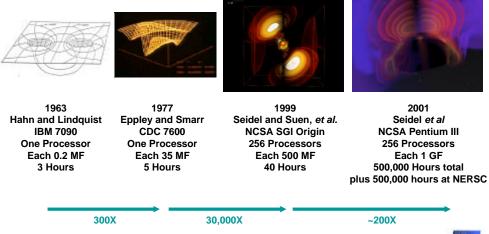


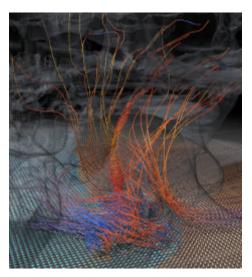
Systems and Software Overview at NCSA

Terascale systems and TeraGrid

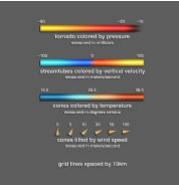
Mike Showerman


Cluster Software and Tools

mshow@ncsa.uiuc.edu


Black Hole Collision Problem

1,800,000,000X



Tornado Modeling – Data to Knowledge

Wilhelmson and Cox

Large complex datasets require data analysis and visualization in the search for understanding

NCSA/Alliance Multiphase Strategy

- Multiple user classes
 - ISV software, hero calculations, data intensive analysis
 - distributed resource sharing, parameter studies
- Four computing approaches
 - shared memory multiprocessors
 - 12 32-way IBM IBM p690 systems (2 TF peak)
 - large memory and ISV support
 - TeraGrid Itanium2 clusters
 - 64-bit Itanium2/Madison (10.6 TF peak)
 - ETF partners
 - IA-32 clusters (>17 TF peak)
 - 32-bit systems for hero calculations
 - dedicated sub-clusters (3 TF each)
 - To be allocated for weeks or longer to specific teams
 - Alliance Technology Grid & Condor resource pools
- Complemented by large-scale archives
 - ~500 TB secondary and 2 PB tertiary storage

NCSA Computing Environment — 32 TF

Platinum

- Intel Pentium III 1 GHz IBM cluster
- 1,024 processors
 1 TF peak performance
- GPFS

Mercury, phase 1 TeraGrid Intel Itanium 2 1.3 GHz IBM cluster

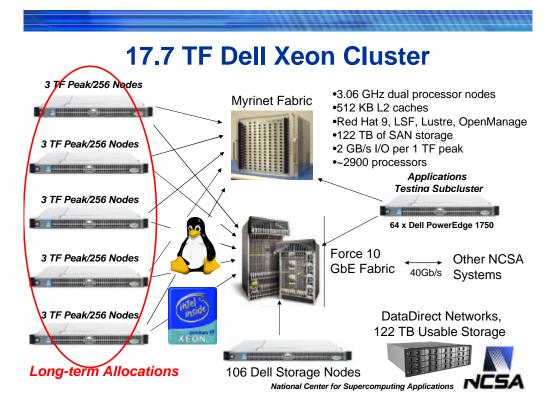
- 512 processors + head nodes
- 2.662 TF peak performance
- GPFS, 60 TB
- Production Jan 2004

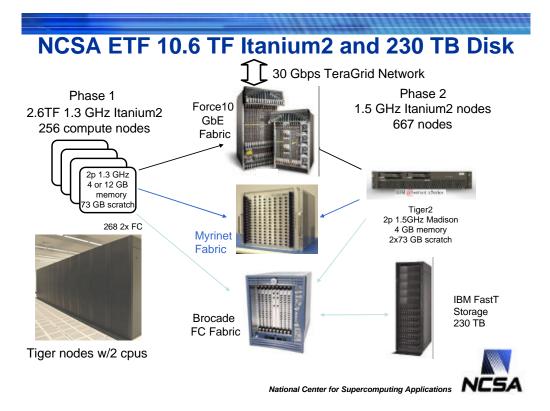
Titan Intel Itanium 800 MHz IBM cluster

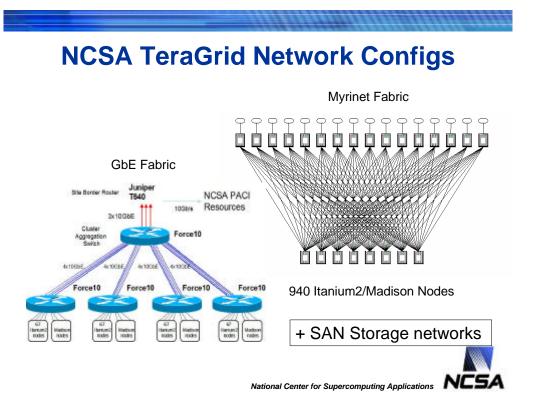
- 320 processors
- I TF peak performance

