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ABSTRACT

Tomographic imaging problems are typically ill-posed and of-
ten require the use of regularization techniques to guarantee a sta-
ble solution. Minimization of a weighted norm of model length
is one commonly used secondary constraint. Tikhonov methods
exploit low-order differential operators to select for solutions
that are small, flat, or smooth in one or more dimensions. This
class of regularizing functionals may not always be appropriate,
particularly in cases where the anomaly being imaged is generat-
ed by a nonsmooth spatial process. Time-lapse imaging of flow-
induced velocity anomalies is one such case; flow features are of-
ten characterized by spatial compactness or connectivity. By per-
forming inversions on differenced arrival time data, the proper-
ties of the time-lapse feature can be directly constrained. We de-
velop a differential traveltime tomography algorithm which
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elects for compact solutions, i.e., models with a minimum area
f support, through application of model-space iteratively re-
eighted least squares. Our technique is an adaptation of mini-
um support regularization methods previously explored within

he potential theory community. We compare our inversion algo-
ithm to the results obtained by traditional Tikhonov regulariza-
ion for two simple synthetic models: one including several sharp
ocalized anomalies and a second with smoother features. We use
more complicated synthetic test case based on multiphase flow

esults to illustrate the efficacy of compactness constraints for
ontaminant infiltration imaging. We apply the algorithm to a
O2-sequestration-monitoring data set acquired at the Frio pilot

ite. We observe that in cases where the assumption of a localized
nomaly is correct, the addition of compactness constraints im-
roves image quality by reducing tomographic artifacts and spa-
ial smearing of target features.
INTRODUCTION

The inversion of geophysical data, and tomographic imaging
roblems in particular, often are both nonunique and ill-posed.
hen we are confronted with a multitude of valid answers, all sensi-

ive to small variations in noise, secondary constraints can be added
o both stabilize the inversion and to select solutions that fulfill an in-
ependent notion of what a good model should look like. Regular-
zation techniques accomplish both goals by minimizing a weighted
eminorm of solution length, in addition to fitting the data.

One such approach, originally developed by Tikhonov and Ars-
nin �1977�, minimizes one or more low-order �zeroth, first, or sec-
nd� spatial derivatives of the model to help choose small, flat, or
mooth solutions. Despite the fact that neither flatness nor smooth-
ess are intrinsic properties of the earth, Tikhonov methods have en-
oyed remarkable success and are routinely applied to a wide range
f parameter estimation problems �Aster et al., 2005�.
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As discussed by Constable et al. �1987�, the purpose of regulariza-
ion in the inverse problem is to introduce stability while recovering

odels that do not contain more complicated features than can be
ustified by the data. Smoothness can be a desirable quality because
t suppresses unnecessary model complexity, and because it often
rovides a reasonable representation of earth structures. Also, the
pplication of a linear regularization operator on the model using an
2 norm results in a quadratic term in the objective function that is
inimized by solving a linear system of equations.
We advocate the selection of regularization operators which in-

orporate some notion of the physics responsible for observed prop-
rty variations, e.g., subsurface flow, thermal diffusion, or fracture
ropagation. Because of the complexity of these processes, heuristic
onstraints which select for models with related characteristics
ight be appropriate. Because flow processes tend to localize in

ones of high permeability, regularization operators favoring com-
act or connected anomalies seem reasonable. The infiltration of
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R68 Ajo-Franklin et al.
ense nonaqueous contaminants �Kueper et al., 1993� and the trans-
ort of saline tracers through permeable fractures �Day-Lewis et al.,
003� are two examples of compact flow features suitable for geo-
hysical characterization.

The dynamic nature of flow processes makes them amenable to
ime-lapse methods that seek to delineate temporal changes in sub-
urface properties. Unfortunately, standard time-lapse imaging tech-
iques are incapable of directly constraining model perturbations;
he most common approach is to perform independent inversion for
ata sets acquired at multiple times followed by model domain sub-
raction to yield a differenced image or a set of differenced attributes
Greaves and Fulp, 1987�.

In this case, constraints can only be applied to each independent
ata set but not to the differences among them. This distinction is
rucial because the spatial characteristics of the dynamic process
e.g., flow� may have different geometric properties than that of
ackground structures. Another approach is to subtract data sets ac-
uired at multiple times directly in the data domain followed by in-
ersion of the differenced data to recover model perturbations. This
pproach, which we refer to as differential or difference inversion,
llows spatial constraints to be directly applied to changes in model
roperties.

