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In a recent paper, Hill [2006] compares the performance of a large class of superlative
indexes. He finds that most of these indexes yield strikingly different results as the linking
interval used to obtain chained estimates of growth over a specified period lengthens. Samuelson
and Swamy [1974] had shown that, with nonhomothetic preferences, some amount of chain
drift—that is, difference between the rate of change calculated by chaining an index over a
multi-period interval and that obtained using endpoints only—is inevitable. Nevertheless, Hill
showed that three superlative indexes, the Fisher, the Tornqvist, and the Walsh, are less
susceptible to chain drift as the linking interval lengthens than the others he considered. The
Fisher and Tornqvist are by far the most commonly used superlative indexes. The Fisher index is
used, in particular, to calculate the real aggregates shown in the national income and product
accounts of the United States (NIPA’s). This paper extends Hill’s results by showing that, under
realistic assumptions, the Fisher index is more susceptible to chain drift than is the Tornqvist.
Empirical examples confirm this possibility.

Using data for the period 1967-2002, we illustrate the alternative measures of long-term
real growth that result from different index number formulas and different linking intervals. The
calculations are for real GDP and real gross private domestic investment (GPDI). Using the
Fisher and the implicit Tornqvist index number formulas, almost identical results are obtained
when the linking interval is a quarter or a year, the linking intervals used in the NIPA’s.
However, as the linking interval lengthens, the Fisher index estimates diverge substantially while
the divergence among the implicit Tornqvist estimates is much smaller.

This finding motivates the paper’s theoretical contributions. The signs of the chain drift
for Fisher price and quantity indexes are determined from simple statistical assumptions, and the
signs obtained (for the Fisher quantity index, lower growth rates for chained than for binary
estimates) agree with the empirical finding. An analysis of the Fisher and Tornqvist formulas
provides insight into the greater stability of the Tornqvist estimates. This analysis confirms and
extends Lent’s [2000] finding of only small chain drift in the Tornqvist price index.

If chain indexes were always calculated with short linking intervals, then the results of this
paper would be of little importance. When linking intervals are short, the Fisher and Tornqvist
give very similar results. However, if an index is constructed from, say, decennial Census data,
the results of this paper suggest a preference for the Tornqvist. Moreover, it is not clear that a
short linking interval is always best, even when high frequency data are available. In the index
number literature, chain drift is identified as a problem when prices or quantities oscillate rather
than trend (Forsyth and Fowler [1981] and Szulc [1983]). Bouncing behavior in prices or
business cycles in quantities exacerbate the differences in the estimates from different linking
intervals. Forsyth and Fowler, and Szulc, suggest a variable linking interval, with longer intervals
used when oscillatory data are identified. A formal procedure for calculating optimal linking
intervals is proposed in Ehemann [2005] and, because the optimal linking interval is occasionally
found to be long, the Tornqvist index is used in illustrative calculations for national aggregates.



The format of this paper is as follows. In Section 1, we present a numerical example of
chain drift and examine its extent empirically using data for the U. S. economy. In Section 2, we
show that the differences between the chain and binary Fisher price and quantity indexes result
from the correlation between changes in price and the changes in expenditure shares attributable
to changes in income. Section 3 shows that such correlation need not imply chain drift in the
Torngvist index and provides further comparison with the Fisher. Section 4 concludes. An
Appendix contains the proof of a theorem in Section 2 on the chain drift of the Fisher index.

1. Some chained and binary growth rates

An index number formula is transitive if chaining from t =1 to t = 2 and then from t =2 to
t = 3 gives the same index value for the index at t = 3 as the direct index fromt=1to t=3. Thus
transitivity is equivalent to the absence of chain drift. Fixed-weighted indexes are transitive, but
they have been discarded in many applications because they have been shown to exhibit serious
substitution bias. The testing of an index number formula for transitivity by determining whether
the chained and direct calculation of the index value are equal is known as a circularity test. The
chained Fisher and Tornqvist indexes satisfy this test in two very special cases: (1) if the path
taken by the data can be divided into two parts, with the second an exact retrace of the first, and
(2) if the data are generated by a consumer with homothetic preferences, so that expenditure
shares remain constant as income changes with relative prices fixed.

Table 1 provides a numerical example of the failure, in general, of Fisher and Torngvist
indexes to satisfy transitivity. There are two goods and four periods. Prices of the two goods and
the Fisher chain quantity index are set equal to 1.00 in year zero. In each subsequent period,
substitution effects are the normal ones; that is, the quantity of each good changes in the opposite
direction from the change in its relative price. In year three, prices and quantities are the same as
in year zero. The circularity test requires that the index return to its original value of 1.00.
However, the computed value of the Fisher index is 34 percent higher. For the Tornqvist index,
the value in year three is 13 percent higher than in year zero. The test again fails by a wide
margin, but by less than for the Fisher index. The binary Fisher and Tornqvist indexes based to
year zero, of course, take the "reasonable" value of 1.00 in year three.

