

U.S. Department of Energy Energy Efficiency and Renewable Energy

ENERGY STAR SSL: Introduction and Approach

Marc Ledbetter Pacific Northwest National Laboratory ENERGY STAR SSL Stakeholders Meeting February 8, 2007

Topics to be Addressed

- Why ENERGY STAR SSL? Why now?
- Scope of criteria
- Unique characteristics of SSL (vis-à-vis ENERGY STAR)
- Why luminaire efficacy?
- Two-category approach
- Why not SSL include in RLF?

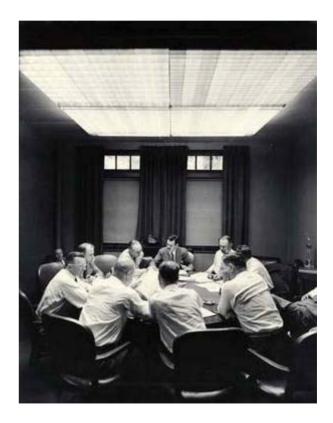
- Many new products entering market
- Many appear to have greatly exaggerated performance
- DOE SSL commercial product testing is showing actual performance is much less than claimed

Example: Downlight claimed 40 lm/W; measured luminaire efficacy of 13 lm/W and 193 lumens; less than 1/2 the efficacy of typical CFL downlight, and ~1/3 the lumens.

- Meanwhile, LED technology is rapidly improving
- Manufacturers are announcing new performance records almost every month
 - Nichia announced 150 lm/W @ 20 mA in December (lab)
 - Seoul Semiconductor announced 100 lm/W @350 mA in December (commercial)
 - Lumileds announced 115 lm/W @ 350 mA in January (commercial)

Note: the above performance levels are typically done at 25°C for 25 ms with non-standard test; they are not meant to represent actual performance in a luminaire

DOE expects market introduction in 07 and 08 of high performance products.


Example: 2700K CCT, 90+ CRI downlight, 60 lm/W (luminaire efficacy); twice the efficacy of a CFL downlight expected 2nd Q 07.

- Because the key standards and test procedures are on schedule to be final in time to support the SSL criteria.
- Should those standards and test procedures be delayed, SSL criteria will not become effective until the those key standards and test procedures are final.

- DOE wants to avoid a repeat of the CFL mistake
 - Early low performing products caused long-term market damage
- DOE Report, "Compact Fluorescent Lighting in America: Lessons Learned on the Way to Market" addresses this issue

- Key take away from report: Early consumer experience with fluorescent lamps and CFLs still defines attitudes towards CFLs, even though the technology has greatly improved since its introduction
- Guidance for buyers is needed now, to limit long-term market damage
 - Address performance and quality

In a Nutshell:

- Many low performing products in market that are likely to disappoint
- Many high performing products coming
- Key standards and test procedures will be done
- We don't want a repeat of CFL market introduction; we don't want to have long-term market damage
- Buyers need guidance; ENERGY STAR is best tool for that

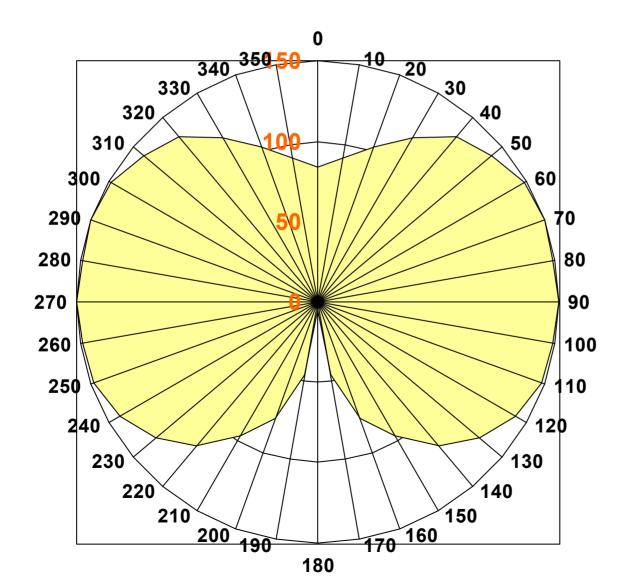
Scope of Criteria

- General illumination
 - Not indication or decoration
- Both residential and commercial
 - Commercial customers need guidance; they know and understand ENERGY STAR
- Interior and exterior

Unique Characteristics of SSL (vis-à-vis ENERGY STAR)