Various regularization schemes have been introduced that provide
nversion stability using constraints that promote simple, though not
ecessarily smooth, features in the model without introducing un-
ecessary complexity. Some examples of alternate regularization
ethods include minimizing the low-order spatial derivatives of the
odel using an l1 norm �Claerbout and Muir, 1979�, minimizing the

rea occupied by model parameters �Last and Kubik, 1983� or their
patial derivatives �Portniaguine and Zhdanov, 1999�, and minimiz-
ng the moment of inertia of an object �Guillen and Menichetti,
984�. In all these cases, the objective function is no longer quadrat-
c, and solution of the nonlinear inverse problem requires the use of

odel-space iteratively reweighted least squares �IRLS�. IRLS
echniques are more commonly used in the data domain to solve in-
erse problems in the lp norm for 1� p�2 �Scales et al., 1988; Bube
nd Langan, 1997� but can be easily adapted to model-space re-
eighting �Farquharson and Oldenburg, 1998�.
One application of model regularization that minimizes the l1

orm of the model gradient is often referred to as total variations.
his approach has been used for image processing where reconstruc-

ion of sharp edges is required �Rudin et al., 1992; Acar and Vogel,
994�, as well as for geophysical inverse problems where the target
f interest is not inherently smooth �Yu and Dougherty, 2000;
ertete-Aguirre et al., 2002�. The l1 measure of the model gradients
oes not penalize sharp boundaries as strongly as the l2 measure,
herefore allowing for models that are more blocky.

Compact body inversion, as developed by �Last and Kubik,
983�, is one approach used in the potential field community for se-
ecting compact models while still satisfying data misfit constraints.
n this case, compactness implies a solution which minimizes the
rea of an anomaly in 2D or the volume of an anomaly in 3D.

This concept is further developed by Portniaguine and Zhdanov
1999� to select models where the spatial gradients of an anomaly,
ather than the anomaly itself, are compact. They use the term mini-
um gradient support �MGS� to describe this regularization meth-

d. Youzwishen and Sacchi �2006� use this approach to reconstruct
locky acoustic velocity models from synthetic seismic data sets.
oth compactness and MGS allow for sharper model variations than

raditional smoothness constraints do, although MGS tends to pro-
uce more blocky images because of the penalty on model gradients.
Given a variety of regularization techniques that provide inver-

ion stability without introducing unnecessary solution complexity,
ne should choose a method that is consistent with the expected
hysical properties of the model. This choice is equivalent to intro-
ucing prior knowledge into the inverse problem. Time-lapse seis-
ic traveltime tomography, a technique with demonstrated utility in
monitoring context �e.g., Lazaratos and Marion, 1997�, is one of
any geophysical inverse problems which might benefit from the

ncorporation of compactness constraints.As mentioned previously,
eophysical perturbations induced by flow processes often yield fea-
ures with spatially localized properties suggesting that compactness
s an appropriate metric with which to evaluate solutions.

In this document, we will pose the differential traveltime tomog-
aphy problem in the formalism of Last and Kubik �1983� and dem-
nstrate the resulting algorithm on a simple synthetic test problem,
n a more realistic problem based on contaminant imaging, and on a
rosswell-seismic-monitoring data set acquired at the Frio pilot se-
uestration site.

rinciples and theory

We initially consider the general linear inverse problem where a
inear operator G maps a model m to a data set d, i.e., Gm = d. Tra-
itional Tikhonov regularization selects solutions that minimize an
bjective function, ��m�, combining a measure of data misfit and a
eighted seminorm of model length in the l2 sense,

��m� = �Gm − d�2
2 + �2�Wm�2

2, �1�

here W is typically either I or a low-order differential operator and
, referred to as the regularization parameter, allows the weight giv-
n to solution length to vary. When W is a first spatial derivative op-
rator, bias is given towards flat models, while use of a Laplacian or
plit second derivative operator favors smooth models. Minimizing
quation 1 results in an augmented least-squares problem of the
orm,

� G

�W
�m = �d

0
� . �2�

Whereas Tikhonov schemes have enjoyed successful application
n many fields, as mentioned previously, they rely on a somewhat ar-
itrary choice of prior structure to stabilize the inversion problem.
ast and Kubik �1983� developed an alternative regularization strat-
gy which selects for models with causative bodies of minimum area
n addition to fitting the data.Akey component of such a strategy is a
onsistent definition of area in the context of imaged anomalies.