These results are more extreme than those observed in practice. In the remainder of this
section we compare chained and binary estimates of growth rates in real GDP and real gross
private domestic investment using two index number formulas, the Fisher quantity index and the
implicit Torngvist quantity index. The results for the Fisher and implicit Tornqvist indexes using
data for the U. S. economy are qualitatively consistent with those of the numerical example. There
are substantial differences between the Fisher chain and binary estimates and smaller differences
between the implicit Torngvist chain and binary estimates. The differences between chain and
binary are especially large for the Fisher estimates of real gross private domestic investment.



The Fisher chain and binary indexes are defined as follows. Let P, be a vector of period j
prices and @, the corresponding vector of period j quantities. Then the binary Fisher quantity
index for period ¢ compared with period 0 is
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The effect of chaining with the Fisher quantity index on real GDP growth rates is shown in
Table 2, columns 2 and 3. Column 2 shows the average rate of growth in real GDP for the thirty
year period 1967-1997, estimated using alternative intervals for chaining. The linking intervals
are quarterly and one, three, and ten years. The binary estimate over thirty years is also shown.
Column 3 shows the level of the GDP quantity index in 1967 for the same alternatives, assuming
the value of the index in the reference year 1997 is set to 100. The starting date 1967 was
selected because a major change in the source data for exports and imports occurred in that year.
The level of detail is held fixed at that available quarterly in 1967 in order to gauge the effect of
chaining alone. The published estimates of real GDP growth, shown for comparison, are based on
annual chaining and use the maximum level of underlying detail available for each year-to-year
interval. There is little difference between the estimated average growth rates obtained by
chaining quarterly and at one and three year intervals, but the estimates of the average growth rate
over the period change as the linking interval lengthens further. The estimated average annual
growth rate is 2.8 percentage points higher when the linking interval is thirty years than when
linking is quarterly.

Table 2, columns 4 and 35, presents the corresponding evidence on the effect of chaining
for one of the major components of real GDP, real gross private domestic investment. This
component is selected because of its economic importance and because the spectacular decline in
computer prices over the period makes the measurement of this component particularly sensitive
to the methods employed. For this component, changing the length of the linking interval is seen
to have a noticeable effect on the growth rate even when these intervals are relatively short, while
the estimated average growth rate more than doubles, from 4.02 percent to 8.32 percent, as the
linking interval goes from quarterly to thirty years. The test approach to index number theory
provides no guidance as to which of these average growth rates is “correct.”

The binary form of the Tornqvist quantity index is
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where the g, (fori =1, 2, ..., n and j = 0, ) are the components of ), the s, are the
corresponding expendltures shares Py, Pifiy and the p, are the components of P,. The
chained form of the Tornqvist quantity index is
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Although the Tornqgvist index is widely used, it is not available as a potential measure of real
GDP. This index is undefined for the interval (0, t) when the quantity of a component good is
zero in period 0. This problem occurs frequently in the underlying data for real GDP, in particular
in the detailed data for Federal defense purchases. The Tornqvist index is also undefined when
the quantity of a component good differs in sign in the two periods, as frequently occurs in the
data for change in private inventories.

The implicit Tornqvist quantity index is a closely related index for which these problems
do not occur. An implicit quantity index is obtained by dividing the ratio of nominal expenditures
in two specified periods by a price index for the same two periods; the implicit Tornqvist quantity
index is obtained by dividing the ratio of nominal expenditures by the Tornqvist price index.
Thus, the binary implicit Tornqvist quantity index is given by
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and the chain implicit Tornqvist quantity index is given by
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The Tornqvist price index avoids the problems encountered in attempting to measure real GDP
using the Tornqvist quantity index because inventory prices are positive and reasonable
procedures are available to impute a positive price to a good when no transactions occur in a
particular period. (Such imputations are also required by the Fisher quantity index.). The implicit
Tornqvist thus emerges as a possible alternative to the Fisher index for multi-period estimates of
real GDP.



The performance of direct and implicit quantity indexes has been compared by Allen and
Diewert [1981]. They recommend a superlative direct quantity index when there is less variation
in quantity ratios than price ratios. However, for the case of less variation in price ratios, they
recommend an implicit quantity index based on a superlative price index.

Table 3 repeats the analysis of Table 2 using the implicit Tornqvist index instead of the
Fisher. The amount of chain drift over the thirty year period is reduced substantially. The
difference between the largest and smallest estimated growth rates is less than 0.2 percentage
point for real GDP and less than 0.6 percentage point for real gross private domestic investment.
Moreover, while the Fisher estimated average growth rates always increase as the linking interval
is lengthened, the implicit Tornqvist estimated average growth rates show no such pattern.

