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� As I am completely deaf, 
please write down your 
questions.

� Pass them up to me

� I will read out your 
question before 
answering it.
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� The parameters of the Standard Electroweak Model are:                         

� The 4 quark mixing parameters

reside in  CKM matrix

The CKM Matrix 

WFG θα 2sin,

HM & fermion masses and mixings
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* In SM  λλλλ, A, ρρρρ, ηηηη are   
fundamental parameters

�Does the CKM fully 
explain  quark mixing? CP 
Violation?

�To detect new physics in 
flavor changing sector must 
know CKM well

� Must overdetermine the 
magnitude and phase of 
each element 
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W �cs

CKM Matrix Status

l
νB π eiγ1 λ

l

νD π

l
νD
Κ

l

B ν
D

1Bd Bd Bs Bs

δVud/Vud 0.1% δVus/Vus =1% δVub/Vub 25%

δVcd/Vcd 7% δVcs/Vcs =11% δVcb/Vcb 5%

δVtd/Vtd =36% δVts/Vts 39% δVtb/Vtb 29%

ν

π
Κ

l

Vud, Vus and Vcd are the best determined due to flavor symmetries: I, SU(3), 
HQS.  Charm and the rest of the beauty sector are poorly determined. 
Theoretical errors on hadronic matrix elements dominate.

lcd →ν

e
ν

p
n

Free/bound

eiβ
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B decays & the unitarity triangle 

γ β

α

b→ulν
(B → π/ρ/ηlν )

B → π π
B → ρπ

B → π π/K π
& other charmless
decays

λVcb*

VtdVub*

B→φK
B→J/ψKs ρρρρ

η

b→clν (B→ D*/Dlν )

B→ργ/B→K*γ

Vtd/Vts

B→DK

**
cbtdub VVV λ=+Unitarity :

Goals for the decade: precision measurements of  Vub, Vcb, Vts, Vtd, Vcs, 
Vcd, αααα, ββββ, γγγγ. Test SM description of CP violation and search for new physics.

SM:  side & angles  
measured in many 
processes are self 
consistent
Otherwise: new physics

Rates: sides of triangle
CP asymmetries & rates 
: angles

Base λVcb well known
Other sides poorly known
angles α γ unknown. β soon
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� 1968:  10 Gev e- synchrotron built
� Size of ring determined by size of playing fields

� 1975:  Proposal for e+e- storage ring in synchrotron tunnel, Ebeam=8 GeV

� PEP/PETRA Ebeam=15-20 GeV

� SPEAR Ebeam=2 GeV

� 1977: b-quark discovered at FNAL!

� 1979: CLEO sees first collisions

� 1980:  Y(4S) discovered

� CLEO 1979

� CLEO I.V 1986

� CLEO II 1989

� CLEO II.V 1995

� CLEO III 1999

A Short History of CESR/CLEO

CESR 
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CESR/CLEO 1980-2001
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CLEO at CESR

)01'24(103.1 1233 MayscmLpeak
−−×=

( ) 11 35.0350~ −−
� weekMBBpbLdt

ONOFF

�CLEO at CESR  e+e- storage ring  √√√√s=10.58 GeV
�Operation at Y(4S) just above BB threshold    

�

�

� 107 BB, cc, ττττττττ CLEO II/II.V (1990-99)  

� 7 x 106 BB. CLEO III (2000-01) Turned

off.  June 25 1st results at LEPPHO �01 

� B�s produced nearly at rest

� No B_s or b-baryons

� 25% of hadronic cross section is BB

� CLEO 4pi solenoidal detector  

�si + drift chamber in 1.5T field 

� CsI calorimeter

� muon identification           
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BABAR/Belle/CLEO datasets

123310 −−× scmLpeak

ON     OFF
CESR/CLEO           1.3             16.0     6.7   34  
KEKB/Belle    4.5             29.1     3.7                62  
PEPII/BABAR        3.4             34.1     4.1                74    

610'# ×� sBLdt

CESR                           KEKB                           PEPII
e- e+                 e- e+                   e- e+

5.3 GeV   5.3  GeV        8   GeV     3.5  GeV        9 GeV   3.1 GeV 
βγ=0.06 βγ=0.425 βγ=0.56 

Dataset used for analyses: Summer conferences 2001
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B →Κπ→Κπ→Κπ→Κπ /ππππππππ: γγγγ via penguin,tree interference

Two approaches: measure rates or
Acp  both contain information 
on the product of γγγγ and 
the (unknown) strong phase difference 
ϕϕϕϕ between contributing amplitudes

−− π,K

−− π,K

+π

+π

From CKM counting expect:
* B →Κπ→Κπ→Κπ→Κπ is mostly penguin
* B →ππ→ππ→ππ→ππis mostly tree

tree

penguin

ϕγ coscos22/)(
22

PTPT AAAABRBR ++=+

φγ
φγ

∆++

∆
=

→+→
→−→=

coscos2

sinsin2

)()(

)()(
22

PTPT

PT
CP

AAAA

AA

fbBfbB

fbBfbB
A
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� Each B has energy equal to the 
beam                                  

� For signal events ∆∆∆∆E peaks at 0 
σσσσ(∆∆∆∆E)))) = 25-100 MeV

� Constrain ∆∆∆∆E=0

� Suppress background:

� and energy flow

� E,p constraints do not fix B 
direction:ΥΥΥΥ(4S) is transverse 
polarized

� dE/dx  K/ππππseparation

� maximise differences between  
sig and bkgd Fisher discriminant 

� multidimensional unbinned
maximum likelihood fit using     
all available information

B Reconstruction

2 kinematic constraints: E,p

beamEEEE −+=∆ 21

2
21

2
21, )()( ppEEM rawB +−+=

42
21

2 105)( −×≈+−=
B

B
beamB M

MppEM σ

−+→ 21 ππBexample

To charm final states
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B →Κπ/ππ

N(Κπ)→

↑
N(ππ)

80 ± 12

20 ± 7

6
6

102.17
107.948.

