

Generation IV Systems and Materials

presented at

Advanced Computational Materials Science: Application to Fusion and Generation-IV Fission Reactors

by

Todd Allen University of Wisconsin 31 March 2004

College of Engineering

University of Wisconsin-Madison

- Generation IV Initiative
- Generation IV Concepts and Operating Environment
- Significant Material R&D Challenges

31 March 2004

Established in January 2000 to develop: systems that are deployable by 2030 or earlier and offer significant advances towards:

- Sustainability
- Economics
- Safety and reliability
- Proliferation resistance and physical protection

31 March 2004

A Long-Term U.S. Strategy for Nuclear Energy

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

U.S. Generation IV Implementation

Gen IV Top Priority VHTR + H₂→→ NGNP SCWR

Next-Generation Nuclear Plant

- Collaborative with international community
- Collaborative with industry, especially utilities
- Demonstrate H₂ and direct-cycle electricity production
- Result in a commercially viable plant design

Gen IV Second Priority

U.S. Fast Reactor Closely coordinated with Advanced Fuel Cycle Initiative

Generation IV Next Generation Nuclear Plant (NGNP)

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

- Generation IV NGNP: Advanced VHTR designed for production of hydrogen and electricity
 - High outlet temperature (1000°C) allows use of thermochemical and temperature-assisted electrolysis methods for producing hydrogen
 - High electrical conversion efficiency
 - Attractive safety aspects

- Modular construction
 - 600 MW_{Th}
 - At 50% efficiency, could produce up to 200 MT of H_2 a day, the equivalent of 200,000 gallons gasoline per day.
- Objective: build NGNP demo plant by 2017

Very-High-Temperature Reactor (VHTR)

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

GTMHR and Pebble Bed options being considered

- The temperature of many reactor internals is expected to range from 600-1000°C
- Current Code Case materials will be inadequate for usage for selected key components in the NGNP
- The most promising mature metallic alloys for these applications are Alloy 617, 800H, Hastelloy X or variants
- Another option is to perform the required R&D, fabricate and perform licensing reviews on C-C or SiC-SiC (or similar materials) for key core components

Summary of ASME Code Section III, Subsection NH

Material	Maximum Allowable Metal Temperature °C (300,000 hours max)
304 SS	816
316 SS	816
Alloy 800H	760
2.25Cr-1Mo	593
Alloy 718	566

Reactor Pressure Vessel

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

•Reference design temperatures for the Reactor Pressure Vessel (RPV) and Cross Vessel (CV) are about 650°C (normal conditions) and 770°C under abnormal conditions (up to 50 hours)

•*Current estimates for irradiation exposure for the RPV is about 0.0075dpa (>0.1 MeV) for 60 years*

31 March 2004

Gas-cooled Fast Reactor

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

31 March 2004

Gas-Cooled Fast Reactor (GFR)

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

Reactor Parameters	Reference Value
Reactor power	600 MWth
Net plant efficiency (direct cycle	42%
helium)	
Coolant inlet/outlet temperature and	490°C/850°C at 7 MPa,
pressure/Helium flow rate	312.4 kg/s
Core structures temperatures (normal	500-1200°C
operations)	
Transient temperature in accidental	1600-1800°C
conditions	
Out-of-core structures	440-850°C, low irradiation
	exposure, mechanical
	loading $<$ 50-60 MPa and
	high useful life (400000 h)
Average power density	50-100 MWth/m ³
Reference fuel compound	UPuC/SiC (70/30%) with
	about 20% Pu content
Volume fraction, Fuel/Gas/SiC	50/40/10%
Conversion ratio	Self-sufficient (BR~0)
Burnup, Damage (initial values)	5% FIMA; 80 dpa

Very High Temperatures
Need to minimize moderators (carbon)
Maximum dose ~40 dpa

GFR-Ceramics, first selection

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

T melt < 2000°, redhibitory neutronic absorption, too low thermal conductivity

	Matériau	T fusion		Matériau	T fusion
		T décomp (°C)			T décomp (°C)
carbures	SiC (^α + ^β)	2972	oxydes	Al ₂ O ₃	2050
	ZrC	3400		MgO	2832
	TiC	3100		MgAl ₂ O ₄	2135
	VC	2810		ZrO ₂	2370
	TaC	3800		Y ₂ O ₃	2427
	WC	2900		-SiO ₂	1470
	HfC	3800			
nitrures	ZrN	2952	siliciures	MoSi ₂	2050

nitrures	ZrN	2952	S
	TiN	2950	
	AIN	2227	
	TaN	3087	
	<mark>−Si₃N4</mark>	1827	

ciures	MoSi ₂	2050
	TaSi ₂	2200
	WSi ₂	2165
	TiSi ₂	1540
	ZrSi ₂	1520
	HfSi ₂	1750
	VSi ₂	1660
	CrSi ₂	1550

Supercritical-Water-Cooled Reactor (SCWR)

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

Benefits

- •Efficiency near 45% with excellent economics
- •*Thermal* or fast neutron spectrum

Parameter	Value
Thermal power	3575 MWth
Net electric	1600 MWe
power	
Net thermal	44.8%
efficiency	
Operating	25 MPa
pressure	
Reactor inlet	280 C
temperature	
Reactor outlet	500 C
temperature	
Reactor flow	1843 kg/s
rate	

Supercritical-Water-Cooled Reactor (SCWR)

