([outputdir filesep 'logfile.txt'], 'w+'); 
if logid == -1 
   error(sprintf('Error opening log file %s.', [outputdir filesep 'logfile.txt'])); 
end 
fwrite(fid, logstr); 
fclose(logid); 
 
% 
% Close diary and move it to output directory 
% 
diary off 
msgstr = lastwarn; 
if ~isempty(msgstr)  % if true, we got warning during processing, so don't delete diary file 
   movefile(clippingFile, [outputdir filesep]); 
else 
   delete(clippingFile); 
end 
 
% 
% Save stratpar in output directory and close progress bar window 
% 
save([outputdir filesep 'stratpar'], 'stratpar'); 
close(hWaitBar); 
 
% Avoid display of return value ans if MakeAMP is called without output argument and trailing ';' 
if nargout < 1 
   clear stratpar 
end 

 

77 


	CONTENTS
	I.  Introduction
	II.  Recent enhancements of the speech laboratory system
	Streaming mode
	Introduction
	Design specification
	DSP program
	DSP memory organization and pulse data transfer to implant i
	Channel data table format for parallel current source interf
	Stimulus execution

	User interface
	Downloading patient specific information
	Consonant tests
	Sentence tests

	Processing of digitized speech recordings in MATLAB
	MATLAB program MakeAMP.m
	Specification of AMP file format
	Streaming of AMP files in the monitor program with a speech 
	Signal processing strategy implementations in MATLAB



	III.  References
	IV. Plans for the next quarter
	V.  Acknowledgments
	Appendix 1:  Summary of reporting activity for this quarter
	Publications
	Invited Presentations
	Chaired Sessions

	Appendix 2:  Bilateral interfaces and control programs
	Design Objectives
	Organization of the laboratory
	Interface to Nucleus CI22 Implants
	Comparison of CI22, CI24M and Med-El interfaces
	Interface for percutaneous implants

	DSP programs for bilateral psychophysics (CI22, CI24M, Med-E
	DSP programs for bilateral speech processors (CI22, CI24M, M
	Monitor program task for single-burst psychophysics
	The psychophysics program
	Other psychophysical tasks

	Monitor program task for bilateral psychophysics
	Lateralization tests
	Interaural timing difference tests
	Interaural amplitude difference tests
	Interaural modulation phase difference tests

	Setup and control of unilateral and bilateral speech process

	Appendix 3: Source code listing
	MakeAMP.m