80)(
)( −

−+
−+ ×=

×•
=

•
→=→

BBN

KBN
KBBr

ε
ππ

CLEO II/II.V
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B →Κπ/ππSummary

* General agreement theory 
* Large Br(B →→→→Kππππ)/Br(B→ππ→ππ→ππ→ππ) ����
*  severe penguin pollution complicating 
extraction of αααα at BaBar/Belle 
* B →→→→ ππππ0 ππππ0 submitted to PRL

→

→

 CLEO (9.7M BB )  

Mode NSig Signif. Eff 
(%) BF × 10-6 Theory 

BF × 10-6 
−+ππ  6.7

5.60.20 +
−  4.2σ 48 5.03.4 6.1

4.1 ±+
−  8-26 

0ππ+  7.9
5.83.21 +

−  3.2σ 39 < 12.7 3-20 
00ππ  

8.4
7.32.6 +

−  2.0σ 29 < 5.7 0.3-4.6 
−+πK  8.11

0.112.80 +
−  11.7σ 48 2.12.17 5.2

4.2 ±+
− 7-24 

+π0K  
4.6
6.52.25 +

−  7.6σ 14 6.12.18 6.4
0.4 ±+

− 3-15 
0π+K  

9.10
9.91.42 +

−  6.1σ 38 4.1

3.1
0.3
7.26.11

+

−
+
−  8-26 

00πK  
9.5
0.51.16 +

−  4.9σ 11 4.2

3.3
9.5
1.56.14

+
−

+
−  3-9 

−+KK  
4.3.
7.07.0 +

−  0σ 48 < 1.9  
0KK +  

4.2
3.14.1 +

−  1.1σ 14 < 5.1 0.7-1.5 
00 KK  0 0σ 5 < 17  

 

→
Good agreement
Between BABAR
Belle/CLEO
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B →Κπ/ππSummary

* General agreement theory 
* Large Br(B →→→→Kππππ)/Br(B→ππ→ππ→ππ→ππ) ����
*  severe penguin pollution complicating 
extraction of αααα at BaBar/Belle 
* B →→→→ ππππ0 ππππ0 submitted to PRL

→

→

 CLEO (9.7M BB )  

Mode NSig Signif. Eff 
(%) BF × 10-6 Theory 

BF × 10-6 
−+ππ  6.7

5.60.20 +
−  4.2σ 48 5.03.4 6.1

4.1 ±+
−  8-26 

0ππ+  7.9
5.83.21 +

−  3.2σ 39 < 12.7 3-20 
00ππ  

8.4
7.32.6 +

−  2.0σ 29 < 5.7 0.3-4.6 
−+πK  8.11

0.112.80 +
−  11.7σ 48 2.12.17 5.2

4.2 ±+
− 7-24 

+π0K  
4.6
6.52.25 +

−  7.6σ 14 6.12.18 6.4
0.4 ±+

− 3-15 
0π+K  

9.10
9.91.42 +

−  6.1σ 38 4.1

3.1
0.3
7.26.11

+

−
+
−  8-26 

00πK  
9.5
0.51.16 +

−  4.9σ 11 4.2

3.3
9.5
1.56.14

+
−

+
−  3-9 

−+KK  
4.3.
7.07.0 +

−  0σ 48 < 1.9  
0KK +  

4.2
3.14.1 +

−  1.1σ 14 < 5.1 0.7-1.5 
00 KK  0 0σ 5 < 17  

 

→

Good agreement between BABAR Belle/CLEO
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Measuring γγγγ via penguin,tree interference

� Comparison of rates between several modes related by isospin or SU(3) 
allow a low statistics determination of γγγγ.

� Example: Fleischer -Mannel                                        

� Recent improved theoretical treatment of hadronic B decays: QCD 
factorization Beneke, Buchalla, Neubert Sachrajda hep/ph0104110
provides amplitudes & strong phases

P

TP

KBBr

KBBr
R

S

+=
→
→= ++

+−

)(

)(
0π
π

)(

)(2
0

0

* ±±

±±

→
→=

π
π

SKBBr

KBBr
R

Babar/Belle/CLEO
average

29.041.1* ±=R

Theory

Theory 
uncertainty
All input
parameters

Vub/Vcb
Earlier 

model γ (deg)

R*

if R <1 
interference 
is at work

Good global fit to all Kπ/ππdata. Data not yet precise enough to determine γ
Near future: δR*/R*=10% δγ=110 need ~ 75M BB
Future:                                    measures ∆φneed 175M BB)(&)( 00 ±±±± →→ KBAcpKBAcp s ππ
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Search for Direct CP Violation in B →Κπ

* Summary: no evidence for direct CP 
violation in five modes

* Statistics limited >0.12
* Systematic error 0.02 mostly dE/dx
* Very large Acp are excluded
* BABAR/Belle/CLEO  results in good 

agreement
* Precision Acp will require very 

large data sets!

1 σ & 90% CL are
shown CLEO II 

CLEO

d
d

dd

Sensitivity to CP violation assymetry

-1.0

-0.5

0.0

0.5

1.0

1.E+06 1.E+07 1.E+08 1.E+09

NBB

ACP

εεεεB = 10
-6

εεεεB = 10
-5

CLEO II

Belle

BarBar

4σ significance

Acp

NBB
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Inclusive EM penguins: b→sγ
�No tree level FCNC in SM 

�Sensitive to new physics in loop H-�

�Calculated to NLO in SM

�Measure: inclusive γ spectrum

�Past: Branching ratio & Acp.

�Now: (+ shape of γγγγ spectrum)

� not sensitive to new physics

b

q

s γγγγ

B

quark level hadron level
Eγ

Mean : <Eγγγγ > ~ mb /2  
Width: non-perturbative interactions 
between  b quark and light degrees of 
freedom in hadron (Fermi motion)
Both quantities needed for extraction 
of Vcb & Vub from B →Xlν

( 3.3 - 3.7 ± 0.33) × 10-4

(H-)
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� Signal: isolated γ  2.0 < Ε γ < 2.7 γ  2.0 < Ε γ < 2.7 γ  2.0 < Ε γ < 2.7 γ  2.0 < Ε γ < 2.7 GeV
� Measure γ γ γ γ spectrum for ON and OFF  

resonance and subtract
� But: b→→→→ sγ γ γ γ isn�t only source of γ γ γ γ 
� I B →→→→ Xγγγγ:  π :  π :  π :  π 0000→→→→γγ  γγ  γγ  γγ  η→η→η→η→γγγγγγγγ ���� previous 

analysis photon cut at 2.2 GeV, now model 
and subtract, significantly reduces model 
dependence

� II huge continuum background: reduce by
� I shape cuts
� II leptons (suppression and tagging)
� III Identify Xs  system recoiling against γγγγ

b→ sγ: Measuring the γ spectrum

ContinuumSignal

orvs.