Last and Kubik �1983� introduced an area metric, A�m�, for n ele-
ents of constant size that can be written as,

A�m� = ae lim
�→0

�
i = 1

n
mi

2

mi
2 + �

, �3�

here ae is the area of a single element, mi is the ith model parameter,
nd � is a factor to remove the singularity in cases where mi→0. In
he limit of small �, the interior of the right-hand side of equation 3
valuates to 0 for cases where mi = 0 and 1 for nonzero values.
quation 3 can thus be viewed as a sum of binary values, each indi-
ating whether or not a particular model element is on or off. Adopt-
ng the definition of area used in equation 3 leads to a joint objective
unction of the form,
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Compactness and traveltime tomography R69
��m� = �d + �2�m = �Gm − d�2
2 + �2�

i = 1

n
mi

2

mi
2 + �2 , �4�

here � integrates both model element area and a secondary regular-
zation parameter controlling the relative weighting of the two
erms.

Figure 1a shows the general form of the model regularization term
�m� in equation 4 for several values of � compared with the tradi-
ional case where W = I. The compactness term is clearly nonqua-
ratic, though large values of � �relative to mi� introduce a similar
amping effect on the model parameters. For the case when ��mi,
he compactness constraint becomes apparent; the objective term as-
mptotes to one, regardless of the magnitude of mi. Hence, the penal-
y on model parameters does not depend on their relative magnitude,
nly on whether or not they lie above or below the threshold of �.
Minimization of this objective function yields a least-squares

roblem of the same form as equation 1 with the exception that the
eighting matrix is now dependent on a model estimate,

� G

�Wc�m j − 1� �m j = �d

0
� , �5�

here Wc�m� is a new diagonal matrix incorporating compactness
nd j is an index over sequential model estimates as discussed below.

c can be written in explicit indicial form as,

Wcii
= �mi

2 + �2�−1/2. �6�

Because Wc is now dependent on m, the resulting problem is non-
inear, and we must resort to iterative techniques, in this case a modi-
ed form of the iteratively reweighted least-squares �IRLS� method.
tarting with a prior estimate of the model, equation 5 is solved for a
ew m followed by an update to the regularization operator. This
olve/update sequence is repeated until a convergence criterion is
et.
For the initial model estimate, we choose a smooth solution gener-

ted using standard regularization methods: Experimentation sug-
ests that the compactness result is relatively insensitive to the exact
hoice of starting model, assuming that highly localized features are
ot already present.

Figure 1b shows the linearized form of the model regularization
erm �m, which now depends on the value of a prior model estimate

i
j − 1. First, note that even for small values of � �relative to mi

j − 1� the
bjective function does not asymptote to a constant value as in Fig-
re 1a. In this case, where ��mi

j − 1, it is the ratio mi
j/mi

j − 1 that is pe-
alized quadratically. When ��mi

j − 1, the objective term simplifies
o the traditional damping case and � serves to bound the maximum
alue of any element on the diagonal of Wc; as mi→0, Wii→1/�.
At any given step, Wc should be viewed as a spatially variable

amping matrix with high values in regions where the prior model
stimate has a small absolute magnitude. This promotes compact-
ess and reduces unnecessary model complexity by damping out rel-
tively small amplitude features within the constraints provided by
he data misfit term.

isfit levels, „�,�… selection, and convergence tests

The algorithm as outlined above neglects two issues: the selection
f the regularization parameters ��,�� and when to terminate the
RLS process. As can be seen in the definition of the least-squares
roblem �equation 5�, both � and � affect the strength of the model
 o
eighting operator in an interconnected fashion. Parameter �
ounds the maximum value in Wc, whereas � scales all of the ele-
ents. Small values of � correspond to the limiting case of interest in

quation 3, but introduce instability as mi→0. Larger values of �
rovide a more stable result at the cost of additional smoothness in
he model. Parameter � behaves like a more traditional regulariza-
ion parameter but scales a spatially variable damping matrix which
hanges at each IRLS iteration.

The solution generated by an optimal choice of parameters should
oth fit the data within some tolerance and exhibit structural features
onsistent with prior information. However, care must be taken not
o overfit the data; if measurement error exists, a perfect fit will map
oise into model structure. Morozov’s discrepancy principle �Moro-
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ov, 1962� suggests that the best regularization level is the one that
ields the simplest model that still satisfies the data to within a bound
etermined by data variance, �Gm − d�2 ��.
Unfortunately, a priori estimates of data variance are not available

or most geophysical measurements, making direct application of
he discrepancy principle difficult. Also, most problems involving

ultiple regularization components have a range of parameter pairs
hich produce solutions with both the correct data residual and

quivalent model norms. Selection from within this class of simple,
qually feasible solutions must rely on prior knowledge, which is
ypically a judgment made by the geophysicist.