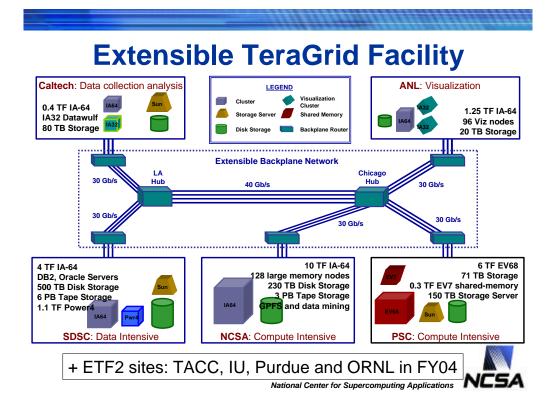
Mercury, phase 2 TeraGrid • Intel Itanium 2 1.5 GHz IBM cluster

- 1,334 processors
- 8 TF peak performance
- GPFS, 170TB
- Production 2Q 2004




Copper • IBM POWER4 p690 systems • 384 processors • 2 TF peak performance • GPFS, 24 TB



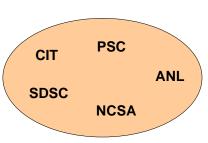

Tungsten

- Intel Xeon 3.0 GHz Dell cluster
- = 2,560 processors + IO, debug node
- 17.7 TF peak performance
- Lustre, 140 TB
- upercomputing Applications

"TeraGrid Roaming"

Nearly eliminate the barrier to entry

• Example:


- Develop application at ANL, run at NCSA
- Run at Caltech with data from SDSC
- Run large job across all sites

• This requires

- Consistent interoperable environments
- Unified allocations, accounting and billing
- Predictable levels of service, easy to find help desk

Src: TeraGrid National Center for Supercomputing Applications NCSA

Common TeraGrid Software Stack

- A social contract with the user:
 - LORA: Learn Once, Run Anywhere
- Precise definitions:
 - Services
 - Software
 - User Environment
- Reproducibility
 - Standard configure, build, and install
 - Single CVS repository for software
- Code developed for TeraGrid must be Open Source

Src: TeraGrid National Center for Supercomputing Applications

Core CTSS Components Across All Platforms: Linux, AIX, Tru64

atlasblas

• gcc

condor-g

• gsi-ncftp

• globus-2.4.3-gcc

- gx-map
- hdf4
 - hdf5
 - Java_COG
 - mpich-g2-
- gsi-openssh
 - mpich-p4gcc

gcc

- myproxy
- openssh

Additional component sets include:

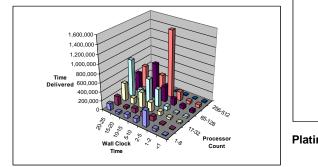
Intel compilers, IA64 (Myrinet, BIOS, etc), Linux kernels & patches

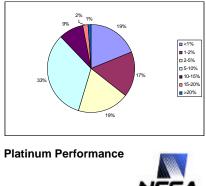
Src: TeraGrid National Center for Supercomputing Applications

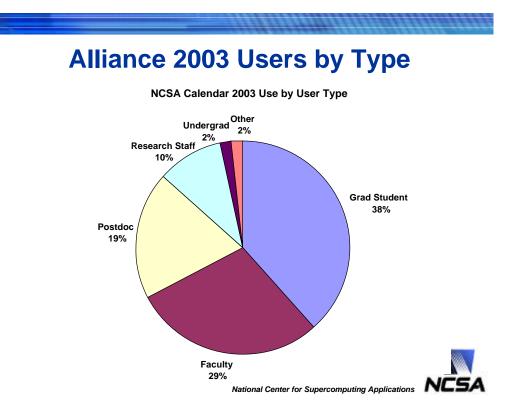
- petsc-gcc
- python
- softenv
- srb-client
- Tcl

