CalTech NASA JPL JPL CalTech
NASA Logo - Jet Propulsion Laboratory Follow this link to skip to the main content
   + View the NASA Portal

JPL Home Earth Solar System Stars & Galaxies Technology
Mars Exploration Rovers
Images Multimedia News Missions Events Kids Education Science & Research About JPL
At a Glance
Daily Updates
Flight Director Reports
News Releases
Features
Image Releases
Multimedia
Fact Sheet
Press Kit
Media Contacts
Link to MER Home Page

 


 Popular Images:
 + Raw Images
 + Artist's Concept
 + Mars Wallpapers

 Image Archives:
 + January 2007
 + December 2006
 + November 2006
 + October 2006
 + September 2006
 + August 2006
 + July 2006
 + June 2006
 + May 2006
 + April 2006
 + March 2006
 + February 2006
 + January 2006
 + December 2005
 + November 2005
 + October 2005
 + September 2005
 + August 2005
 + July 2005
 + June 2005
 + May 2005
 + April 2005
 + March 2005
 + February 2005
 + January 2005
 + December 2004
 + November 2004
 + October 2004
 + September 2004
 + August 2004
 + July 2004
 + June 2004
 + May 2004
 + April 2004
 + March 2004
 + February 2004
 + January 2004
 + 2003
 + 2002

 Site Tools:
 + Adobe Reader
 + Apple QuickTime
 + Macromedia Flash
 + RealPlayer
Angled Layers in Super Resolution

Angled Layers in Super Resolution
12/13/04
Researchers used a special imaging technique with the panoramic camera on NASA's Mars Exploration Rover Opportunity to get as detailed a look as possible at a target region near eastern foot of "Burns Cliff." The intervening terrain was too difficult for driving the rover closer. The target is the boundary between two sections of layered rock. The layers in lower section (left) run at a marked angle to the layers in next higher section (right).

This view is the product of a technique called super resolution. It was generated from data acquired on sol 288 of Opportunity's mission (Nov. 14, 2004) from a position along the southeast wall of "Endurance Crater." Resolution slightly higher than normal for the panoramic camera was synthesized for this view by combining 17 separate images of this scene, each one "dithered" or pointed slightly differently from the previous one. Computer manipulation of the individual images was then used to generate a new synthetic view of the scene in a process known mathematically as iterative deconvolution, but referred to informally as super resolution. Similar methods have been used to enhance the resolution of images from the Mars Pathfinder mission and the Hubble Space Telescope.

Image Credit: NASA/JPL/Cornell

+ Medium resolution version of this image
+ High resolution version of this image
+ Print this image and caption

Privacy / Copyrights FAQ Contact JPL Sitemap
FIRST GOV + Freedom of Information Act NASA Home Page
Site Manager:
Webmasters:
  Susan Watanabe
Tony Greicius, Martin Perez