The L-curve method �Hansen, 1992; Hansen and O’Leary, 1993�
nd the generalized cross validation �GCV� method �Wahba, 1977,
990� are two approaches for selecting regularization parameters
hat do not require noise estimates. The L-curve method involves
alculation of a trade-off curve between data residual and model
eminorm for a selection of regularization parameter values; the val-
e corresponding to the point of maximum curvature on this curve is
onsidered optimal. The GCV method selects a regularization pa-
ameter that maximizes solution robustness by evaluating the stabil-
ty of model estimates when selected data points are eliminated. This
echnique requires finding the parameter value associated with the

inimum of this GCV cost function.
Although both methods have been successfully applied to geo-

hysical inverse problems, they are sometimes unstable in cases
here correlated noise is present. More crucially, they suffer from

he same problem as the discrepancy method when considering mul-
iple regularization parameters, e.g., 2D GCV surfaces often exhibit

inima resembling troughs, thus necessitating the addition of prior
nowledge to select an appropriate parameter pair.

Previous investigations of compactness constraints have used a
ombination of the above techniques, experimentation, and interpre-
ive skills to determine the correct ��,�� pairs. The original work of
ast and Kubik �1983� suggests that � should have a value close to
achine precision �	10−11 in their case� with � determined using the

iscrepancy principle and an assumed, although somewhat arbitrary,
oise level.

Zhdanov and Tolstaya �2004� advocate the use of a procedure
imilar to the L-curve technique, where � is chosen to be the point of
aximum curvature on the trade-off curve relating � to A�m�. We

ave observed that setting � to values near machine precision results
n severe instability and that the approach of Zhdanov and Tolstaya
2004� often yields trade-off curves with poorly defined corners. We
herefore fix � at a reasonable value determined by experience, typi-
ally between 10−4 and 10−7. This reduces the regularization parame-
er search problem to a single dimension. We then select an appropri-
te � value by using the L-curve approach, adding manual guidance
f the curve is not well-behaved. The � and � are kept fixed through
ater IRLS iterations although dynamic readjustment of � might be a
uperior approach �Farquharson and Oldenburg, 2004�.

In cases where compactness results are compared to other inver-
ion methods, we first determine an optimal � for the Tikhonov prob-
em and then use the resulting data misfit value to determine � for the
ompactness inversion. This approach guarantees that the inversion
esults for both methods are equiprobable from a data fit perspective.

Asecond concern is the formulation of a stopping criterion for the
RLS procedure. In our implementation, we use a bound ��� on the
hange in the area metric between nonlinear iterations to terminate
he procedure, �A�m j� − A�m j−1����. In some cases, the process is
alted manually if the solution matches a prior conception of struc-
ure.Alternative stopping criterion formulated in terms of data misfit
eduction are problematic because we find that after the first iteration
he l2 data residuals are almost constant as a function of IRLS itera-
ion.

ompactness and traveltime tomography

Our discussion of compactness so far has been general with no as-
umptions regarding the operation which G performs, the model pa-
ametrization represented by m, or the type of data stored as d. We
ill now apply our formulation to the concrete example of differen-

ial traveltime tomography. In the case of differential inversion, we
onsider two data sets, d1 and d2, acquired at different times, but with
he same geometry.

Instead of inverting the two data sets independently, we invert �d,
he difference between measurements made at time 1 and time 2, for
m, the temporal perturbation in model parameters. The starting

ystem becomes G�m = �d, and compactness constraints are ap-
lied directly to the model perturbations. When applying this ap-
roach to traveltime tomography, we choose �m to be a 2D rectilin-
ar mesh of constant slowness cells, whereas �d is a vector of differ-
nced first-arrival traveltimes and G is the raypath matrix.

At each iterative step in the inversion, a coupled system of the
orm shown in equation 5 is solved using the LSQR algorithm �Paige
nd Saunders, 1982�. The starting model required to compute the
rst weighting matrix is calculated using the same G, but with first-
rder Tikhonov regularization instead of Wc. This procedure mini-
izes the area metric with respect to perturbations from the back-

round estimate.
We restrict our consideration to examples where G is linear,

hich corresponds to situations where raypaths are fixed within the
nversion process. In differential tomography, this is often a reason-
ble assumption because time-lapse perturbations are typically
mall in comparison to background property variations, which al-
ows the use of rays traced in a prior reference model for the inver-
ion. In situations where the assumption of a linear operator are
learly invalid, the IRLS process can be extended to include variable
aypaths by updating G at each iteration. We leave examination of
he more complete nonlinear problem including variable ray-curva-
ure to future investigations and focus on the case where the only
onlinearity present is introduced via the regularization operator.

