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Example

Accurate simulation using 
traditional techniques is 
often infeasible

Chip Design, for example, 
involves both fine-scale 
features and strong electric
field coupling

Efficient solution techniques
are essential

Kapur/Long



Computational Science Issues
Many of basic methods still in use were developed before WWII.

People still believe that “the purpose of computing is insight, not 
numbers” – Hamming (1971). This will not help materials design.

As machines have gotten faster and faster, the asymptotic 
complexity of methods has become more and more critical

The development of modern scientific computing tools is an 
engineering discipline ⇒ tables, approximations, tolerances, etc., 
as well as an underlying theory. This requires judgment.



Current Environment
No standards (functionality or performance)
No support mechanism for low level tools 
(fuel injectors, starters, batteries, etc.)



Current Environment

Standard tools for dense linear algebra (LAPACK,MATLAB®)
Standard tools for small systems of ordinary differential eqs.
Standard tools for small-scale optimization

Slowly being extended (for example) to potential problems:
Laplace equation     (electrostatics)
Helmholtz equation (acoustics)
Maxwell equations   (electrodynamics)
Heat equation           (diffusion)
Navier-Stokes equations (low to moderate Reynolds number flow)
Linear elasticity        (MEMS, structural mechanics)



Requirements for modules

Standardize problem specification
Standardize testing
State working range of technology (computational 
complexity, problem size, available precision, etc.)
Allow for multiple approaches

Intermediate level tools are essential for progress 
(above the dense linear algebra level, below the full 
application level)



Simple vs. Complex Tools

Fallacy of “simpler and more general”  approaches
In what sense should tools be flexible?
Little attention to hierarchy of components



Integral equation methods
(Potential theory)

Ideally suited to many complex problems
Require fast algorithms to be practical 

Integral transforms:     F(x) = ∫ G(x,y) h(y) dy

Integral equations:     h(x) =  F(x) + ∫ G(x,y) F(y) dy

Inverse problems:     h(x) =  F(x) + ∫ G(x,F(y)) dy



Kernels of Classical Physics

Diffusion, probability:                             G(r,t) = exp( - r2 / t)

Gravitation, electrostatics:                     G(r) = 1/ r

Acoustics, Electrodynamics:                  G(r) =  exp( i k r) / r

Acoustics, Electrodynamics:                  G(r,t) =  δ(r – t)/r

Black box, fast algorithms now available for all



Electrostatics
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Direct evaluation requires O(N M) work



Fast Multipole Method
(G- and Rokhlin, 1987)
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Error in multipole expansion decays like (R/D)
Setting p = log(є) yields precision є



FMM
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1. Evaluate multipole coefficients M (n = 0,…,p)
2. Evaluate multipole expansion at each target Qm

(m = 1,…,M)

Operation count: O(N+M)  rather than O(NM) !
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FMM

For more general distributions of sources and 
targets, the FMM couples previous analysis with 
a divide & conquer strategy.

Clustering at various spatial length scales
Interactions with distant clusters computed by means of 
multipole expansions
Interactions with nearby particles computed directly
Fully adaptive algorithm
Performance essentially independent of particle distribution



Fast Multipole Methods

N Lev p TFMM TDIR Error
500,000 10 10 164 141100 10- 4

1,000,000 10 10 282 568100 10- 4

500,000 9 19 323 141100 10- 7

1,000,000 10 19 714 568100 10- 7

Electrostatic/Electrodynamic/Elastic Interactions with N particles:

Dislocation dynamics (e.g. Wang and LeSar, 1995, …)
Recent parallel implementation (Ying, Biros, Zorin, Harper (2003)   

≈1B pts / min



Some Commercial Applications…

ANSOFT   TPATM

Automated Signal Integrity Analysis for 3D Packages

CORNING Intellisense IntellisuiteTM

MEMS Design

Gaussian98, Gaussian 03,
Q-Chem



Nebula (Kapur/Long)
Chip level capacitance 
calculation
The scale of the geometric 
description is 
overwhelming
Billions of geometric 
features



EM scattering: Wideband FMM

15,120 points, 10th order accuracy, 50λ / ship
5 minutes (1GHz Pentium 3 Laptop)



Linear Elasticity

– Helsing and Jonsson (2002)
– 10,000 cracks – 500,000 boundary points 

10 digit accuracy – 4 hours SUN Ultra 10



Linear Elasticity

– Yoshida, Nishimura, Kobayashi (J Structural Eng, 2001)
– 12 x 12 x 12 penny shaped cracks
– 1.3M surface triangles, 2hrs., DEC alpha 500MHz



Random composites

– Cheng and G- (1997)



Complex Materials

G- and Helsing (1996)



Complex Materials

Helsing (1997)



Time dependent Problems
Diffusion, crystal growth
Acoustics, Maxwell eqs

S(x) = ∫ ∫ G(x-y,t-s) h(y,s) dy ds                 N2M2 work
0

t
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Some Fast Time-Domain Algorithms

Heat equation:  G-- & Strain (1991), G- & Lin 
(1998):   O(NM) work

Wave Equation: Ergin, Shanker, Aygun, 
Michielssen (1997,…):   O(NM  log2N)  work

Nonreflecting Boundary Conditions : 
Wave Equation: Alpert,  G– Hagstrom (1998)
Schrodinger Equation: G- & Jiang (2002)



Summary
Fast algorithms for potential problems are maturing as a 
technology. Directly applicable to dislocation dynamics and MD.
Current research is extending this capability to variable coefficient 
PDEs in several dimensions. 
Can be used as preconditioners for more complex physics 
modeling
Hierarchical numerical library design is critical for verification and 
supportability

Materials design is both quantum mechanical and an inverse 
problem. Fast algorithms can play a supporting role in 
accelerating simulation methods, but breakthroughs are likely to
come only from improved physical/phenomenological modeling


