Skip Navigation to main content U.S. Department of Energy U.S. Department of Energy Energy Efficiency and Renewable Energy
Bringing you a prosperous future where energy is clean, abundant, reliable, and affordable EERE Home
A Consumer's Guide to Energy Efficiency and Renewable Energy
Your HomeYour VehicleYour WorkplaceProducts and ServicesRenewable EnergyInformation ResourcesHome
Your Home
Apartments Appliances and Electronics Designing and Remodeling Electricity Energy Audits Insulation and Air Sealing Landscaping Lighting and Daylighting Space Heating and Cooling System Selection and Replacement Cooling Systems Heating Systems Heat Pumps Air-Source Ductless and Mini-Split Geothermal Absorption Operating and Maintaining Advanced Features Supporting Equipment Water Heating Windows, Doors and Skylights
Learn More

Product Information

Department of Energy Resources

State & Local Resources

Related Links

Reading List

Calculators and Evaluation Tools
Bookmark and Share Printable Version

Types of Geothermal Heat Pump Systems

There are four basic types of ground loop systems. Three of these—horizontal, vertical, and pond/lake—are closed-loop systems. The fourth type of system is the open-loop option. Which one of these is best depends on the climate, soil conditions, available land, and local installation costs at the site. All of these approaches can be used for residential and commercial building applications.

Closed-Loop Systems

Horizontal

This type of installation is generally most cost-effective for residential installations, particularly for new construction where sufficient land is available. It requires trenches at least four feet deep. The most common layouts either use two pipes, one buried at six feet, and the other at four feet, or two pipes placed side-by-side at five feet in the ground in a two-foot wide trench. The Slinky™ method of looping pipe allows more pipe in a shorter trench, which cuts down on installation costs and makes horizontal installation possible in areas it would not be with conventional horizontal applications.

Illustration of a horizontal closed loop system shows the tubing leaving the house and entering the ground, then branching into three rows in the ground, with each row consisting of six overlapping vertical loops of tubing. At the end of the rows, the tubes are routed back to the start of the rows and combined into one tube that runs back to the house.

Vertical

Large commercial buildings and schools often use vertical systems because the land area required for horizontal loops would be prohibitive. Vertical loops are also used where the soil is too shallow for trenching, and they minimize the disturbance to existing landscaping. For a vertical system, holes (approximately four inches in diameter) are drilled about 20 feet apart and 100–400 feet deep. Into these holes go two pipes that are connected at the bottom with a U-bend to form a loop. The vertical loops are connected with horizontal pipe (i.e., manifold), placed in trenches, and connected to the heat pump in the building.

Illustration of a vertical closed loop system shows the tubing leaving a building and entering the ground, then branching off into four rows in the ground. In each row, the tubing stays horizontal except for departing on three deep vertical loops. At the end of the row, the tubing loops back to the start of the row and combines into one tube that runs back to the building.

Pond/Lake

If the site has an adequate water body, this may be the lowest cost option. A supply line pipe is run underground from the building to the water and coiled into circles at least eight feet under the surface to prevent freezing. The coils should only be placed in a water source that meets minimum volume, depth, and quality criteria.

Illustration of a pond or lake closed loop system shows the tubing leaving the house and entering the ground, then extending to a pond or lake. The tubing drops deep into the pond or lake and then loops horizontally in seven large overlapping loops, then returns to the water's edge, extends up near the surface, and returns back to the house.

Open-Loop System

This type of system uses well or surface body water as the heat exchange fluid that circulates directly through the GHP system. Once it has circulated through the system, the water returns to the ground through the well, a recharge well, or surface discharge. This option is obviously practical only where there is an adequate supply of relatively clean water, and all local codes and regulations regarding groundwater discharge are met.

Illustration of an open loop system shows a tube carrying water out of the house, into the ground, and over to a well, where it discharges into the groundwater. A separate tube in a well some distance away draws water from the well and returns it to the house.