A SIMPLE SYNTHETIC TEST

The compactness algorithm we describe was first tested on two
tatic synthetic crosswell data sets to enhance our understanding of
he IRLS process, corresponding changes in the weighting matrix,
nd the role of the compact body assumption. Straight ray travel-
imes were first generated for a symmetric 40	40 source/receiver
onfiguration �1600 data� using the velocity model shown in Figure
a with three compact perturbations. For the inversion, model esti-
ates were calculated on a 25	75 sample mesh.All inversions used

dentical versions of the modeling operator G and differ only in con-
traint implementation.

The right three panels of Figure 2 depict noise-free inversion re-
ults using both standard first- and second-order Tikhonov regular-
zation �Figure 2b and c� and compactness constraints �Figure 2d�. In
ll examples, a � value of 10−5 was used for the compactness inver-
ions. A target data residual was chosen by interpretive analysis of
he first-order Tikhhonov results guided by L-curve analysis. The �
alues were selected for each inversion to match this misfit level, and
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he results for all three methods fit the data equally well. Object
mearing, because of limited angular aperture, is visible in both stan-
ard tomograms.Artifacts of this type often plague traveltime imag-
ng results and obscure both qualitative interpretation and the recov-
ry of quantitative property estimates. As can be seen in Figure 2d,
he addition of compactness constraints largely eliminates object
mearing. The compactness inversion was initialized using an over-
amped solution with first-order Tikhonov regularization. In this
ase, the IRLS loop converged in only two IRLS iterations.

During the IRLS procedure, Wc�m� changes according to varia-
ions in the previous model estimate. Examining the spatial charac-
eristics of Wc provides insight into how the compactness con-
traints evolve. Figure 3 shows images of diag�Wc� �top row� and
orresponding estimates of m �bottom row� for the first two IRLS it-
rations. The first model estimate �Figure 3a� shows the smooth
verdamped starting model. The resulting Wc operator �Figure 3b�
xhibits large damping values in zones with no anomalous features
nd smaller values in the vicinity of the three perturbations.

The second and third iterations exhibit increasingly tight con-
traints around the perturbed zone, which corresponds to a reduction
n perturbation area A�m�.After the first iteration, the l2 data residual
s essentially constant as a function of IRLS iteration for this choice
f � and �. Some of the artifacts present in the starting model are still
isible in later iterations but in a focused form.

Figure 4 depicts results from the same synthetic problem with the
ddition of 3% Gaussian noise to the data. As in the noise-free case,
ompactness constraints minimize artifacts because of limitations in
urvey aperture. Also, image artifacts resulting from noise in the
raveltime data are partly suppressed, yielding a more interpretable
mage. However, the compact solution exhibits some less desirable
eatures including a reduction in the size of the lower right velocity
nomaly. Imaging artifacts above and below the central anomaly are
lso focused into small high-amplitude features. This illustrates an
mportant aspect of the compactness constraint: model resolution is
ata dependent because of the introduction of a regularization opera-
or that depends on a prior model estimate. Therefore, the extent to
hich a truly compact feature can be recovered depends on the data
uality.
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igure 2. A noise-free synthetic test: �a� true velocity model, �b�
rst-order Tikhonov regularization, �c� second-order Tikhonov reg-
larization, and �d� compactness constraints.
As alluded to previously, choosing a compact model is one of
any techniques for introducing prior information to the inversion

rocess.Although we believe that compact solutions are appropriate
or imaging flow-induced features, diffusive processes such as ther-
al conduction might result in smooth velocity anomalies. In such

ases, regularization methods favoring smooth solutions will yield
uperior results.

Figure 5 depicts a comparison of Tikhonov and compactness solu-
ions for a case where the true model is smooth. The true model �Fig-
re 5a� was generated by applying a Gaussian filter to the model
hown in Figure 2a, followed by a renormalization to yield the same
aximum and minimum velocities. Synthetic data were generated

sing the same geometry and noise levels used in the previous exam-
le.