2. Chain drift and the Fisher index

Forsyth and Fowler [1981] investigated chain drift in the Laspeyres, Paasche, geometric,
and Fisher indexes. They found that, just as the value of the (binary) Fisher index always lies
between those of the Laspeyres and Paasche indexes, the chain drift of the Fisher index is always
between that of the Laspeyres and Paasche. The chain drifts for the latter indexes were opposite
in sign and thus at least partially offsetting. Szulc [1983] showed, further, that the signs of chain
drift in the Laspeyres and Paasche price indexes depend on the pattern of serial correlation in the
prices. If price changes from the preceding period are positively correlated with the relevant
cumulative price changes and consumers respond normally to changes in relative prices, the
chained Laspeyres price index tends to be smaller than the corresponding binary Laspeyres index
and the chained Paasche price index tends to be larger than the corresponding binary Paasche
index. Lent [2000] investigated chain drift in the geometric and Tornqvist price indexes. She
found that the sources of chain drift in the Torngvist index tended to be offsetting, so that chain
drift could be expected to be small with no presumption as to sign. For the geometric price index,
on the other hand, if prices and expenditure shares have consistent trends and the elasticity of
price substitution is between zero and one, the chained index will be greater than its binary
counterpart. This section presents a corresponding result for chain drift in the Fisher index that
helps to explain the behavior of this index as shown in the preceding section.

First, however, we provide some perspective on chaining and chain drift. A clearly
desirable property for price aggregates is that the quantities or expenditures used to weight the
price changes of individual goods be contemporaneous with them. Because consumers respond to
price changes by changing quantities purchased (usually in the direction opposite of the price
change), the use of other than contemporaneous quantities or expenditures introduces a bias,
substitution bias. A substitution bias also arises in the measurement of quantity aggregates when
the quantity changes of individuals goods are combined using weights that are not
contemporaneous. Contemporaneous measurement of the prices, quantities, and/or expenditures
appearing in an index number formula requires chaining. In fact, the principle implies that
substitution bias is minimized when the linking interval is as short as possible. A second reason for
chaining is that it permits the inclusion of new goods and the dropping of discontinued goods as



data for these goods become available or disappear. If this were the whole story, chain drift would
not present a problem. True, different results would be obtained from different linking intervals
(or from a binary estimate over some longer period), but one could confidently choose the estimate
that used the shortest linking interval. The difficulty is that high frequency economic data may
introduce other sources of error into the chaining process. Measurement error due to the smaller
sample sizes underlying much high frequency data and short-term oscillatory behavior in prices or
quantities can degrade the quality of chained estimates.

The ubiquity of chain drift stems from nonhomothetic preferences. Samuelson and Swamy
[1974] demonstrated that with nonhomothetic preferences, chain indexes cannot be transitive.
Nevertheless, although contradicted by empirical evidence, the assumption of homothetic
preferences plays a key role in the economic theory of index numbers, as in the derivation of the
Fisher and Tornqgvist indexes from the optimizing behavior of consumers having homothetic utility
functions (as in Diewert [1976]).> Forsyth and Fowler [1981] suggested a practical response to
this dilemma: if intransitivity cannot be eliminated from empirical estimates, it might nevertheless
be reduced by choosing one index number formula rather than another. As observed above,
previous authors have identified the Fisher and Torngvist indexes as ones for which chain drift
could be expected to be smaller than for many other index number formulas. The investigation of
the Fisher index in this section lays groundwork for comparison of the two index number formulas
on this criterion.

We investigate chain drift for the Fisher price index under conditions tailored to the
question of measuring long term growth. To obtain definite results, we make six assumptions.
First, we assume that the rate of change in price for each good is constant over time. This is the
limiting case of Szulc’s [1983] assumption that price changes over time are positively correlated.
Second, we assume that there exists at least one pattern of income over time for which the rate of
change in expenditure for each good is constant and we choose one of these patterns of income as
a baseline. Third, realized income exceeds baseline income. Fourth, we assume that the main
variables in the analysis — rates of change in prices, rates of change in expenditures for individual
goods, and the initial expenditure shares — are distributed lognormally across goods.> We do not

2" A difficulty in dispensing with the homotheticity assumption is that it can be violated in
many different ways, leading to many different index number formulas, each exact for some
nonhomothetic utility function. Nevertheless, Feenstra and Reinsdorf [2000] provide an exact
price index for an important nonhomothetic case, the almost ideal demand system (AIDS).

3 Strictly, expenditure shares cannot have the lognormal distribution because they cannot
exceed one. However, the lognormal distribution has a thin right-hand tail. If the number of
goods is large, the expenditure shares will be concentrated around a very small mean and the thin
right-hand tail will provide an acceptable approximation. Use of a truncated lognormal
distribution, for example, would add unwarranted complexity.



require that the parameters of the joint lognormal distribution remain constant from one period to
the next. Fifth, we require a large number of goods.