Expected raw contributions(CLEO Lepton Photon 01) 
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0

200

2 3 4 5

Photon Energy (GeV)

W
e
ig
h
ts
/
1
0
0
M
e
V

ON - Scaled OFF Data

BB Background Prediction

1.5 2.5 3.5 4.5

0

40

Eg (GeV)

W
e
ig
h
ts

/
1
0
0
M
e
V Data

Spectator Model

b → s γ

b→ sγ
� Full Cleo II + II.V dataset

BF measured for ~90% of
full spectrum (2.0 GeV cutoff)

Theory: ( 3.3 - 3.7 ±±±± 0.33) × × × × 10-4

(Chetyrkin, Misiak,& Münz/ Kagan 
&Neubert,Gambino&Misiak)

� Expt & theory agree 
� Expt error close to theoretical 

uncertainty 
� not much room for new physics
� Belle (BCP4) measures: (2.25 GeV cutoff)

( ) 450.0
54.0 1042.053.037.3 −+

− ×±±

ON-OFF data

Subtract BB bkgd:

BB bkgd MC

b→ sγγγγ
B(b → s γ )

418.0
10.0 1027.043.021.3 −+

− ×±±=

�Eγ  � = 2.346 ± 0.032 ± 0.011 GeV
1st moment:
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� Semileptonic decays are used to determine 
the quark couplings as they are simple: 
strong interaction is confined to the lower 
vertex

� for final states with charm (D 
D* etc.)

� for final states without charm 

(ρρρρ/ππππ/ηηηη�)
� Since of necessity we must work with 

hadrons rather than quarks, theory is 
needed to relate the underlying  quark 
decay to hadronic reality: 

Direct Determination of CKM matrix  

2

cbV∝Γ
2

ubV∝Γ

experimenttheory

Semileptonic:

Hadronic:Hadronic:

τ
Br

Vubtheory =Γ=Γ 2

hadronic: or ρ/π/η

or ρ/π/η

or u

or u

Vcb or Vub

�Two approaches inclusive B���� X l νννν or exclusive B ���� D* l νννν, B→π→π→π→πlνννν
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� Heavy Quark Effective Theory

� For                   the form factor  (strong interaction physics) which  
measures the probability that the c quark forms a D*   is unity.

� Corrections for finite       are 2nd order for B→→→→D*lυυυυ and calculable

� Since this is a 0 - →→→→ 1- S,P,D wave decay large rate  near 

� Measure                                  and extrapolate to  

Determination of Vcb from B → D* � +ν

b c

lν
b quark is nearly at rest
b spin has little effect on energy

At             c quark nearly at rest, light 
degrees of freedom unaware of flavor 
change

2
maxq

B meson

b

Light d.o.f.

)*(
2

νlDB
dq

d →Γ

1)(, 2
max* =∞→ qFm DQ

2
maxq

2
maxq

∞→Qm

Qm

22
*

2
2

)(qFV
dq

d
Dcb∝Γ

B→ D*+ � +ν Osaka (2000) , now also B→ D*0 � +ν Rome (2001) 
(systematics limited ~1/3 of the CLEO data set)
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Vcb from B → D* � +ν

)()(
48

222
*

2
2

2

2
qGqFV

G

dq

d
Dcb

F

π
=Γ

Phase spaceForm factor

*

22
*

2

2 DB

DB

mm

qmm
w

−+=

02 =q2
max

2 qq =

theory%3.4%1.3

10)8.13.12.42()1( 3−×±±=cbVF
)042.0913.0)1(( * ±=

D
F

Consistency
at the 7% CL

Dominant sys errors επslow, form factors
Single most precise Vcb & B(D�Kπ)

1)(, 2
max* =∞→ qFm DQ

CLEO

28 30 32 34 36 38 40 42 44 46

ALEPH

DELPH

OPAL(ππππl )

OPAL(exclusive)

F(1)Vcb (10-3)

33.0±2.1±1.6

34.5±1.4±2.5

37.9±1.3±2.4

37.5±1.7±1.8

CLEO

 35.6±1.7

42.4±1.3±1.8

LEP average
Vcb  Working Group

310)1.20.24.14.46( −×±±±=cbV
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Vcb from B → D* � +ν

ρ2

F(
1)

|V
cb

|

CLEO

ALEPH

DELPHI

OPAL exc

OPAL inc

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0.044

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

ρρρρ2222

F
(1

)|
V

cb
|

Possible sources of
apparent difference
between CLEO and LEP

D*X � +ν component
CLEO fits
LEP uses a model

Large slope vs. F(1)|Vcb|
correlation at LEP
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A Road-map for inclusive |Vcb|

Expt

HQET

measure b→ sγ  spectrum first moment of γ spectrum 

measure B→ Xc�ν spectrum first moment of hadronic mass
spectrum

measure semileptonic width

predicts B→ Xc�ν first moment (with parameters      and    ) 

predicts semileptonic width in terms of      ,      and         

predicts b→ sγ first moment (with parameter      ) Λ

1λΛ
|| cbV

1λΛ
(Falk, Ligeti, Luke, Wise, Savage, Manohar, Bauer, Bigi)

1λΛ
~average kinetic energy 

b quark in B mesonrelates mb to mB

Spectator model (free quark decay) made rigorous by HQET+OPE a controlled 
expansion in αs and 1/MB. Schematically:

..),.(
1),(,

1
192

)( 2
32

2

21
3

52
2

ss
BBB

sBF
c corrad

M
O

M

f

M

MG
VcbXB ααλλα

π
ν +

�
�

�

�

�
�

�

�

��
�

	



�

�
+

�
�

�

	






�

� Λ+��
�

	




�

� ΛΛ+∝→Γ �

~hyperfine
interaction  
mB*-mB

2
2 12.0 GeV=λ
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B→ Xc�ν Hadronic Mass Moments

Want B→ Xc�ν hadronic mass 
distribution
� Identify lepton (P>1.5 GeV)
� Measure neutrino as missing particle
� Calculate hadronic recoil mass

� Drop              because PB is small

� Then
� Fit spectrum with

� B→→→→ D����νννν
� B→→→→ D*����νννν
� B →→→→ XH����ν  ν  ν  ν  (various models for XH)

� Find moments of true MX
2 spectrum

)cos(2222
νννν θ
���� −−−+= BBBBX PPEEMMM

νθ
�−Bcos

νν ��
EEMMM BBX 2

~ 222 −+=

mass D D, averagedspin  is *
DM

CLEO
2001

222 066.0251.0 GeVMM Dx ±=−



August 2001, Ian Shipsey 26

Λ and λ1

moments
3/1 BM

.

b→sγ 1st moment f( Λ )

B→Xlν 1st moment f(λ1 Λ)

