Cornell Program

Laboratory for Elementary-Particle Physics (LEPP)

Particle Physics, Accelerator Physics, Particle Theory (xray science)

Mainly NSF-funded + some important POE pieces

Wilson Laboratory accelerator complex

CESR e+e- storage ring CLEO experiment CHESS - xray facility

A Lab in Transition

- CESR-CLEO program has run for 28 years, but all good things come to an end. CLEO turned off for the last time on Monday, March 3rd
- CLEO-c proposed in 2002, funded in 2003, was by design the end of the line for on-site particle physics at Cornell:
 - The frontier of the field is moving on; we want to be there.
 - Set sights on LHC & ILC. Joined CMS in 2005.
- Accelerator expertise: apply to
 - Xray science. Energy Recovery Linac high brilliance, highly coherent source
 - Future particle physics: ILC accelerator R&D + generic SRF R&D
- Vision of the long term future:
 - Xray science will dominate the local facility at Cornell.
 - Experimental particle physics will be carried out where the energy frontier is.
 - Accelerator physics will have both an xray and particle physics component.

CESR-CLEO

- Since 2003: CLEO-c
 - Weak decays of Charm Mesons D, Ds
 - Lattice QCD Benchmarking
- CLEO ended data taking this week*.
 - 20 PhD, 30-50 papers in the pipeline
 - Collaboration size now about 110
- Historical accomplishments of CLEO
 - $b \rightarrow v$, $b \rightarrow s$, ... $b \rightarrow c$
 - 466 papers, 255 PhD theses

CMS

- Cornell joined CMS 3 years ago
- Responsibilities:
 - Pixel calibration/online software
 - ECAL geometry & alignment
 - Trigger monitoring, emulation, HLT algorithms
 - <u>Core Software</u> Framework,
 Physics Tools, Pata Bookkeeping
 Service, user help

Physics

- -Leptons + Jets + MET
- -SUSY
- -Little Higgs

•Upgrade (SLHC) projects:

- -Monolithic pixel sensor R&D (SOI)
- -New track-trigger studies/design

ILC Detector R&D

TPC development

- Small prototype: tests sensor technologies (GEM, μMEGAs, etc)
- Large Prototype (PESY, 2009)
 Precision endplate
- TPC tracking software (first principles)

Builds on CLEO drift chamber experience.

Fundamental Probes - @BNL

- Cornell (Orlov) participates in BNL experiments that probe fundamental physics:
 - g-2
 - muon and deuteron electric dipole moments
- Each of these is a deep probe of fundamental physics & a beautiful marriage of accelerator physics and experimental particle physics.

CesrTA: ILC DR Studies

Can one mitigate the electron cloud effect in an e+ damping ring? Well enough to permit single e+ D.R. in ILC?

CesrTA*:

Low emittance operation ($\epsilon_v \approx 5-10 \text{pm}$)

e-cloud measurement & suppression

e+ and e-

Piagnostic tools

Why CESR?

- Very similar to designed ILC DR

Wigglers for low emittance already exist

- Both e+ and e- available

- Ready now.

Joint NSF-POE Project, 2008-2010

* "TA" = "Test Accelerator"

Superconducting RF

- Probe physics of superconducting surfaces for achieving maximal E fields
- Develop surface preparation methods & cavity design to push back the limit of accelerating gradients
- Provide cavities for various facilities (CESR, Jlab, ERL,...)
- ILC SC cavity development

Re-entrant design, Achieved 59MV/m

Various cavities

Theory Group

Wide range of topics

- String theory, brane cosmology
- Flavor physics
- Beyond-Std-Model
- Field theory, mathematical physics
- Lattice QCD
- Extreme QED

A few 8th order diagrams in electron g-2 calculation from Kinoshita et al, (Feb 08)

arXiv:0712.2607v2

CHESS - Xray Facility

- Xray sources: CESR dipoles & dedicated wigglers
- Separate running periods, 120days/year
- Active community:
 - 700 user-visits/year
 - 2 publications per xray-day
 - 540 PhDs
 - 1 Nobel Prize (so far)
- Active technology development, close user support
- Wide range of science:
 - Material science
 - Biology, biochemistry
 - Engineering
 - Other... (art history, archeology...)

Structure of the potassium channel

Future: Energy Recovery Linac

Advanced xray source:

- High average brilliance (photons/sec/mm²/mrad²)
- Highly coherent wave front
- Ultra-short pulse length
- High current, rep rate
- Many simultaneous users

Based on ultra-low-emittance electron beams

Comments - 1

• Energy Frontier must (still) be our top priority.

- New physics will be seen directly: new particles, new phenomena
- A superpartner world, new spatial dimensions, direct hands-on study of dark matter... these will excite the world (not just physicists)
- Indirect searches in the flavor sector have been rich and fascinating in their own right, but haven't turned up the new physics we believe is out there

Astrophysics and cosmology are an important part of particle physics

- Park matter, inflation, baryon asymmetry are all unequivocably particle physics
 and unequivocably astrophysics and cosmology
- Distinguish between astrophysics that shares particle physics goals and science,
 and astrophysics that happens to use particles or hep techniques
- The scientific overlap of the two fields of inquiry has been and will continue to be fantastically productive and exciting
- These issues retain the perennial power to excite the public (as well as ourselves)

Comments - 2

- P5 should pay attention to the "cost per result" and "cost per physicist".
 - In richer times this might be dismissed as philistine; in a tight budget scenario it must be considered.
 - If we don't pay attention to it, someone else probably will.
- EPP2010 and previous P5 have already articulated what we understand to be the consensus of the field.
 - This P5 should be seeking ways to realize the vision, not rewrite it.
- The FY08 budget is a serious challenge for our near-term tactics but it shouldn't change our long-term strategy.
 - The long term scientific visions of the field remain vibrant and inspiring
 - Changes are coming (eg: LHC results). Things could get better.
 - P5 should reaffirm commitment to the field's priorities