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V pV p

Useful in a variety of near−surface applications
Particularly powerful in a monitoring context
Multiple modalities (seismic,, radar, etc)
Often ill−posed (depends on descritization)
Typically low−resolution (T1, T2 reg.)
Suffers from aperture−related artifacts

Variable ray coverage (see map)
Compact velocity anomalies
Crosswell geometry (40 S x 40 R)
Straight ray calculation of 

Useful in a variety of near−surface applications
Particularly powerful in a monitoring context
Multiple modalities (seismic,, radar, etc)
Often ill−posed (depends on descritization)
Typically low−resolution (T1, T2 reg.)
Suffers from aperture−related artifacts

Can we use minimum support regularization
to improve image quality?

1 2 3 4 5
We

mest

Iteration

X Loc. (m)

De
pt

h 
(m

)

True Model

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

1st Order

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

2nd Order

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

Minimum
Support

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

Exponential
Weighting

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

De
pt

h 
(m

)

True Model

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

1st Order

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

2nd Order

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

Minimum
Support

0 1 2

0

1

2

3

4

5

6

7

X Loc. (m)

Exponential
Weighting

0 1 2

0

1

2

3

4

5

6

7

Traveltime tomography is ...

A Test Example
G

Noise−free test case

Solutions within the IRLS process

Starting m is a 2nd ord. Tikh. solution
W is Exponential Weighting matrix

W remains low in anomalous regions
Model sharpens with each iteration

Bottom row, estimated model
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Quartz used used for grain dielectric (k=4.5)
Fluids, TCE (k=3.35), Water (k= 80.1) 
Porosity linked to permeability
Transform from TCE saturation to dielectric using sequential BHS

Variable ray coverage (see map)
Compact velocity anomalies
Crosswell geometry (40 S x 40 R)
Straight ray calculation of 

similar results
Both types of compactness constraints generate
due to limited angular aperture
Compactness operators reduce smearing

Comparison of 1st, 2nd order Tikh. vs.

property match (in comparison to T1, T2)
Both types of compactness improve quantitative

back−projected noise in the tomogram 
Compactness operators suppress 

1 2 3 4 5

can be "focused" as well
However : high amplitude artifacts

We always fit within tolerance
What’s the right model norm?
Should we look at change in m?
Sometimes "too much" focusing
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Traveltime tomography is ...

A Test Example
G

Solutions within the IRLS process

H13C−1344

Heuristic Exponential Weighting vs.
Traditional Minimum Support

A Realistic Synthetic
4. Imaging DNAPL Infiltration :

Key : A realistic fluid distribution, −> a good test

Advantage of compactness : match anomalies induced by flow

Permeability model from gaussian simulation
TCE infiltrating from a point source on the surface (5 m^3)
Subsurface initially water saturated

Building  A Radar Synthetic

Example #2, 2−Phase flow modeling from Kueper & Gerhardt 95

Ray CoverageModel (m3 − m2)
Slowness 

Differenced

System solved using LSQR

Tomographic Inversions : Details

Synthetic Survey : Details

minimum support
exponential weighting

Two Tests

For The Noisy Case

Imaging results are similar
Main difference in practice : choice of reg. parameters

Application of Minimum Support Constraints To Seismic Traveltime Tomography
Jonathan Ajo−Franklin and Burke Minsley, Earth Resources Laboratory, Massachusetts Institute of Technology

Dielectric Model for 3 Time Steps

Iteration

>5 non−linear iterations required for convg.
Search over multiple sigmas/betas
Factor of 5 to 10 more expensive

Convergence − 

We

Noise−Free Test

3% Gaussian Noise

Noise−Free Test True Model
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Note : main features lenticular pools
Straight ray synthetics (traveltimes)
3% Gaussian noise added
Crosswell Geometry, 40 sources x 40 receivers

Reconstruction on 45 x 95 sample rectilinear mesh

Lambda values for compactness from T1, T2 solutions
Inversion performed on differenced data (d3 − d2)

Exponential : 3 params (sigma + 2 x lambda)
lambdas (H,L) can be robustly chosen from Tikh. tests
Sigma controls zone of influence near m = 0

Minimum Support : 2 params (beta + lambda)
beta is hard to select, changes effect of lambda
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Both compactness ops out−perform standard
Tikhonov solutions, regardless of damping

Better suppression of artifacts
Closer match of pool properties

Observations

2

3% Gaussian Noise
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(Used to generate
synthetic datasets)

True Velocity Model

Model
True Tikhonov Compactness

Constraints

Sensitivity Map

Note

Top row, diag(W) as a function of # its
(hot colors − high damping levels)

Bottom row, estimated model

How does this work in practice?

model sharpens with each iteration
artifacts suppressed (not needed for fit)
How do we determine convergence?

W remains low in anomalous regions

Data fit is almost exactly equivalent ...
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Weak Damping
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Noise−free test case

Starting m is a 2nd ord. Tikh. solution

W is Exponential Weighting matrix

m is a 25 x 75 mesh of rectilinear cells
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