CLEO
2001

2
1 GeV078.0071.0238.0

GeV10.007.035.0

±±−=
±±=Λ

λ
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with Λ and λ1:

Extraction of  |Vcb|

Combine

[PDG]
12   sec 10)032.0548.1( −×±=±B

τ

[PDG]
12   sec 10)028.0653.1(0

−×±=
B

τ
[CLEO]00   0.081.04/ ±=−+ ff

MeV 10)020.0427.0( 10−×±=Γ
�s

1,λΛ�sΓ

B(B→ Xc�ν ) = (10.39±0.46)% [CLEO]

Measured Γsl

(3.2% error)

CLEO exclusive assumes duality.  
Moments can validate inclusive 
method
Inclusive & exclusive both needed. 
Agreement: confidence in Vcb
determination

(smallest error yet! Submitted to PRL )

CLEO 2001

hep-ex : 0108033

SBM α,/1 3

310)8.05.09.04.40( −×±±±=cbV

310)3.14.40( −×±=cbV

35 40 45 50

D*lv  LEPWG 39.0±1.9±1.8

40.7±0.5±2.4

46.2±2.4±2.1

40.4±1.0±0.8 

Vcb (10-3)

D*lv CLEO 

Xlv  LEPWG

Xlv CLEO 
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� the quark process b→→→→ulνννν is simple

� Theoretically difficult to calculate strong 
interaction effects when a heavy B meson becomes 
a light  ρρρρ/ππππ (no Heavy Quark symmetry)

� theoretical uncertainties enter twice, 1st the shape 
of the form factors determines the acceptance and 
hence Br

� 2nd , the absolute normalization is needed for Vub 

� Severe background:  b→→→→clνννν~ x100 b→→→→ulνννν lead to 
measurements in small regions of phase space
large extrapolation to obtain Vub

� Two approaches: inclusive and exclusive

Determination of Vub

theoryB
ub

ulvbB
V

Γ•
→=

τ
)(

BB

sig

N

N
ulvbB

•
=→

ε
)(

The dangers 
of 
extrapolation

Inclusive methods:
To distinguish b→→→→u from b→→→→c theoretically:

better                 better
q2 spectrum  > mhad spectrum > Elepton spectrum
But experimental difficulty is in opposite order
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New Lepton endpoint
Inclusive Determination of Vub

�1% of lepton spectrum is b→→→→ulνννν
�����Go beyond kinematic limit for b →→→→clνννν
�Experiment measures Bub(end) :

B(B→→→→X����νννν) in endpoint region

The endpoint is most influenced by the Fermi
motion of the b quark in the B meson
Uncertainty can be reduced by using
b→→→→sγγγγ shape parameters to determine fu(end)

Same effects of b quark motion for �massless�
Partons:  b→→→→sγγγγ a laboratory for b →→→→ ulνννν
����fu(end) = 0.138±±±±0.034

Challenges: Limited understanding 
of decay spectrum/form factors
Large extrapolation to get Vub 
(5-20% b→→→→u in endpoint) = fu(end)
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New Lepton endpoint
Inclusive Determination of Vub

After continuum, & background 
suppression:

2.00 2.25 2.50 2.75 3.00
Momentum (GeV/c)

0

2000

4000

6000

ON - OFF data

b → c l ν MC

� (2.2 < pl ≤ 2.6 GeV/c), 
� Nub (end) = 1874 ± 123 ± 326  
Apply the f u(end)
� Bub(end) = (2.35 ± 0.15 ± 0.45) × 10�4.
QED  radiative correction: 5%
Use:

[ ]
2/1

3

0.001

ps 1.6 end)(
10)08.008.006.3( �

�

�
�
�

�
××±±= −

B

ub
ub

B
V

τ
Hoang,Ligeti,Manohar, hep-ph/9811239

Momentum (GeV/c)

|Vub| = (4.09 ± 0.14 ± 0.66) × 10–3.

ON-OFF
b→clν

δ |Vub| / |Vub| =16%

The most precise inclusive determination to date



August 2001, Ian Shipsey 31

sin2β & Vub/Vcb

From CLEO data Vub/Vcb is  
determined to 17%

What are the implications ?

� BABAR & Belle immediate 
objective:  (sin2ββββ)mixing

� Mixing :box diagrams new physics 
may enter: (sin2ββββ+ ΘΘΘΘ)mixing

� The goal compare (sin2ββββ)mixing to 
sin2ββββCKM i.e ββββ from Vub/Vcb

� ββββ depends strongly on |Vub/Vcb| 
but weakly on γγγγ for 450 <  γγγγ < 1100 

� Take  450 <  γγγγ < 1100 

|Vub/Vcb|     0.101 ± 0.017

sin2βCKM 0.95 < @ 90% CL

sin2βCKM =  0.74± 0.09 ± 0.08     

B0

1=∆B

2=∆B
0B 1=∆B

0
sKΨ

Phase of Vtd = β

(1st error stat, 2nd error γγγγ range)
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sin2β & Vub/Vcb

|Vub/Vcb| = 0.101 ± 0.017 

(Assumes 450 <  γ < 1100)

A significant consistency check of 
the CKM mechanism of CPV,
This type of check, with increasing 
precision will be the hallmark of 
heavy flavor physics in this decade. Belle 

Collaboration

sin2βCKM =  0.74± 0.09 ± 0.08

This agrees well with sin2ββββ from
BABAR and Belle:

(sin2ββββ)mixing = 0.79 ± 0.10 
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B���� ππππ/ρρρρl υυυυ
Vub Exclusive reconstruction 

Since heavy ���� light HQET does not help

Theoretically difficult: evolution of form 
factor over large q2 range.