Finally, we make an important assumption about the sign of a parameter in the assumed
lognormal distribution: that there is a positive correlation between a good’s rate of change in price
and the rate of change in expenditure on that good resulting from an increase in income. This
assumption can be rationalized in terms of more basic assumptions about price and income changes
and the utility function of a representative consumer. For the utility function, it is assumed that (1)
the elasticities of substitution for all pairs of goods lie between zero and one, and (2) along all
possible expansion paths (as income increases) the expenditure share for any particular good either
increases continuously or decreases continuously. (The elasticities of substitution used here are
not standard ones: they are income compensated to maintain rates of change in expenditures, not
to maintain utility levels.) In each period, income increases beyond the baseline level according to
some probability law, with small increases having nonzero probability. Now, as a result of the
price changes in a given period, the consumer moves to a new expansion path. Consider a good
whose relative price has increased. By the elasticity of substitution assumption, the expenditure
share of this good will increase with no change in income beyond the baseline change. If the new
expansion path is one for which the expenditure share for this good is increasing (for a randomly
chosen good, a 50 percent probability), the expenditure share increases for any increase in income.
If the new expansion path is one for which the expenditure share is decreasing, then by the
elasticity of substitution assumption, the expenditure share will increase if the further increase in
income is sufficiently small, which has positive probability. Thus, on balance, the correlation
between changes in expenditure shares and changes in prices is positive. The correlation between
expenditure changes and changes in prices will also be positive because, when relative changes are
considered, the change in expenditure shares equals the change in expenditures times a ratio of
total expenditures that is the same for all goods.

Theorem. Suppose that the prices of all goods grow at constant rates, not all equal. Let

k, = (p,9,)/(p.,.14.,,) be the ratio of expenditure on good i in period ; to that in the
preceding period, assumed constant over periodsj = 1, 2, ..., t, given a
baseline income path Y,j=012 ..,1

v, = the change in £, that results from an increase in income from its baseline

path; that is, v, = ck, /0Y,” = ¢k, /O¢,, where Y," =Y, + ¢, ¢,> 0,

w, = the expenditure share of good 7 in period 0, and

X, = p,;/p,;. be the constant ratio of the price of good i to that in the preceding
period.

Assume that the v, w, and x, are jointly lognormally distributed and that the v, and x, are
positively correlated. Then, if the number of goods is sufficiently large, the Fisher chain price
index will increase more rapidly (or decrease less rapidly) than the Fisher binary price index over

the period j =0 toj =1t



The theorem is proved in the Appendix. In the homothetic case, if all prices increase at the
same rate (so that relative prices are constant), expenditures on all goods will change at the same
rate, depending on the rate of change in income. The theorem states that when this special case is
excluded, an increase in income results in a greater change in the Fisher chain price index than in
the Fisher binary price index, provided that the other conditions stated in the theorem are satisfied.

Corollary 1. Suppose that quantities and prices grow at constant rates, not all equal, and
that the other conditions of the theorem also hold. Then the chained Fisher chain quantity index
will increase less rapidly (or decrease more rapidly) than the Fisher binary quantity index over the
same time interval.

Corollary 1 follows from the fact that the Fisher quantity index can be obtained by dividing
expenditures, indexed to the reference year, by the Fisher price index. This result is consistent with
the rising calculated growth rates, as the linking interval lengthens, shown for real GDP and real
GPDI in Table 2.

Alternatively, suppose that the realized income path Y/ grows at rates smaller than required
to maintain the constant rates of expenditure growth k, i = 1, ..., n. That is, Y/* =Y +¢g,¢<0.
Then the v, are negative. We have

Corollary 2. Adopt the same assumptions as the theorem, except that (i) ¢, <0, (ii) the -v,,
w, and x, are jointly lognormally distributed, and (iii) the -v, and x;, are positively correlated. Then
the Fisher chain price index will increase less rapidly (or decrease more rapidly) than the Fisher
binary price index over the period j = 0 toj =t The Fisher chain quantity index will increase
more rapidly (or decrease less rapidly) than the binary Fisher quantity index over the same time
interval.

Corollary 2 is proved by redefining u, in Appendix equation (A.9) as u, = -v,w,

To reverse the results of the theorem, we have assumed that income growth is less than
that required to maintain constant rates of growth in expenditures, which appears just as plausible
as the theorem assumption that it is greater. It may be that in strong rates of growth in the relevant
income measures underlie the empirical results reported in Table 2. However, Corollary 2 further
assumes a negative correlation between price change and income compensated expenditure
change, which is usually contradicted empirically. The chain drift shown for real GDP and real
private domestic investment in Table 2 as the linking interval lengthens could also be the net result
of positive chain drift when income shocks are positive and mixed outcomes when they are
negative.

3. Fisher vs. Torngvist

The results of the preceding section comparing Fisher chain and binary indexes can be
compared with corresponding properties of Tornqvist chain and binary indexes. Lent [2000] has



shown, using algebra similar to that used to derive the corresponding ratio of Fisher indexes in
Appendix equation (A.7), that the ratio of the chain Tornqvist price index to the binary Tornqvist
price index over the same interval is

12
3) P_TC = ﬁﬁ Dy S5y Py Sije175i)
P i=1 j=1 |\ Py p;

Lent states that if prices and shares are steadily increasing or decreasing, the “drift factors™ in (3)
should neutralize each other. This conjecture can be established formally.

As in the case of the Fisher indexes, we assume constant rates of price change x, = p,/p, ;.
Thus, p, = p,»x/ foralliandj. However, for the Fisher index, it was analytically convenient to
represent departures from hometheticity by assigning goods unequal constant-over-time growth
rates in expenditures. For the Torngvist index, departures from hometheticity are most easily
represented by arithmetically constant increases or decreases in shares. Hence we assume s,
s, T ¢, forall i and j, where 2¢, = 0 Squaring both sides of (3) and making these substltutlons
we obtaln
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because Yj = 1 Thus, in this simple but significant nonhomothetic case, the Torngvist
j=1
chained and binary indexes give identical results.