As can be seen in Figure 5, both the first-order �Figure 5b� and sec-
nd-order �Figure 5c� Tikhonov solutions effectively recover the
rue model. The addition of compactness constraints �Figure 5d�
ields a model estimate with a grainy texture and locally compact

b) d) 

D
ep

th
 (

m
) 

0 

2 

4 

6 

0 1 2 

0 

2 

4 

6 

0 1 2 

a) c) e) 
0 

2 

4 

6 

x loc. (m)

D
ep

th
 (

m
) 

0 1 2 

0 

2 

4 

6 

x loc. (m)
0 1 2 

0 

2 

4 

6 

x loc. (m)

Step 1 Lambda Step 2 

0 1 2 

1400 1600 1500 Vp (m/s)

 

Low 

High 

igure 3. Wc and m as a function of iteration: The top row depicts
iag�Wc�, the spatial variations in damping. The bottom row shows
he corresponding estimates of m. �a� shows the starting model gen-
rated using first-order Tikhonov constraints.



f
p
a
T
i
c
n
s

t
c
q
o
m
i
t
l
z
1

h
P
z
e
n
t
f
f
t
i
o
f
s
D
F

c
f
u
m
r
h
t
�
�

s
r
l
s
w

F
m
T

F
v
o

a

b

F
b
w
p
a
s
t
l

R72 Ajo-Franklin et al.
eatures. While correctly locating the velocity anomalies, the com-
act solution does not effectively capture the smooth transitions
round the velocity features and underestimates their spatial extent.
his pair of examples clearly demonstrates the benefit of incorporat-

ng prior knowledge into the regularization process. In this case,
onstraints based on a valid understanding of anomaly structure sig-
ificantly improve image quality, motivating their inclusion when
uch insight is available.

A SYNTHETIC CONTAMINANT
INFILTRATION EXAMPLE

The previous examples considered only a set of simplified fea-
ures with no particular physical significance. Evaluating the effica-
y of the algorithm for fluid process monitoring applications re-
uires a synthetic test case where the imaging target exhibits the ge-
metry of a flow-induced property perturbation. The geophysical
onitoring of dense nonaqueous phase liquids �DNAPLs� infiltrat-

ng the subsurface is one of many imaging problems which exhibits
hese spatial characteristics. Because DNAPLs are denser and often
ess viscous than water, they easily penetrate deep into the saturated
one and pond at low permeability barriers �Pankow and Cherry,
996�.
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igure 5. A smooth synthetic test with 3% Gaussian noise: �a� true
elocity model, �b� first-order Tikhonov regularization, �c� second-
rder Tikhonov regularization, and �d� compactness constraints.
GPR imaging results from the Borden field experiment �Green-
ouse et al., 1993; Brewster and Annan, 1994� revealed that DNA-
Ls injected at the site in question formed several thin lenticular
ones of high saturation, visible as laterally discrete reflection
vents. Parker et al. �2003� used direct-push fluid sampling tech-
iques to quantify the vertical distribution of DNAPLs at five con-
aminated sites; this study confirmed that dense contaminants often
orm very thin �5- to 15-cm thick� pools of limited lateral extent,
eatures which we would characterize as “compact.” Motivated by
hese observations, we selected the two-phase contaminant model-
ng results of Kueper and Gerhard �1995� as the geometric basis for
ur second synthetic test. In this case, we synthesize and invert dif-
erential crosswell radar traveltimes. Changes in bulk dielectric con-
tant, and therefore radar velocities, are relatively sensitive to
NAPL saturation as shown in laboratory investigations �Ajo-
ranklin et al., 2004�, making GPR the preferred imaging modality.
The study of Kueper and Gerhard �1995� examined the infiltration

haracteristics of point-source spills of tetrachloroethylene �PCE�
or spatially correlated random permeability models. The models
sed for their numerical experiments were 50.5	20.125 m two-di-
ensional permeability fields with anisotropic exponential autocor-

elation functions with correlation lengths of 5.0 and 0.5 m in the
orizontal and vertical directions, respectively. They used an adapta-
ion of the two-phase flow code presented in Kueper and Frind
1991� to simulate the release of 5.0 m3 of PCE �
 fl = 1460 kg/m3,