Neutrino reconstruction: 

�

�* Model dependence dominates

0)( ≈−=∆ beamElEE υπ
Bbeam MlPElM ≈−=

2
2 )()( νπυπ

�

321.0
29.0 10)55.014.025.3( −×±±±=ubV

B���� ππππl υυυυ

)( υπlM

�Sort between models: probe  q2

distribution no discriminating power at 
high lepton energy. New results soon
B ���� ππππ/ρρρρl υυυυ El> 1.0 GeV

CLEO (B→ρ→ρ→ρ→ρlυυυυ)

%20=
ub

ub

V

Vδ

2dq

dΓ
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� future of Vub: 

� inclusive: reduce extrapolation error fit                or large region                   
depends on size of accessible region  5% may be  possible  

� ultimate exclusive method:       

Future of Vub

22

22

))((
)(

))((
)(

ππ
π

ππ
π

νπ

νπ

EFV
dE

Dd

EFV
dE

Bd

Dcd

Bub

→

→

∝→Γ

∝→Γ

�

�

22
Dx mm < 2q

b

c

u

d
HQS I

� ν

� ν

2))(( ππ EFB→
2))(( ππ EFD→Is related to                     at the same Eπ (corrections O(1/M))

Measure                    in D→πlν, assume unitarity: calibrate lattice to 1%
Lattice error on                   ~ 3% expected unquenched (Cornell/FNAL)
Extract Vub at BaBar/Belle using calibrated lattice  calc. of 
But: need absolute Br(D →πlν) and high quality                                   neither exist

2))(( ππ EFD→
2))(( ππ EFD→

2))(( ππ EFB→

πνπ dEDd /)( �→Γ

~100% phase space ~20% phase space
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Vtd & Vts

22
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fB

M

M
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~5% (lattice) 
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1

ρηρ i+

η
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�

�
�
�

�

×�
�

�

�

�
�

�

�
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V
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fB
psM dd

d

d

BB

BB

d

d

Bf

Bf

M

M )()(
5.0

)( σσ
ρ
ρσ ⊕

∆
∆=

1.8% ~20%

Lattice predicts  fB/fD &  fBs/fDs with small errors
if precision measurements of  fD & fDs existed (they do not)
could substitute in above ratios to obtain precision estimates of 
fB & fBs and hence precision determinations of Vtd and Vts 
Similarly fD/fDs  checks fB/fBs 
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Summary of Results
� >60 rare B decays observed by CLEO. Branching ratios in good agreement 

with theory. No CPV observed. In almost all cases BABAR/Belle confirm 
CLEO results, & in some cases extend them. This trend will accelerate

� New Vcb from B→D*lν (to <5%)

� New Vcb from moments analysis of b→sγ & B→Xlν (to <5%)

� New Vub from endpoint of lepton spectrum, where faction of rate in 
endpoint given by analysis of  b→sγ spectrum. 

� Provides a useful constraint on sin 2β. This is the beginning of the era of 
precision cross checks of the b sector of the CKM matrix. To make this cross 
check much more precise theory needs measurements of absolute charm 
semileptonic branching ratios and form factors

� Vtd & Vts extraction: lattice needs precision measurements of charm meson 
decay constants

310)3.14.40( −×±=cbV

310)1.20.24.14.46( −×±±±=cbV

|Vub| = (4.09 ± 0.14 ± 0.66) × 10�3.
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CESR/CLEO 1980-2001

Very(!) productive experimental program
Exciting physics 

Summer �01: new Vcb, Vub, b  → sγ, D*width, ππ, Kπ
20 abstracts at EPS & LEPPHO

But��..
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PEPII/KEK-B 1999

PEPII & KEKB are recording larger   Ldt than CESR 
and much larger  Ldt expected soon

CLEO cannot remain competitive
CLEO/CESR stopped running at the Y(4S) on June 25, 
2001���forever! Whither the CESR/CLEO Program?

Thread # 1

�
�
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Threads #2 & #3

� Progress in flavor physics is limited by the absence of sufficient charm data 
to calibrate theory needed to extract Vub, Vtd & Vts

� Non perturbative QFT�s are an outstanding challenge to theoretical physics

� LHC may uncover strongly coupled sectors in the physics that lies beyond 
the Standard Model

� Critical need for reliable theoretical techniques & detailed data to calibrate 
them

� Modify CESR for operation as a charm/QCD factory: CESR-c/CLEO-c

� Two part program:

I  Weak Interaction physics
II Tests of non-perturbative QCD

I & II inextricably linked

#2

#3
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CLEO-c Physics Program

�Progress in flavor physics limited by understanding of QCD.
�CLEO-c:  precise absolute br, form factors, decay constants. 
Confront theory in c sector apply theory in b sector(Vtd Vts)

�Probe essential nature of weak decays 
�CLEO-c:  direct: precision Vcs,Vcd, indirectly Vub,Vcb

�Physics beyond the Standard Model may have non-
perturbative sectors.
�CLEO-c: precise measurements of quarkonia spectroscopy &   
decay.

�Physics beyond the Standard Model may appear in 
unexpected places

�CLEO-c: D-mixing, charm CPV, rare decays of charm and tau.
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CLEO Run Plan

2002: Prologue: Upsilons ~1-2 fb-1 each at Y(1S),Y(2S),Y(3S),�
Spectroscopy, matrix element, Γee, ηB  hb

10-20 times the existing world�s data          

2003: ψ(3770) � 3 fb-1

30 million events, 6 million tagged D decays
(310 times MARK III)

2004: � 3 fb-1

1.5 million DsDs events, 0.3 million tagged Ds decays
(480 times MARK III, 130 times BES)

MeVS 4100~

2005: ψ(3100), 1 fb-1 ψ(3686) 
�1 Billion J/ψ decays

(170 times MARK III, 20 times BES II)

C
L
E
O
-
c

A 3 year
program
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1.5 T now,... 1.0T later

93% of 4π
σp/p = 0.35% 

@1GeV
dE/dx: 5.7% π@minI

93% of 4π
σE/E = 2% @1GeV

= 4% @100MeV

83% of 4π
87% Kaon ID with 

0.2% π fake @0.9GeV

85% of 4π
For p>1 GeV

Trigger: Tracks & Showers
Pipelined
Latency = 2.5µs

Data Acquisition:
Event size = 25kB
Thruput < 6MB/s

The CLEO
III Detector
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1st results from CLEO III data
LEPPHO 2001

B(B-→D0K-) = 
( 3.8 ±1.3) x10-4 CLEOIII 
(2.9 ± 0.8) x10-4 CLEO II

Good agreement: CLEOIII:II

Preliminary result using ~1/2
of the CLEO III data
Clean K/ π separation at 
~2.5 GeV using RICH
Rest of reconstruction 
technique similar to 
previous CLEO analyses
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1st results from CLEO III data
LEPPHO 2001

3.18.186.182.29 8.2
6.2

0.35.4
4.31.4

1.7
4.6 ±+

−
++
−−

+
−

Yield           BR(B→Kπ)(x10-6)
B→Kπ CLEOIII  CLEO(1999)

(Preliminary)
Good agreement: CLEOIII:II/II.V
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A typical 
Y(4S) event:

A typical 
ψ(3770) event:

ψ(3770) events: simpler than Y(4S) events
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Detector Summary

� CLEO III was built for

� excellent tracking resolution

� excellent photon resolution

� maximum hermeticity

� excellent particle identification

� flexible triggering

� high throughput DAQ
� The demands of doing physics in the 3-5 GeV range are 
easily met by the existing detector.