This demonstration for the Tornqvist index and the theorem for the Fisher index in the
preceding section illustrate differences in the propensity for chain drift of the two indexes but do
not indentify the underlying sources of these differences. This task occupies the remainder of this
section. Reinsdorf [1996] and Reinsdorf, Diewert, and Ehemann [2002] showed that the Fisher
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index could be expressed as a geometric index with time-varying expenditure weights. Because
the Tornqvist is also a geometric index with time-varying expenditure weights, this form facilitates
comparison of the two indexes.

Following Reinsdorf, the geometric index form of the binary Fisher price index is

prB _ ﬁx~5(Yi+5i)
i1
where
s m(x,x s.m(y.,y
Y,- — i0 (1 ) and 8,- _ i0 (yly) ,
Eshom(xh,a_c) EshOm(yh,;)
h=1 h=1
m(a,b) denotes the logarithmic mean:
m(a,b) = aib,
Ina - Inb
and
v, =1k, x =Xsyx, and y = Xs y

Note that x is the Laspeyres price index and y is the reciprocal of the Paasche price index.

The logarithm of the geometric form of the Fisher index can be approximated by that of the
Torngvist index plus additional terms. To show this, we replace y, by a linear Taylor’s series
approximation in terms of m(x,, x) and evaluated at m(x,,x) =x,h =1, 2, ..., n, and we replace 9,
by a linear Taylor’s series approximation in terms of m(y,,y) and evaluated at m(y,, Y=y, h= ]
2, ..., n. Because the numerators and denominators of the logarithmic means go to zero at these
evaluatlon pomts the latter must be approached as limits. Define the vectors X = (x,, x,, ..., x,),

= @Xen), Y = 0,0 9. Y = (), My = ((x,3),....om(x,,)). and -~
M, = (m(l/l,y) »m(y,,y)). Then, because lim,_, m(a b)=b, X-X and Y- Y imply M,-X
and M,~ Y, the limits required by the Taylor’s series expansions.

Consider first only the zero-order Taylor’s series terms in the expansions of y,and 0, We
have

limy 3y, = s, and  lim; 38, = s,

fori =1, 2,..., n. Thus, to order zero, the Fisher index is approximated by the Tornqvist:
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Turning to the first-order terms, we have
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Combining these results, the logarithm of the binary Fisher price index is approximated by

(6)
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Thus, the Fisher price index differs from the Tornqvist according to the extent that goods
with large expenditure shares are also goods whose price change differs from the average. The
two indexes will differ, in particular, if the rate of price change for an important good is an
“outlier.” However, a good with an above average x; will have a below average y,. Consequently,
the first-order terms are partially offsetting. For a single good to have a large effect on the net
difference between the two indexes, there must also be a large change in the good’s expenditure
share between the two periods.

12



An approximation of the Fisher quantity index as a Tornqvist quantity index plus additional
terms can be derived in exactly the same way as (6). If £, = ¢,/q,,, is assumed constant over time
and we define g, = I/f;,, f = YLs,f,, and g = Xs,g.,

m(tf) 1] m(g,8) 1]

+ Si?(l - Slt)[
g

(7 Q™ = %2_1: (nf)|s;p + 5, + Si%)(l - sio)(

The Fisher quantity index differs from the Tornqvist according to the extent that goods with large
expenditure shares are also goods whose quantity change differs from the average. Referring to
equation (7), one can consider the differences between the Fisher and Tornqvist quantity indexes
reported in Tables 2 and 3. When the linking interval was small, the Fisher and Tornqvist gave
almost identical results. This corresponds to a finding that the third and fourth terms in the large
brackets in (7) are nearly offsetting. Suppose now that the linking interval is k& periods. In place of
f, we have f* and, similarly, the replacements g/ for g, 4 - Esmfl.k for £, and é[k] = Xs, gik
for g. The quantities ][k] and gr[k] are in general quite different from their  and g counterparts.
The first is much more affected by the goods whose rates of quantity change is greatest, while the
second is much more affected by the goods whose rates of quantity change is smallest. The result
is that the tendency for the third and fourth terms in (7) to offset is much weaker and the Fisher
and Torngvist differ.

This finding illustrates a more general result reported by Hill [2006]. The Tornqvist and
Fisher indexes are members of the quadratic-mean-of-order-r class of superlative indexes, with  »
= () giving the Tornqvist and » = 2 the Fisher. Hill found that the weight given to outliers by
members of the class increases with r.

Equation (7) also provides a perspective on the differences between Fisher estimates based
on different linking intervals. Consider the ratio of chain to binary Fisher price indexes over the
same interval. If we return to the very special case in which expenditure shares change
arthimetically as prices change geometrically, the ratio P"“/P'® will approximately equal the ratio
P'“/P™, which by equations (4) and (5) is equal to unity, times an expression involving 7, /7, g..
g/, and their corresponding means. Whenever important components have divergent rates of
growth, the terms in the long-interval chain will fail to cancel. The geometric form of the Fisher
index is not convenient for sorting out the net effect, but that was done, given some additional
assumptions, in the theorem of the preceding section.