= 0.00057 Pa s�.
We use several snapshots from one of their flow realizations as

tarting points for our numerical experiments. Figure 6a shows the
esults for one of their flow simulations with a background image of
og permeability structure. The blue, green, and red zones corre-
pond to regions with greater than 20% PCE saturation at three times
ithin the simulation.
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We started with the stochastic permeability model and multiphase
aturation results detailed in Kueper and Gerhard �1995� and adapt-
d them to provide the requisite input parameters for radar modeling
nd tomography. The log of the initial permeability models were
inearly mapped to porosities ranging from 0.3 to 0.48 with more
ydraulically conductive regions mapped to higher porosities. The
NAPL saturation results and the porosity values were converted to
aps of dielectric constant using the Bruggeman/Hanai/Sen �BHS�
odel �Sen et al., 1981�. We assumed a three-phase system com-

osed of quartz �� = 4.27, Keller, 1987�, water �� = 79.8, Sen et al.,
981�, and PCE �� = 2.297, Nath and Narain, 1982� for dielectric
roperty estimation. Figure 6b shows the estimated dielectric con-
tant model for time C. We also assumed that the imaginary compo-
ent of the dielectric constant was 0 to facilitate conversion to a radar
lowness model. Using the slowness map and the source/receiver
eometry as input, synthetic radar traveltimes were generated using
traight-ray tracing on a 90	190 sample mesh with �x = �z =
.1 m. First arrival times for the plume at times B and C were sub-
racted to yield a �t data set suitable for difference inversion. Gauss-
an noise �2.5%� was added to the time differenced data set.

Figure 7 shows the tomographic result generated by both tradi-
ional first- and second-order Tikhonov regularization and the inver-
ion with compactness constraints. All inversions were performed
n 45	95 sample rectilinear meshes with �x = �z = 0.2 m. All
lowness models shown use the same colorscale to allow for accu-
ate comparisons. Figure 7a shows the true differential slowness
odel, �s = sC − sB. The geometry of the zone
ith DNAPL induced slowness changes is com-
osed of a series of vertically connected lenticu-
ar features with variable saturation levels.

Figure 7b-e shows the tomography results us-
ng first-order �left� and second-order �right�
ikhonov regularization with both small �bot-

om� and large �top� values for �. Figure 7f shows
he result of the inversion based on compactness
onstraints after four reweighting steps. Like the
esults from the first synthetic test, the only differ-
nces between the inversions are the constraint
mplementations.

Several conclusions can be drawn from Figure
. When considering the standard Tikhonov solu-
ions, small � values allow more detailed delinea-
ion of the DNAPL zones at the cost of increased
mage noise levels. Larger � values succeed in
uppressing artifacts but simultaneously smear
he target feature. In contrast, the application of
ompactness constraints succeeds in both de-
reasing artifacts and providing a sharper image
f the DNAPL zone. The compactness-based in-
ersion also provides a more accurate slowness
stimate, largely because the anomaly is focused
nto an appropriate geometry.

ANALYSIS OF THE FRIO
CO2-MONITORING DATA SET

For our final algorithmic test we explored the
se of differential seismic traveltime tomography
ith compactness constraints to monitor the sub-

urface movement of supercritical carbon diox-
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model. �b� and
regularization
constraints. �f
de �CO2�. The injection of carbon dioxide into deep saline aquifers
s one approach currently being considered to minimize anthropo-
enic contributions to atmospheric greenhouse gasses �Orr, 2003�.
ecause the goal of sequestration is the long-term storage of CO2,

emote monitoring is required to ensure that reservoir seals remain
ntact �Benson, 2003�.

Seismic methods offer one possible approach to mapping the sub-
urface extent of CO2 saturation, a topic explored in previous en-
anced oil recovery �EOR� monitoring studies �Lazaratos and Mari-
n, 1997; Davis et al., 2003�. Borehole imaging methods, in particu-
ar, have shown promise for resolving small-scale flow features in
O2 monitoring �Majer et al., 2006�.
Acomplete test of the compactness algorithm was performed on a

ime-lapse crosswell monitoring data set acquired at the Frio pilot
ite. The Frio demonstration project �Hovorka et al., 2006� is an on-
oing multi-institution effort to improve understanding of the in situ
ynamics of CO2 injection within a saline aquifer located in east
exas.
In the first stage of the project, 1600	103 kg of supercritical CO2

at P = 15 MPa, T = 55°C� was injected into a confined unit of the
ligocene Frio sandstone formation at a depth of 1534 m �5053 ft�.
he target unit, referred to as the Frio C sand, has a dip of approxi-
ately 15°. Cores from the C sand exhibited porosities between 30%

nd 35% with permeabilities between 2000 and 2500 md. Hovorka
t al. �2006� includes a complete description of the formation proper-
ies and details of the Frio experiment. Because the supercritical
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R74 Ajo-Franklin et al.
hase at these P/T conditions is characterized by both a low-density
	700 kg/m3, Hovorka et al., 2006� and a low-bulk modulus
	0.086 GPa, Wang and Nur, 1989�, the zone of CO2 saturation was
xpected to migrate up-dip and be visible as a zone of decreased
-wave velocity.
Motivated by previous seismic monitoring projects �Lazaratos