� The CLEO Collaboration has a history of diverse interests 
spread over b physics, charm, tau, resonance and QCD 
studies & great enthusiasm for CLEO-c
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Modifications and Issues

� The CLEO-III Detector
� Silicon vertex detector may be replaced with wire 

vertex chamber
� Lower solenoid field strength to 1 T from 1.5 T 

(machine issues)
� The dE/dx and Ring Imaging Cerenkov counters are 

expected to work well over the CLEO-c momentum 
range

� Electromagnetic calorimeter works well and has fewer 
photons to deal with

� Triggers will work as before
� Minor upgrades may be required of Data Acquisition 

system to handle peak data transfer rates

� CESR conversion to CESR-c will be discussed in 
summary talk of working group M2  (next 
speaker)

CLEO-III works well
in this energy range 
and at these rates with 
little modification
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The CLEO Collaboration Albany
Caltech
CMU
Cornell
Florida
Harvard
Illinois
Kansas
Minnesota
Ohio State
Oklahoma
Pittsburgh
Purdue
Rochester
SMU
UCSD
Syracuse
Vanderbilt
Wayne State

� Membership:
� ~20 Institutions
� ~155 physicists
� Currently expanding in response to 
CLEO-c proposal

� Publication history 1980-
� ~320 papers
� diverse physics:
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CESR-C

� Luminosity governed by:

� Without artificial radiation aids, L~Eb
4

� Long damping times --> wigglers to decrease τ
� Decrease β*
� Wigglers being prototyped
� 2T over 5cm (SC)
� Cost ~ 5M$

*

1

A

N

γ
ξ ∝

A* Cross section at collision point
N = Number of particles
γ = Lorentz factor
r = vert/horiz beam size
ξ = beam beam parameter
β*= external focussing

L ~ Eb
2

L (1032 cm-2 s-1)

3.6

3.0

2.0

√s

4.1 GeV

3.77 GeV

3.1 GeV

NrL γ
β
ξ

*
)1( +∝

Expected machine performance

� ∆Ebeam ~ 1.2 MeV 
at J/ψ

L = 1.3 x 10 33

@Y(4S)
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Advantages of Running on 
Threshold Resonances

� Charm events produced at 
threshold are extremely clean

� Double tag events are pristine

� These events are key to 
making absolute branching 
fraction measurements

� Signal/Background is optimum at 
threshold

� Neutrino reconstruction is clean

� Quantum coherence aids D 
mixing and CP violation studies

I

D0 K + I

D0 K+e

I

K

+

I

K+

e
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Tagging Techniques, Signal Purity

1.861.84

Ca
nd

ida
tes

 / 0
.6 M

eV

M (D) (GeV/c2)
1.88

1 fb  1 CLEOc
I

3730401-009

10

102

103

D K +I

1

0

    = 1.3 MeV
M

104

105

D mesons have 
many large Br�s (~1-
15%) with high 
reconstruction eff. 
Tagging efficiency
based on several
modes is 20%.
S/B = 5000/1! 

~ Zero background in hadronic
tag modes
*Measure Br (D� X) by

Br = # of X/# of D tags
# of D's is well determined

++−+

−

→

→

ππKD

tagD

Single
Tag

Double
Tag
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Example: Ds
+ → µ+ν

� Fully reconstruct one D

� Require one additional 
charged track and no 
additional photons

� Compute MM2 Peaks at 
zero for Ds

+ → µ+ν
decay. 

� No need to identify muon-
helps systematic error

� Can identify electrons to 
check background level

� Expect resolution of ~Mπo

2

Ds → µν

%7.1≈
Ds

Ds

f

fδ (Now: ±35%)
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Excess of µ over e fakes Background measured with electrons

CLEO signal 4.8fb-1

�Search for Ds* -> Ds γ, Ds -> µν
�Directly detect γ, µ, Use hermeticity of detector to reconstruct ν  
�Backgrounds are LARGE!

�Precision limited by systematics of background determination

�Error ~25% now 

�400 fb-1 ~8-15%

B Factories can do this too

Scale from  CLEO analysis
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CLEO-c Charm Decay 
Measurements

4%26%14600

1.9%25%34140

0.7%7.2%33770

0.6%2.4%33770

Absolute Branching fractions:

1.6%60%34140

1.7%35%34140

2.3%UL33770

Decay Constant:

CLEO-c
Sensitivity

Current

Sensitivity

L

fb-1

Energy

MeV
ReactionTopic

+D
f

+
sD

f

+
sD

f

υµ ++ →D

υµ ++ →sD

υτ ++ →sD

)( 0 +−→ πKDBr

)( ++−+ → ππKDBr

)( 0 ++ → πϕsDBr

)( +−+ →Λ πpKBr c
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Absolute Branching Ratios

B(D0 →K-π+)%

B(Ds →φπ) %

B(D+ → K- π+π+)%

CLEO
ALEPH
PDG
CLEO-c

CLEO
MARK III
PDG
CLEO-c

CLEO
PDG
CLEO-c

CLEO-c sets absolute 
scale for all heavy 
quark 
measurements
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Semileptonic Decay Reconstruction   

� Tagged events: identify electron plus hadronic tracks ( muons not used)

� Kinematics at threshold cleanly separates signal from background

� Use                               to separate signal from background
missmiss PEU −=

1.0 fb-1

Excellent separation of D→π→π→π→πlνννν D→→→→klνννν despite B(D→→→→klνννν )~10B( D→π→π→π→πlνννν) 

25890 3730
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CLEO-C Impact on dB/B, Vcd, & Vcs

CLEO-c

PDG

δVcs /Vcs = 1.6%  (now: 11%)
δVcd /Vcd = 1.7%  (now: 7%)

υ+−→ eKD0

υπ +−→ eD0
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Calibration of the Lattice  

compare to lattice prediction 
ex: hep-ph/0101023 El-Khadra
Note: lattice error large ~15%
on normalization but in future
few % predicted

Can test shape 
Using Vcd from unitarity,
Can test normalization
calibration good to ~1%

CLEO-C

πp

dΓ

πp

πp

dΓ

πp
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� Semileptonic decays: |VCKM|2 |f(q2)|2

� Form factor shapes and normalizations
� Calibrate theory! Extract |Vcd|, |Vcs�|
�Theory → Extract |Vub| from B

� Leptonic decays: |VCKM|2 |fD|2

� Decay constants
� Calibrate theory!  Extract |Vcd|, |Vcs�|
� Theory → Extract |Vtd|, |Vts| from B