4. Summary and conclusions
It is generally believed that the Fisher and Tornqvist indexes will give very similar results.
This belief is the result of experience with short linking intervals. We have shown that as the

linking interval of chained Fisher and Tornqvist indexes is lengthened, the two index types diverge.
In tests using data for real GDP and real private domestic investment, the Fisher index diverged

13



from estimates using quarterly or annual linking more rapidly than did the Tornqvist, and in further
contrast to the Tornqvist, all the changes were in the same direction.

It is also generally believed that chain drift is a property of indexes that attempt to measure
aggregates exhibiting oscillatory or cyclical behavior. An extreme numerical example of oscillatory
behavior illustrated this source of chain drift. However, we showed analytically that the Fisher
index of an aggregate displays chain drift even when prices and expenditures of the individual
goods change at constant or nearly constant rates. We also showed that, under appropriate
assumptions (including constant rates of price change), the direction of chain drift observed in the
Fisher estimates of real GDP and real GPDI could be predicted.

Although all chained indexes will exhibit chain drift in the absence of homothetic
preferences, we showed that the Tornqvist index does not always require homothetic preferences
to be free of chain drift. By approximating the logarithm of the Fisher index as the logarithm of
the Tornqvist index plus additional terms, we were able to identify some of the factors that
increase the propensity to chain drift in the Fisher.

In view of these results, it remains true that if chaining is done with short linking intervals,
the issue of chain drift does not affect the choice between the Fisher and the Tornqvist. That
choice can be made on other grounds. However, if for some reason longer linking intervals must
be used, these results suggest that the Tornqvist index should be strongly considered. Moreover,
short linking intervals do not eliminate the possibility of chain drift, which can also appear as a
result of bounces and cycles in the data. Ehemann [2005] investigates the extent of such chain
drift in the NIPA’s and, where found, adjusts for it using the chained Tornqvist with longer links.

Appendix:
Proof of the Theorem on Fisher Index Chain Drift

We first prove two lemmas that establish inequalities that follow from the bivariate
lognormal distribution. Then we present a theorem that establishes the relative magnitudes of
chain and binary Fisher price indexes.

Lemma 1. Letv, w, and x be jointly distributed lognormal random variables and let (v, w,
x;) fori =1, 2, ..., n be a sample from this distribution. Define the random variable # = vw with
sample values #, = vw,. Assume that v and x are positively correlated (i.e., p(v, x) > 0) and let ¢
be a positive integer greater than one. Then, for sufficiently large values of 7,

-(t+1) -(t-1)

Zux, Sux,"  Zux,"  Tuy,

(A.1)

Ewlx[(ﬁl) Ewlxlft Ewlx[t Ewlx{(ﬂ)
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Because taking logarithms of variates does not change the sign of their correlation, p(ln v,
Inx) <0. Letu(,")denote a covariance, so that 0 < u(-Inv, Inx), and add u(Inv, -t Inx) to
both sides of this inequality. Recalling that the covariance of a sum is the sum of the covariance,
this gives u(Inv, -tInx) < u(Ilnv, - (t-1) In x). Multiplying both sides by 0.5 and taking
exponentials yields

exp(.5pu(Inv, - tInx)) < exp(.5u(Inv,(r-1)Inx)).

Multiplying both sides of this inequality by the expression exp((Su(- Inv, - Inx)) - 1, which is
negative, reverses the direction of inequality and yields

exp(.5 p(Inv, - tInx))[exp(.5 p(Inv, - Inx))-1]
> exp(.5p(Inv, - (1-1)Inx))[exp(.5 p(Inv, - Inx))-1].
Performing the multiplications gives
exp(.Sp(lnv, - (t+1)Inx)) - exp(.5u(nv, -¢Inx))

> exp(.5u(lnv,- tlnx)) - exp(.Su(lnv, -(¢-1)Inx)).

Now make the substitution /n v = [n u - In w and again use the rule that the covariance of a
sum is the sum of the covariances to obtain

exp(.Su(lnu, - (1+1)Inx)) _ exp(.5pu(Iny, - fInx))
exp(.Spu(lnw, - (r+1)Inx))  exp(.5pu(lnw, -7Inx))

exp(.5Su(lny, -rlnx))  exp(.5p(nu, -(¢-1)Inx))

" exp(Sudnw, ~rnx))  exp(:Su(inw, ~(-1)nx)

Next multiply each side by the ratio (E/u] E[1/x])/(E[w]E[1/x]), where E[ ] denotes expected
value. We obtain