SCWR Components

•**Temperature Range-**280-500°C Normal, Up to 840°C Transient (<30 sec)

- •Pressure-25MPa
- •Irradiation Dose-15 dpa removable components, 67 dpa core barrel^{*}

Through-thickness properties in the much thicker vessel sections required for the SCWR

Supercritical-Water-Cooled Reactor (SCWR) Materials Choices

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

S. Kasahara et al., GENES4/ANP2003, Sep. 15-19, 2003, Kyoto, JAPAN, Paper 1132

Lead-Cooled Fast Reactor (LFR)

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

	Pb-Bi coolant, (nearer-term)	Pb coolant, (far-term)
Outlet Temperature (°C)	~≤550	750–800
Pressure (Atmospheres)	1	1
Rating (MWe)	50-150	150-400
Fuel	Metal Alloy or Nitride	Nitride
Cladding	Ferritic Steel	Ceramic, coatings, or
		refractory alloys
Power conversion	Rankine or supercritical	Rankine or supercritical
	carbon dioxide Brayton cycle	carbon dioxide Brayton cycle
Other energy products		Hydrogen, Potable Water

LFR Conceptual Development Path

DEPARTMENT O F **Engineering Phys** 1 C S College of Engineering University of Wisconsin-Madison

LFR High Temp Design Option -Key Reactor Environments

D E P A R T M E N T O F Engineering Physics College of Engineering University of Wisconsin-Madison

- Reactor Vessel and Structures
 - Molten lead @ 650°C to 850°C
 - High stress from mass of coolant
 - Moderate to high fluence (shielded by lead)~10 dpa on vessel

Heat Exchangers for Process Heat

- Molten lead @ 650°C to 850°C
- Low Pressurized He
- Low to moderate fluence

Reactor Core and Cladding

- Molten lead @ 650°C to 850°C
- Highest fluence~200 dpa
- Fuel/clad interactions with evolving stress situation (fission gas and swelling)
- Material Choices to Avoid Need for Exquisite Coolant Chemistry Control
 - Very low O_2 partial pressure

Reactor Type	Inlet Temp (°C)	Outlet Temp (°C)	Maximum Dose (dpa)	Pressure (Mpa)	Coolant
PWR	290	320	100	16	Water
SCWR	290	500	15-67	25	Water
VHTR	600	1000	1-10	7	Helium
SFR*	370	550	200	0.1	Sodium
LFR*	600	800	200	0.1	Lead
GFR*	450	850	80	7	Helium/
					SC CO ₂

Material Classes Proposed for Gen IV Systems

DEPARTMENT OF Engineering Physics

College of Engineering

University of Wisconsin-Madison

	STRUCTURAL MATERIALS						
System	FERRITIC- Martensitic Stainless steel Alloys	AUSTENITIC STAINLESS STEEL ALLOYS	OXIDE DISPERSION Strengthened Steels	NI-BASED ALLOYS	GRAPHITE	REFRACTORY ALLOYS	CERAMICS
GFR	Р	Р	Р	Р		Р	Р
LFR	Р	Р	S			s	S
MSR				Р	Р	S	S
SFR	Р	Р	Р				
SCWR-Thermal Spectrum	Ρ	Р	S	s			
SCWR-Fast Spectrum	Ρ	Ρ	S	S			
VHTR	S			Р	Р	S	Р

P=Primary, S=Secondary

Generation IV Materials Challenges

- Higher Temperature/Larger Temperature Ranges
 - Examples
 - *VHTR coolant outlet temperature near 1000°C*
 - GFR transient temps to 1600-1800°C, gradient across core of ~400°C
 - *LFR to 800°C steady-state outlet*
 - Issues
 - Creep
 - Fatigue
 - Toughness
 - Corrosion/SCC
- Must drive modeling toward a predictive capability of materials properties in complex alloys across a wide temperature range

Generation IV Materials Challenges

- Examples
 - LFR, SFR Cladding
 - SCWR Core Barrel
 - GFR Matrix
- Issues
 - Swelling
 - Creep, stress relaxation
- Must drive modeling toward a predictive capability of materials properties in complex alloys to large radiation dose

31 March 2004

O F

University of Wisconsin-Madiso

DEPARTMENT

Engineering Phy

College of Engineering

Generation IV Materials Challenges

- Unique Chemical Environments
 - Examples
 - *Pb and Pb-Bi Eutectic*
 - Supercritical Water
 - High temperature oxidation in gas-cooled systems
 - Molten Salts
 - Issues
 - Corrosion
 - SCC/IASCC
 - Liquid Metal Embrittlement
- Must drive modeling toward a predictive capability of chemical interactions in complex alloys to large radiation dose

EPARTMENT Engineering Phy College of Engineering University of Wisconsin

The co-evolution of all components of the microstructure, and their roles in the macroscopic response in terms of swelling, anisotropic growth, irradiation creep, and radiation-induced phase transformations should be studied within the of the science of complex systems.

Summary

Six concepts have been identified with the potential to meet the Generation IV Goals

Concepts operate in more challenging environments than current LWRs and significant material development challenges must be met for any of the Generation IV systems to be viable.

Experimental programs cannot cover the breadth of materials and irradiation conditions for the proposed Gen IV reactor designs Modeling and microstructural analysis can provide the basis for a material selection that is performed based on an incomplete experimental database and that requires considerable judgment to carry out the necessary interpolation and extrapolation