�Hadronic decays:
� Set scale of heavy quark decays
� Enables precision tests in B decays (Vcb), nc
�

Summary so far
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� DD mixing
� exploit coherence: 

for mixing: no DCSD.  
RD=√(x2+y2)/2 < 0.01  @ 95%CL

� CP violating asymmetries
� Sensitivity: Acp < 0.01
� Unique: CP=±1 ←←←← ψ(3770) →→→→ CP=±1

� Rare Decays. Sensitivity: 10-6

�CP eigenstate tag X flavor mode
K+K- ←←←← DCP←←←← ψ(3770) →→→→ DCP →→→→ K-π+

Measure strong phase diff. CF DCSD
Needed for γ from B → DK

Probes of New Physics

ψ(3770)→DD(C = -1) 

ψ(4140) →γDD (C = +1)
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Compare to B Factories

CLEO-C BaBar Current
2-4fb-1 400 fb-1 Knowledge

f_D |Vcd| 1.5-2% 10-20% n.a.
f_Ds |Vcs| <1% 5-10% 19%

Br(D+ -> Κππ) 1.5% 3-5% 7%
Br(Ds -> φπ) 2-3% 5-10% 25%
Br(D->πlν) 1.4% 3% 18%
Br(Λc -> pΚπ) 6% 5-15% 26%

A(CP) ~1% ~1% 3-9%
x'(mix) 0.01 0.01 0.03

Systematics & background limited.Statistics limited.

2.3%
1.7%

0.7%
1.9%
1.3%
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COMPARISON
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Comparison between B factories
& CLEO-C
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� ψ and Υ Spectroscopy

� Masses, spin fine structure 

� Leptonic widths for S-states.

� EM transition  matrix elements

� Will run on Υ resonances winter �01-summer�02

� ~ 4 fb-1 total

� Uncover new states of matter

� Glueballs G=|gg ����

� Hybrids H=|gqq ����

� Requires detailed understanding of ordinary 
hadron spectrum in 1.5-2.5 GeV mass range.

Probing QCD

Calibrate and test
theoretical tech.

Study fundamental
states  of the theory

J/Ψ running 2005
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Establish D states in 3S decays
Important for potential models
Discover/probe ηb

(�), hb
ϒ(3S)→γηb  ( photon:900 MeV)

ϒ(2S)→γηb ( photon:600 MeV)
ϒ(3S): → hbγ

Upsilon Resonances :  start 2002

Scans: Γee to few %
ϒ(n+1S)→ϒ(n+1S)ππ

➥ ee/µµ
➥ Bll < 1%

Search for cgg in Y(1S) & bgg above Y(6S)
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�Gluons carry color charge: should bind!
� But, like Jim Morrison/Elvis, glueballs have been sighted 
too many times without confirmation....

� CLEO-c: find it or debunk it!

� Radiative ψ decays are ideal
� glue factory:

Gluonic Matter

X
γ

c
c̄

� CLEO-c: 109 J/ψ � ~60M
J/ψ →γX

� Partial Wave analysis 
� Absolute BF�s: ππ,KK,pp,ηη ,�

1
� perfect initial state
� perfect tag
� glue pair in color isosinglet

✔ huge data set

✔ modern detector

✔ 95% solid angle coverage
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The dubious life of the fJ(2220)
(A case study)

Now you see it�

BES 
(1996)

MARKIII
(1986)
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L3
1997

Now you don�t�

?? LEAR
1998

OPAL
1998

L3 Signal

2 3

MKK
2 3

� or do you?

� or don�t you?

pp→ Κ0
sΚ0

s

Crystal barrel:
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ψ(3100) → γfJ(2230)

π

π γ
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fJ(2220) in CLEO-c?

Two Photon Data:  γγ→fJ(2220):
� CLEO II: ΓγγB( fJ →ππ/KSKS) < 2.5(1.3) eV

� CLEO III: sub-eV sensitivity

� Upsilonium Data: ϒ(1S): Tens of events

5000�ηη
850032pp
530023KSKS

1860046K+K-
1300018π0π0 3200074π+π− CLEO-CBES

CLEO-c has 
corroborating checks:
2

3
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Inclusive Spectrum J/ψ →γX
45000

40000

35000

30000

25000

20000

15000

10000

5000

0
6.2 6.4 6.6 6.8 7.0 7.2 7.4

27500

25000

22500

20000
6.4 6.5 6.6 6.7 6.8

ln (E   / 1 MeV)

(1440)

Hadronic J/     Decays

2770301-010

ln (E   / 1 MeV)

J
(2220)f

4
(2050)f

J
(2220)f

10-4 sensitivity for narrow resonance
Eg: ~25% efficient for fJ(2220)
Suppress hadronic bkg: J/ψ→π0X
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Unique features of CLEO-c

� Huge data set
� 20-500 times bigger than previous experiments

� Modern detector
� solid angle
� tracking resolution
� photon resolution
� particle identification
� trigger and DAQ flexibility, capacity

� Extra data sets for corroboration
� Upsilons:  4fb-1

� Two Photon: 25 fb-1



August 2001, Ian Shipsey 72

Quantity BES II CLEO-C
J/psi yield 50M > 1000M
dE/dx res. 9% 4.9%
K/pi separation up to 600 MeV 1500 MeV
momentum res. (500Mev) 1.3% 0.5%
Photon resolution (100 Mev) 70 MeV 4 MeV
Photon resolution (1000 Mev) 220 MeV 21 MeV
Minimum Photon Energy 80 MeV 30 MeV
Solid angle for Tracking 80% 94%
Solid angle for Photons 75% 95%

Comparison with Other Expts
China:
BES II is running now. 
BES II --> BES III upgrade
BEPC I --> BEPC II upgrade, ~1032

2 ring design at 1033under consideration
Physics after 2005 if approval & construction go ahead.

HALL-D at TJNAL (USA)
γp to produce states with exotic Quantum Numbers
Focus on light states with JPC = 0+-, 1+-, � 
Complementary to CLEO-C focus on heavy states with JPC=0++, 2++, �
Physics in 2007+ ?

being proposed

+ HESR at GSI Darmstadt p p complementary. physics in 2007?
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Possible additional topics

� Ψ� spectroscopy (10 8 decays) η �
chc�..