E[u]E[1/x] exp(.Sp(nu,-(t+1)Inx))  E[u]E[1/x] exp(.5u(Inu, -tInx))
(A2)  E[w]E[1/x] exp(.5Su(lnw, - (t+1)Inx))  E[w]E[1/x] exp(.5u(Inw, - tInx))

o E[u]E[1/x] exp(.5p(lnu, -tInx)) _ E[u]E[1/x] exp(.5p(lnu, - (¢-1)Inx))
E[w]E[1/x] exp(.5u(lnw, -tInx))  E[w]E[1/x] exp(.5u(lnw, - (r-1)Inx))

For random variables v and ® having the bivariate lognormal distribution, the joint moments
around zero are given by

E[v'oP] = E[v]E[o]exp(.Sofu(nv,no)),
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where o and 3 are positive integers [Simon, 2002, p. 23, our notation]. In (A.2), we have o =
1/x, oo =1, f = t, and, in separate expressions, v = u or v = w. Because u is the product of
lognormal variates, it is itself lognormal. Also, because it is the reciprocal of a lognormal variate,
1/x is lognormal. Thus, (A.2) can be written

Elux @V Elux™ o Elmx™ _ Elux |

(A.3) .
E[wx @D E[wx™  Ewx™  E[wx @]

Because the sample moments from a lognormal distribution are consistent estimators of the
corresponding population moments, (A.1) follows from (A.3) provided that 7 is sufficiently large.

Lemma 2 . Under the same assumptions as Lemma 1,

Euzxii ~ E”zxiil Euzxtil ~ Euzxi

>
2 1 1
Ywx, Ewlxi Ewlx. Ywy,

1A 1

(A4)

provided that 7 is sufficiently large.

An inequality of the form R, - R, > R, - R, holds if

The inequality (A.4) has this form with R, = R, so it can be established by proving an inequality of
the form

(A.5) R/R, -1>1 -R/R,

Consider another inequality with the same form as (A.4),

Elux®  Elux] S Elux™ ']  Elux]
E[we?]  Ewx™]  Ewxe]  Elwx]

(A.6)
Using the properties of moments around zero of the bivariate lognormal distribution, we have

Ry Eux [ Bl )|

R, E[wx 2]\ Epwx ]

= exp(.5u(nv, -2Inx) - .Su(lnv, -Inx))

= exp(-.5p(lpv,Inx))



and

Ry _ Efwd( Eux1)”

R,  E(wx]\ Epwx ]

= exp(.5u(Inv,Inx) - .Su(lnv, -Inx))
= exp(u(Inv,Inx)).

Taking series expansions of the exponential terms, we obtain

R
RTI -1 = -5p(lnv,Inx) + .125[p(lnv,Inx)]> - ...
2
and
R4 2
1 - 2 = -w(nv,Inx) - S[u(lnv,Inx)]* - ....

Thus, (A.5) holds for these values of R, /R, and R,/R; when p(v, x) and therefore u(In v, In x) are
positive. Consequently, (A.6) holds. The inequality (A.4), the sample counterpart of (A.6), holds
when 7 is sufficiently large.

The proof of the theorem consists primarily of recasting the ratio of the Fisher chain to the
Fisher binary price index into a form to which lemmas 1 and 2 can be applied.

The Fisher binary price index, P'”, and Fisher chain price index, P'“, are defined by
interchanging p’s and ¢ ’s in text equations (1) and (2), respectively. The squared ratio of these
indexes is

T 0P 0P,

> Horiorn,
O, OF,
QP 9P

PFC

PFB

Some algebraic manipulation gives*

* The algebraic steps is this paragraph parallel the simplification of the ratio of the chained
to the binary Tornqvist price indexes in Lent [2000].
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98 9P

PFC 2 ﬁ ij1ij1 Qij
P I 0p op,
0P, OF

E P, P9 Py PA;

_ li[ P Xpig,, b Xpg,
Ay B Py P Py
L Xpgy T b Xpg,

where the summations run over goods. The goods subscript i will be suppressed when clear from
the context. Now letx, = p,/p,,, denote the constant-over-time relative change in price of the ith
good in consecutive perlods andlet e, . = p, g, . denote “generalized expenditure” on the ith
good, where m and m" are particular periods, not necessarily the same. With this notation, the
squared ratio of price indexes can be written

. e.
Zx j-1j-1 Zx—l it
p_FC 2 _ ILI Eej_u_l Eet
PFB -1
BID IS o
7-1,0

In the first and last periods, this expression contains sums that are equal and thus cancel. Hence
(P /P"™)? can be written more compactly by advancing subscripts in the first ratio within the large
brackets by one period and reducing the terms in the product by one. The result is

e. e
2 t-1 Exi Ex_l
g
Myl vl
Zx -Zx Eejj

In this expression, the denominators 2e,, cancel, so we can write

PFC
PFB

2 -1 -1
Yx e, Exejf EeJ.O
Jj=1 Ee. Ex ’lejl_ Exeﬂ)

Jt

(A.7)

Letk, = e, /e, , denote the constant-over-time ratio of expenditures on good i in

consecutive periods. Let the expenditure share of good i in period zero, w, be given by
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W, = €/ 210 = €/ Y(0).
Then
emm = ei00x1m_nkn - Wixim_nkinY(O)'

1

In this notation,

where

C Xxle, Yyt 2 Yxe,  Ywxk’

A = = . L= = )
! Eeﬂ Ywx/ k! D" 'lejj Ywx k7
de. J
and C = o _Xwx

Exejo Y wnx Jj+1 .