nd Marion, 1997�, Lawrence Berkeley National Laboratory ac-
uired two high-quality crosswell seismic data sets before and after
he pilot injection in an attempt to delineate the region of subsurface
O2 saturation. Daley et al. �2005� describes the data collection pro-
edure and relevant survey parameters. Figure 8a shows a schematic
epresentation of the lithological units within the survey domain in-
luding the C sand used for the injection experiment. Traveltimes
rom the baseline and repeat surveys were picked and subtracted to
ield time differences ��t�.

This data set, consisting of 3301 differential times, was then in-
erted to generate a map of changes in slowness ��s�. Next, �s im-
ges were converted to maps of velocity changes using a background
eference model obtained from logs and the baseline survey. Figure
shows tomography results for the Frio data set using zeroth order

Figure 8b�, first order �Figure 8c�, and second order �Figure 8d�
ikhonov regularization in comparison to compactness constraints
Figure 8e�. All inversions were performed on a 60	200 sample
ectilinear mesh.

The region of injected CO2 is visible in all four images as a linear
eature with decreased P-wave velocity. The dip of the imaged CO2

one matches prior models of local structure, increasing our confi-
ence in the reconstruction. The results based on first- and second-
rder Tikhonov schemes �Figure 8c and d� were generally of low
uality with significant artifacts, including a broad low-velocity fea-
ure which extends counter to structural orientation and ray-related
eatures near the boreholes. Both the zeroth-order Tikhonov and
ompactness constrained models exhibit a high degree of similarity
ithin the anomalous zone. However, the addition of compactness

onstraints has largely eliminated artifacts related to ray coverage;
hese artifacts are particularly visible on the left side of the zeroth-or-
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igure 8. Results from the Frio crosswell monitoring experiment: �
entation of units within the survey domain, differential tomograms
ikhonov regularization �damping� �c�, first-order Tikhonov �d�, sec
e�, and compactness constraints. The coordinate system in �b� thro
he uppermost measurement source location.
er solution. Because ensuring seal integrity is one of the primary
oals of sequestration monitoring, a robust interpretation requires
he reduction of low-velocity artifacts outside of the formation.

The maximum magnitude of the velocity perturbation observed in
ur reconstruction �	−600 m/s� is surprisingly large. The neglect
f ray curvature in the reconstruction is another possible source of
rror; however, the inclusion of ray bending typically increases rath-
r than decreases the magnitude of velocity anomalies. Preliminary
ock-physics analysis using poroelastic fluid substitution models
imilar to those used in Nolen-Hoeksema et al. �1995� indicate that
uch effects are insufficient to produce this change. Likewise, Wang
t al. �1998� observe significantly smaller reductions in Vp during
ore-scale laboratory measurements of CO2 injection. The absence
f significant changes in Vs �not shown� suggests that an increase in
ore pressure also can be ruled out as a secondary factor. Future in-
estigation is needed to identify the mechanism responsible for
hese large changes in rock properties.

CONCLUSION

We describe one approach for including compactness constraints
n differential traveltime tomography through use of a model-space
eweighting algorithm. We observe improvements in image quality
n comparison to standard Tikhonov-based techniques for a simple
est problem, a synthetic based on multiphase flow results, and a
O2-sequestration-monitoring data set.
For the test problems including localized features, the addition of

ompactness regularization reduces tomographic artifacts, im-
roves the recovery of target geometry, and more quantitatively esti-
ates property variations. The strength of compactness constraints

lso can be a weakness; in situations where the imaging target exhib-
ts smooth variations, the size of the reconstructed feature can be in-
ppropriately reduced, potentially resulting in property overesti-
ates. The assumption of compactness is particularly dangerous
hen considering flow processes dominated by diffusion rather than

advection. One promising extension to our ap-
proach would be to replace compactness with
connectivity as a secondary constraint in the re-
weighting process, possibly a more effective reg-
ularization approach for flow imaging.

A general limitation of differential inversion is
the requirement that all surveys have matching
geometries, a requirement which is often difficult
to fulfill in practice. A possible solution to this
limitation would be to pose the imaging problem
as a coupled joint inversion across multiple time
steps, thus allowing the inclusion of compactness
constraints on model perturbations without re-
quiring explicit data differencing.
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