� τ+τ− at threshold (0.25 fb-1)
� measure mτ to ± 0.1 MeV
� heavy lepton, exotics searches

� ΛcΛc  at threshold (1  fb-1)
� calibrate absolute BR(Λc→pKπ)

� R=σ(e+e- → hadrons)/σ(e+e- → µ+µ-)
� spot checks 
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Tying the threads

� CLEO-c probes QCD in the non-perturbative regime

� CLEO-c probes the essential nature of weak decays

� CLEO-c provides engineering inputs and independent 
cross checks for precision weak physics at B factories 
and hadron machines

� Imagine a world where we have theoretical mastery of 
non-perturbative QCD at the 1-2% level

Decay constants   Form Factors   meson spectra  ψ and Ψ spectroscopy

Vcd Vcs

Absolute BR�s   Decay constants
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Now

Theory errors = 2%

� CKM Impact
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Next Steps

� CLEO-C workshop (May 2001)  :  successful

� Informational sessions with funding agencies & HEPAP 
(April/May �01) : positive response

� Snowmass working groups E2/P2/P5 : acclaimed CLEO-c

� CESR/CLEO Program Advisory Committee (9/01)

� Proposal submission to funding agencies (Feb. �02)

� See http://www.lns.cornell.edu/CLEO/CLEO-C/ for project 
description

� We welcome discussion and new members 

~120 participants,  60 non-CLEO
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The CLEO-c Program: Summary

� Powerful physics case
� Precision flavor physics � finally 
� Nonperturbative QCD � finally
� Probe for New Physics

� Unique: not duplicated elsewhere
� High performance detector
� Flexible, high-luminosity accelerator
� Experienced collaboration

� Optimal timing
� Flavor physics of this decade
� Beyond the SM in next decade
� Resonance with LQCD...
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� Crucial Validation of Lattice QCD: Lattice QCD will be able to  
calculate with accuracies of 1-2%. The CLEO-c decay constant and 
semileptonic data will provide a �golden,� and timely test. QCD and
charmonium data provide additional benchmarks.

� Knowledge of absolute charm branching fractions is now contributing 
significant errors to measurements involving b�s. CLEO-c can also 
resolve this problem in a timely fashion

� Improved Knowledge of CKM elements, which is now not very good. 

CLEO-c Physics Impact

�The potential to observe new forms of matter � glueballs, hybrids, etc      
�and new physics- charm mixing, CP violation, and rare decays      
provides a discovery component to the program

5%5%5%3%1.6%1.7%

39%36%25%5%16%7%

VtsVtdVubVcbVcsVcd

CLEO-c
data and

LQCD

CLEO-c

Lattice

Validation
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Backup Slides
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Acp values used in plot

Top to bottom
Corresponds to
Left to right
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|Vub| : Untangling the Fermi
motion

� Use the photon spectrum from 
b → s γ to understand Fermi
motion.
� Fermi motion broadens the simple, 

well understood photon spectrum.
� Fit the measured spectrum of 

photons in b → s γ using shape 
function [Ali & Greub,1991]

� Extract pFermi & mb from the 
photon spectrum.

� Apply the same parameters to the 
lepton spectrum & determine the 
fraction ƒ(p) of the spectrum 
measured. [Kagan & Neubert,  
hep-ph/9805303]

b → s γ

1.5 2.5 3.5 4.5

0

40

Eg (GeV)

W
e
ig
h
ts

/
1
0
0
M
e
V Data

Spectator Model

b → s γ
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Angles

α:  B ➙ ρπ. Requires large statistics to 
understand 3π Dalitz plot.

γ: rare decays require large statistics

Belle Collaboration

sin 2β
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Bd,s Mixing: ∆md,s

∆∆∆∆md (ps-1)

t-dependent ∆∆∆∆md 
≅≅≅≅ 1/ττττB

LEP Working Group

t-integrated χχχχ-
method

Bs: Near Maximal Mixing: ∆ms>>1/τ. 
Lower limit:  ∆ms>15ps-1                   LEP B Oscillations Working Group
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(Over) Constraining the Unitarity 
Triangle

From A. Hocker, et al. hep-ph/0104062
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� Fit each w-bin for B ➙ D*�ν+D**�ν+bkgds

� charged channel limited by slow π resolution

� neutral channel by combinatoric background

� w resol.: 0.03
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Unitarity Triangle Constraints
Global fit for old data (April 2001): A.Hocker, et al. hep-ph/0104062

Averages used: Vub: (3.7±0.6)x10-3 , Vcb: (42.6 ±2.8)x10-3, sin2β: 0.79 ±0.1

95% Confidence level
allowed measurements

∆ms & ∆md

|εK|

|Vub/Vcb|
sin 2βWA

η

-1 1
0

1
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Summary and Outlook

We need:    Validation of lattice QCD results.
D(s)→µν, D→Keν, D→πeν measurements

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����

����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����

����

→→→→→→→→→→→→

→→→→−−−−−−−−

→→→→→→→→→→→→

→→→→→→→→→→→→

→→→→

→→→→
→→→→→→→→→→→→−−−−

%15%29%5%25%5%19

:thffactor  form :thffactor  form :th

statistics:expstatisitcs :exp  :exp
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factor form :th:th:th

cb suppress  :exp:exp:exp
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A Selection of Other 
Key CLEO-c Physics

1.7%7%33770Vcd

1.6%16%33770Vcs

CLEO-c
Sensitivity

Current

Sensitivity

L

fb-1

Energy

MeV
ReactionSemi-lep-

tonic Decays

υ+−→ eKD0

υπ +−→ eD0

46223,000

11513,000

50x106109#J/ψ

BES-II
projected

CLEO-
c

Mode

−+→

→

ππ

γψ

J

j

f

f ),2220( /J

00ππ→Jf

On ψ�, can do charmonium
Spectroscopy, e.g.: 1P1,ηc�

New Physics in D decays:
Mixing: 
CP violation: ~1%
Rare Decays: many modes 

with UL~1-10x10-6

CL %95at  %1≤DR
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Comparison with BABAR & BES

Df

sDf

)( −−++ → ππKDBr

)( 0 ++ → πφsDBr

)( 0 υπ +−→ lDBr

)( +−+ →Λ πpKBr c 5-15%6.0%

3%1.3%

5-10%1.9%

3-5%0.7%

5-10%1.7%

10-20%2.3%

BaBarCLEO-cQuantity

6.6%2%3-5 R

Scan

23 pb-11fb-14.14 GeV

3.9x106108Ψ�

5x107109#J/ψ
BES-IICLEO-cQuantity

BEPC-II /BES-III a proposed double ring machine L = 2 x 10 33  

(x10 CESR-c) to come online in ~2005 - if approved. Will make an 
important contribution as data improves and theory sharpens


