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Summary

Time-lapse geophysical measurements and seismic imag-
ing methods in particular are powerful techniques for
monitoring changes in reservoir properties. Traditional
time-lapse processing methods treat each dataset as
an independent unit and estimate changes in reservoir
state through differencing these separate inversions.
We present a general least-squares approach to jointly
inverting time-varying property models through use of
spatio-temporal coupling operators. Originally developed
within the medical imaging community, this extension
of traditional Tikhonov regularization allows us to
constrain the way in which models vary in time, thereby
reducing artifacts observed in traditional time-lapse
imaging formulations. The same methodology can also
accommodate changes in experiment geometry as a
function of time thus allowing inversion of incremental
or incomplete surveys. In this case, temporal resolution
is traded for improved spatial coverage at individual
timesteps. We use seismic traveltime tomography as
a model problem although almost any geophysical
inversion task can be posed within this formalism. We
apply the developed time-lapse inversion algorithm to a
synthetic crosswell dataset designed to replicate a CO2

sequestration monitoring experiment.

Introduction

Time-lapse geophysical measurements provide a powerful
toolbox of techniques for monitoring subsurface flow
processes including the enhanced recovery of oil and
gas (Lumley, 2001), CO2 sequestration (Davis et al.,
2003) (Lazaratos and Marion, 1997), and contaminant
remediation (Hubbard et al., 2001). Seismic methods in
particular are increasingly used to generate quantitative
maps of variations in fluid saturation or pressure over
spatial domains ranging from 10s of meters for envi-
ronmental problems to 10s of kilometers for field-wide
production monitoring.

Most traditional time-lapse processing techniques treat
each acquired dataset as an independent measurement.
Temporal variations in subsurface properties are typically
determined by subtraction of image pairs. Naive im-
age subtraction tends to be sensitive to survey-to-survey
changes in S/N ratio and variations in acquisition geom-
etry, both of which can generate artifacts in the result-
ing time-lapse images. This conceptual approach also
fails to acknowledge a key component of prior knowl-
edge, mainly that the changes in subsurface seismic re-
sponse in these environments are due to variations in fluid
properties or effective stress and not changes in geologic
structure. Significant artifacts in time-lapse processing

results have spurred development of cross-equalization al-
gorithms (Rickett and Lumley, 2001) designed to match
the geometry and signal characteristics of repeated sur-
veys.

Joint inversion of a series of time-lapse surveys seems to
be a natural approach to decreasing image artifacts which
result from naive differencing. Through use of constraints
on how the model can change in time, we can suppress
non-repeatable noise while providing a more consistent
reconstruction of real variations in subsurface properties.
Day-Lewis et.al.(2002) demonstrated a technique for inte-
grating time-lapse imaging based on using smooth basis
functions with a time dimension for tomographic inver-
sion. They effectively applied their method to dynam-
ically image the flow of a saline tracer through a large
aperture fracture using borehole radar. We adopt an ap-
proach developed within the medical imaging community
based on a straight-forward extension of Tikhonov reg-
ularization to include a time dimension. Brooks et.al.
(1999) apply a temporal constraint operator within a
least-squares framework for the inversion of electrocardio-
graphy data. Zhang et.al. (2005) perform a comparison of
spatio-temporal inversion approaches including both the
Tikhonov approach and Kalman filtering. We largely fol-
low the formulation of Brooks et.al. with the exception of
our choice of regularization operator and the techniques
used for solving the coupled system.

Linear Formulation

We will initially consider the general linear inverse prob-
lem where a linear operator G, maps a model (m) to a
dataset (d),

Gm = d. (1)

Consider a series of n datasets (di) acquired at different
times (ti), possibly with different source/receiver geome-
tries as encapsulated by variations in the kernel (Gi) but
equivalent model parameterizations. In the naive case,
the inverse problem would be solved independently for
each dataset by minimizing an objective function of the
form

Φ(m1, ..., mn) =

nX

i=1

‖Gimi− di‖22 +λ2
s

nX

i=1

‖Dmi‖22 (2)

where D is a weighting operator and λs is a regulariza-
tion parameter. The first term in equation 2 measures
data misfit while the second measures model length as
modified by D. If D = I than the resulting minimization
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of equation 2 is simply the damped least-squares solution.
Neither of the terms in equation 2 couple solutions across
multiple time steps since modification to mi does not ef-
fect either the data misfit or length of model mj (i 6= j);
this approach seems most applicable in cases where mod-
els are not correlated in time.

In the case of our time-lapse seismic problem, models have
a strong temporal correlation since the underlying geo-
logic structure is clearly not changing in the relatively
short (geologically speaking) time between repeat sur-
veys. We can modify equation 2 to include a tempo-
ral cross-coupling term which minimizes the time-lapse
change in some model attribute in addition to decreas-
ing data misfit and model norm for individual surveys.
Consider a combined objective function of the form

Φ(m1, ..., mn) =

nX

i=1

‖Gi mi − di‖22 + (3)

λ2
s

nX

i=1

‖D mi‖22 +

λ2
t

n−1X

i=1

‖D mi+1 −Dmi‖22
∆ti

.

where ∆ti = ti+1−ti. Minimizing equation 3 is equivalent
to the least-squares solution of an augmented system with
operator Gc,
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The numerator in the third term of equation 3 penalizes
the differences between models which are temporal neigh-
bors while the denominator scales this weight by the time
elapsed between surveys. The second regularization pa-
rameter, λt, controls the strength of the temporal con-
straint. If D = I this component can be thought of as a
time damping term.