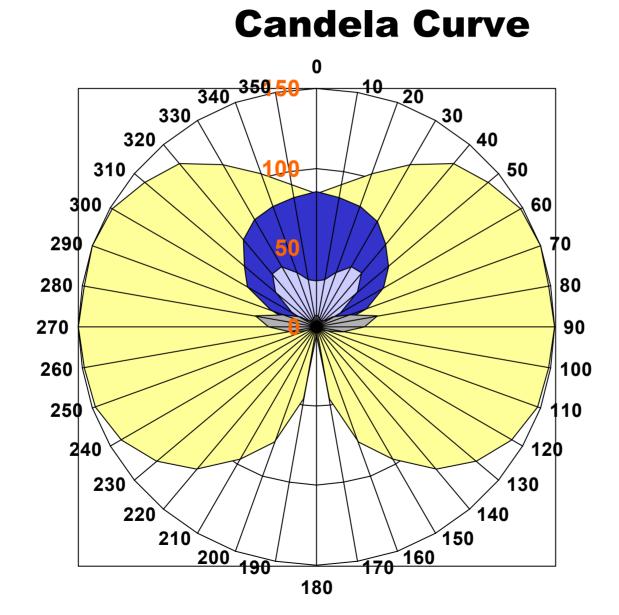
- New Technology Characteristics
 - Performance rapidly increasing
 - Prices rapidly falling
 - Expect small number of products to initially qualify
 - Will require regular updating of criteria
- Physical Characteristics
 - Different spectral power distribution vs. fluorescent
 - Color measurement (e.g., quadrangles and angles)
 - Directional light vs. diffuse light (different optics)
 - High thermal sensitivity (good fixtures designed accordingly)
 - Failure mode (life); others

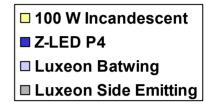
Fundamentally different from fluorescent technology



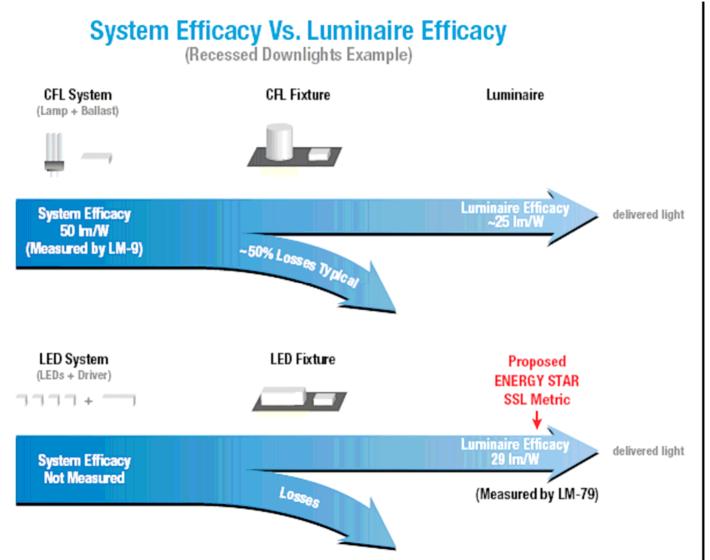
Why Luminaire Efficacy?

- System efficacy is a measure of lumens from the light source, divided by source plus driver power
 - It does not account for light losses in the fixture
 - It does not account for thermal effects fixture may have on flux
- Luminaire efficacy is a measure of lumens from the luminaire, divided by source plus driver power
 - It accounts for fixture light losses
 - It also accounts for thermal effects fixture may have on flux


U.S. Department of Energy Energy Efficiency and Renewable Energy


Candela Curve

100 W Incandescent


U.S. Department of Energy Energy Efficiency and Renewable Energy

System Efficacy vs. Luminaire Efficacy

Why Luminaire Efficacy?

- Using luminaire efficacy will require photometric testing
- Yes, it will be more expensive for luminaire manufacturers than using system efficacy, and a lamp/driver matrix
 - We took a serious look at alternate methods, but found alternatives fraught with problems
- But luminaire efficacy is best suited for SSL
 - For thermal and optical reasons
- And only industry standardized test procedure (LM-79) requires luminaire measurement

Two-Category Approach

- Category A: for selected directional lighting applications (e.g. task lighting and downlights)
 - Applications selected require modest illumination
 - Applications selected have modest distances to illuminated surfaces
 - Efficacy requirements set to meet or exceed typical fluorescent (for level playing field)
 - Min. flux, and zonal lumen requirements to screen out products users likely to find unsatisfactory
 - Applications will be expanded as technology improves

Two-Category Approach

- Category B: for all general illumination applications
 - Aggressive efficacy requirements
 - Simpler; no total flux and zonal lumen requirements
 - Allows for non-directional lighting applications
 - Will add language that clarifies products will not be able to qualify under Category B in near-term; date for allowing Category B qualification TBD
 - Serves as future target for manufacturers

Two-Category Approach

- Approach recognizes rapidly changing technology
- Allows early participation of limited range of SSL products for directional lighting applications (in Category A)
- At some point (~3 years), Category A will be dropped entirely; Category B then becomes basis of criteria
- Consistent with a go-slow approach Whole industry is learning the unique issues of applying SSL to general illumination Going slow allows industry and DOE to learn, and adjust

Why Not Include SSL in RLF?

- Technology is radically different
 - Different standards, metrics, and test procedures
 - System efficacy not appropriate for SSL; SSL system efficacy test method doesn't exist
- There are separate ENERGY STAR specifications for residential ground source heat pumps, air source heat pumps, and furnaces
 - Different test methods, and different metrics