The logarithm of (P"“/P"#?)? can be approximated by a linear Taylor’s series expansion
around a point at which all the &,’s are equal. The first-order terms require the partial derivatives
of In A, In B, and /n G forj =1, 2, ..., t with respect to k;, fori =1, 2, ..., n. These partial
derivatives are, respectively,

olnd, ¥ twlx{_t_lkit_1 twlx{_tkf_l
ok, G Sk Ywx/ k)
olnB.

>

i

i

ok, Ywxk/ Ywx k7

1

and

dln CJ
ok,
Evaluating these partial derivatives and the zero-order term of the Taylor’s series expansion at £,
=k, i=1, 2 ..., n, we obtain the Taylor approximation
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prC o j=t-1 Swe/ Tl Tue S/
PFB j:1 Z\/ijit Em -1 Ew/x_]Jrl
o -_ - _1 — . . _1
) j=t-1 i=n l thxl] ! B twlet . JWX; _ JWXi (k, - %)
T St Yyt Xwx Ywx )

Now consider the effects of an increase in income in period j from its baseline path.
Because, by assumption, ck,/ ¢, =v,, the rate of change of In (P"“/P"")’ with respect to a change
in total expenditures in period j is

P

jt-1 -t :
twx; _ oy IR TWA

Sux/ Tl Yyt Xwx Yyx !

oln(PT/PEY A1
de, i=1 %

J

(A.8)

To complete the proof, we show that if the number of goods, 7, is sufficiently large, (A.8)
is positive for all values of j. Letu, =v,w, Because 1 >, it is sufficient to show that

jt-1

Yu X

(A9) | ) Eiujxf:” . Eiujx’1 . Eiujx,
> wx/ 1 Y/t Xowx -1 X wx

forall jand ¢. Foranytand withj =1¢- 1, (A.9) holds by Lemma 2. Inequality (A.9) can be
verified for j =7 - 2 by combining lemmas 1 and 2. Specifically, upon setting = / in (A.1), the
right-hand side of (A.1) equals the left-hand side of (A.4), implying (A.9). Repeated substitutions
from (A.1) with successively higher values of ¢ establish (A.9) for all values of j. The theorem is
proved.
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Table 1.—Example of the Circularity Problem

Year 0 Year 1 Year 2 Year 3
Price of good 1 1.00 2.00 1.50 1.00
Quantity of good 1 3.00 2.00 2.20 3.00
Price of good 2 1.00 0.30 0.50 1.00
Quantity of good 2 2.00 5.00 1.70 2.00
Fisher quantity relative -- 1.17 0.67 1.70
Fisher chain quantity index 1.00 1.17 0.79 1.34
Tornqvist quantity relative - 1.04 0.83 1.30
Tornqgvist chain quantity index 1.00 1.04 0.86 1.13
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Table 2.—Average Annual Growth Rates (Fisher) for Real Gross
Domestic Product and Real Gross Private Domestic Investment, 1967-1997

0y @) 3) Q)]
Linking Average GDP Average GPDI Quantity
Interval Annual Quantity Annual Index for 1967
Growth Rate, Index for Growth Rate, | (Year 1997 =
GDP 1967 GPDI 100)
(percent) (Year 1997 =|  (percent)
100)
1967-level underlying
detail:
Quarterly 3.02 40.92 4.02 30.63
1 year 3.08 40.26 4.16 29.46
3 years 3.10 40.08 4.24 28.75
10 years 3.34 37.27 5.00 23.11
30 years 5.82 18.21 8.32 9.08
Full underlying detail:
1 year
(official estimate) 3.10 40.04 4.16 29.41

Note: Quarterly data for 1967 are unpublished deflation-level detail. Where additional detail are
available annually or in subsequent years, Fisher aggregates are substituted to hold the level of
detail constant. Estimates except those that chain quarterly are based on annual data.
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Table 3.—Average Annual Growth Rates (Implicit Tornqvist) for Real Gross Domestic
Product and Real Gross Private Domestic Investment, 1967-1997

0y (0] (®)) (C))
Linking Average GDP Average GPDI Quantity
Interval Annual Quantity Annual Index for 1967
Growth Rate, Index for Growth Rate, | (Year 1997 =
GDP 1967 GPDI 100)
(percent) (Year 1997 = (percent)
100)
1967-level underlying
detail:
Quarterly 3.08 40.26 4.03 30.54
1 year 3.06 40.52 4.12 29.82
3 years 2.99 41.27 3.71 33.52
10 years 2.89 42.56 3.56 35.04
30 years 3.03 40.87 3.77 32.94
Full underlying detail:
1 year
3.08 40.29 4.13 29.69

Note: Quarterly data for 1967 are unpublished deflation-level detail. Where additional detail are
available annually or in subsequent years, Fisher aggregates are substituted to hold the level of detail
constant. Estimates except those that chain quarterly are based on annual data.
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