For the simple case of two surveys (n = 2) and 0th order
Tikhonov regularization for both the spatial and spatio-
temporal terms (D = I), equation 4 can be reduced to

2
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Although damping is the simplest type of temporal regu-
larization to add, different types of operators should also
be considered. Minimizing change in the first or second
spatial derivatives of the model are two alternatives. We
can imagine computing the associated pseudo-inverse in-
verse of our augmented operator, G−gc , which allows us to
write the model resolution matrix as, R = G−gc Gc where
R can be seen as a filter which shows how the imaging
experiment and the choice of G−gc modify the true model.
In this case R gives us insight into not only the spatial
aspects of model resolution but also shows us temporal
“smearing”, the process by which information is spread
between our multiple experiments.

This inversion formalism also provides a good approach to
incrementally acquired seismic surveys where the survey
geometry at any particular time step n is relatively sparse.
Although independent inversion of a single survey might
yield an image with very low spatial resolution, by jointly
inverting a series of surveys we can effectively add spatial
aperture in exchange for losing temporal resolution.

Traveltime Tomography

Up to this point, our formulation has been relatively gen-
eral with no assumption regarding the operation which G
performs, the model parametrization represented by m,
or the type of data stored as d. We will now apply our
formulation to the concrete example of seismic traveltime
tomography with one temporal dimension and two spa-
tial dimensions. In this case we choose each m to be a
rectalinear mesh of homogeneous slowness cells while d is
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a vector of picked first-arrival traveltimes and G is the
ray-path matrix. For the examples presented in this pa-
per, we will use straight rays to preserve the linearity of
the coupled inverse problem but extensions to the non-
linear case seem quite feasible. We use a split laplacian
operator (Dxx, Dzz) to allow anisotropic regularization
with two spatial parameters (λsx, λsz) and two spatio-
temporal parameters (λtx, λtz) for the respective terms
in equation 4. Regularization parameters are chosen by
observation although use of the L-surface technique advo-
cated by Brooks et.al. (1999) would decrease the amount
of manual tuning required in the inversion process. The
resulting coupled systems were solved using the LSQR
algorithm (Paige and Saunders, 1982).

A Synthetic CO2 Monitoring Problem

Several field experiments to date have attempted to mon-
itor the subsurface extent of active CO2 injections includ-
ing the McElroy (Lazaratos and Marion, 1997) and Wey-
burn (Davis et al., 2003) EOR projects. For our synthetic
experiment we have generated four time-lapse images of a
CO2 flood progressing through a permeable layer shown
in row (A) of figure 1. Data was synthesized for a crosswell
geometry with 40 sources and 40 receivers evenly spaced
near the boundary of the model; the resulting arrays al-
lowed tomographic imaging within a 40 x 98 m subdomain
of the 115 x 49 m initial model. Gaussian noise (∼ 3%)
was added to the traveltime picks for all four synthetic
surveys.

The lower 3 rows of figure 1 show the inversion results
for the uncoupled case (B) and the effect of including the
spatio-temporal coupling term (C and D) using a 30 x 70
cell mesh. In all three cases the same spatial regulariza-
tion parameters were used [λsx = 10, λsz = 8] while the
weak and strongly coupled examples used spatio-temporal
coupling parameters of [λtx = 16, λtz = 12] and [λtx = 64,
λtz = 48] respectively. While all three inversions suc-
cessfully imaged the target CO2 flood, visible at approxi-
mately 70 m depth, stronger spatio-temporal constraints
appear to suppress velocity artifacts. Figure 2 shows the
result of differencing the tomograms between the four se-
quential surveys with the same ordering of conditions.
Similar trends in noise levels are visible in the difference
images. In the uncoupled case (row B) the artifacts are
of the same order of magnitude as the CO2 flooded re-
gion making confident interpretation difficult. The use
of strong spatio-temporal coupling clearly decreases this
interpretation ambiguity at the expense of accurate dif-
ference velocity estimates and spatial resolution.

Conclusion

Temporal regularization provides a natural approach
for jointly inverting time-lapse datasets. A key topic of
future research is understanding the trade-offs between
spatial and temporal resolution displayed within our
synthetic example. While we have not discussed the
non-linear tomography problem in this paper, the same
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Fig. 1: Tomography results with variable temporal coupling :
(A) True model used to generate synthetics, (B) Uncoupled,
(C) Weak temporal coupling, (D) Strong temporal coupling
(regularization parameters in text)
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Fig. 2: Difference tomograms with variable temporal coupling
corresponding to the tomograms in figure 1 : (A) True model
used, (B) Uncoupled tomograms, (C) Weak temporal coupling,
(D) Strong temporal coupling

techniques could be easily integrated within iterative
imaging algorithms. Recent developments in the medical
imaging community suggest several routes to improving
these methods including the use of L-surface techniques
for regularization parameter selection (Brooks et al.,
1999) and the incorporation of prior temporal covariance
models (Zhang et al., 2005). Our future work will
attempt to integrate and extend these techniques to the
seismic monitoring problem within the context of full
wave-equation tomography.
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