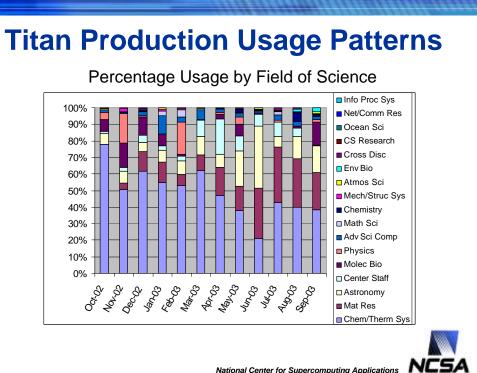
Security

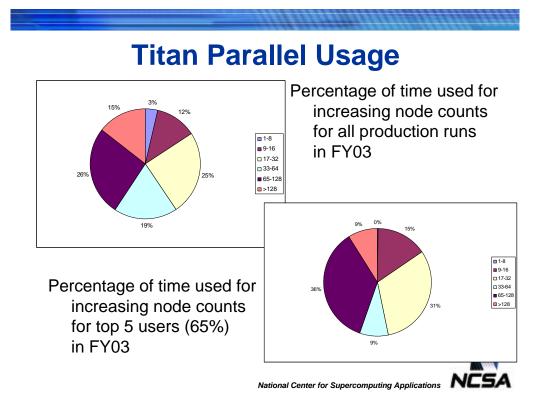
- We are a small community!
- Local root exploits are more deadly
 - Security model can not rely on trusted users
 - Security fixes happen faster then vendors can adjust
- Secure Systems can be compromised from an administrative desktop.
- TeraGrid has been a Target
- Attacks have been organized
 - Adapting to our reactions
- Long road ahead.

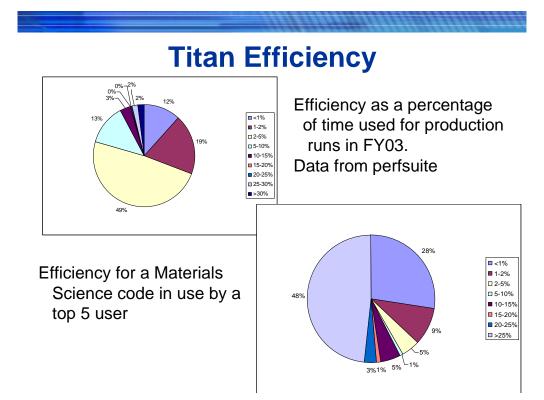

NCSA Performance Engineering


- · Dedicated applications support group within NCSA
 - Work directly with applications and scientific teams
 - Optimize and analyze applications performance
- Integrated NCSAbench test suite
 - Benchmarks and application kernels proven to be useful and relevant
 - Used to test and evaluate systems
 - HPL has repeatedly been invaluable for this on multiple systems
 - · Used single node and cluster wide to help identify problems
 - Support for procurements and development of acceptance tests
 - Packaged and made available to vendors
 - Open source codes
- Expansion/extension for I/O and network performance
 - Data intensive applications and I/O performance growing in significance
 - Plans include data and I/O benchmarks




Aggressive Performance Analysis


- Hardware counter capture on IA-32 and Itanium clusters
 - Perfsuite uses PAPI and NCSA tools
 - guide to system assessment and application tuning
- Performance expedition tool applications
 - 2X improvement in GenIDLEST
 - 20-50% improvement in WRF/NCOMMAS



Machine Room Expansion (Old news - over 2 years old)

- 7500 Square Feet Usable
- Additional 750 tons of cooling
- Additional 2500 KVA
- Basement + 2 stories
 - 1 usable floor
 - 6 foot raised floor
 - FULL!
- Designed for machine trends 10 years out

New Building

- 30 million, 142,000square-foot building
- Occupation in 2005
- Staff moves to 1 building (currently in ~7)
- NCSA entering a new era

Summary

- Clustered systems are very performance competitive
 - Complex hardware and software systems and environments need to be simplified and integrated
- Grid environments are maturing and stabilizing
 - Grid-based applications require extra effort on the part of support and apps developers/users
- NCSA is in a period of computational and facilities growth

