Recent Results from **BABAR**

David Nathan Brown Lawrence Berkeley National Laboratory the BABAR Collaboration

Outline

- © CKM physics in the b-sector of the Standard Model
- The SLAC B-factory (PEPII and BABAR)
- Recent results
 - Mixing and Sin2
 - Rare B-decay searches
- Future prospects

Quark mixing in the Standard Model

Quark electroweak doublets are composed of mass eigenstate mixtures given by a mixing matrix.

$$\begin{bmatrix} d \\ s \\ b \end{bmatrix}' = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}_{CKM} \times \begin{bmatrix} d \\ s \\ b \end{bmatrix}_{Mass}$$

The Wolfenstein parameterization suggests that B^o couplings are a good place to look for new physics.

The Unitarity Triangle

The CKM unitarity condition can be shown graphically as a triangle.

Non-zero triangle area (, , or !=0,) implies CP violation

A 'triangle' which doesn't close implies non-SM physics

$B^0 \overline{B}^0$ Mixing

 $B^0 \overline{B^0}$ mixing can proceed through EW box diagrams

$$\mathbf{f}_{\mathrm{Mixing},\pm}(\Delta t) = \frac{\mathrm{e}^{-|\Delta t|/\tau_{B^0}}}{2\tau_{B^0}} \times \left[1 \pm \cos \Delta m_{B^0} \Delta t\right]$$

m_{B^0} is sensitive to $|V_{td}V_{tb}^*|$

CP Violation via Mixing Interference

Interference between mixed and unmixed B_0 decays to CP eigenstates induces a time and flavor-dependent rate

$$f_{\text{CP},\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \times [1 \pm \sin 2\beta \sin \Delta m_{B^0} \Delta t]$$

Flavor-specific rate vs time depends on sin2

CP and Mixing at the (4S)

(4S) $B^0 \overline{B^0}$ proceeds via coherent P-wave. Tagging the flavor of one B at decay determines the flavor of the other at that instant.

By boosting the (4S) the decay time difference becomes observable.

A B-Factory Physics Program

- Large luminosity
 - ⊙ Significant samples in channels BR ~10⁻⁵
- Boosted (4S) system
 - ⊙ Detectable time differences
- Powerful detector
 - ⊙ Large acceptance
 - \odot Particle Identification (e, ,µ,K, charged and neutral)
- ◎ 'Early' physics (few ~10 fb⁻¹)
 - ⊙ sin2 from cp eigenstates (BR ~ few %)
 - ⊙ B lifetimes, mixing, …
 - \odot Detection of rare signals (B $^{+}$ $^{-}$, ...)
- ◎ 'Mature' physics (few ~100 fb⁻¹)
 - \odot Measure angles $\,$,
 - ⊙ Measure , (?)

⊙ Surprises

PEPII at SLAC

.....

BERKELEY LAB

The **BABAR** Collaboration

Canada [4/16]

U of British Columbia McGill U U de Montréal U of Victoria

China [1/6]

Inst. of High Energy Physics, Beijing

France [5/50] LAPP, Annocy LAL Orsay LPNHE des Universités Paris 6/7 Ecole Polytechnique CEA, DAPNIA, CE-Saclay

Germany [3/21]

U Rostock Ruhr U Bochum Technische U Drosden

Norway

U of Berges

Russia [1/13]

Budker Institute, Novosibirsk

Italy [12/89]

INFN, Bari INFN, Ferrara Lab. Nazionali di Frascati dell' INFN INFN, Genova INFN, Milano INFN, Napoli INFN, Pavia INFN, Pavia INFN, Pavia INFN, Roma and U "La Sapienza" INFN, Roma INF La Sapienza INFN, Treino INFN, Treino INFN, Treino INFN, Treino

U of Birmingham U of Bristol Brunel University U of Edinburgh U of Liverpool

Imperial College

Queen Mary & Westfield College Royal Holloway, University of London U of Manchester Rutherford Appleton Laboratory USA [35/276]

California Institute of Technology UC, Irvine UC, Los Anteles UC, San Diego UC, Santa Barbara UC. Senta Cruz U of Cincinnati U of Colorado Colorado State Florida A&M 11 of lowa Iriug State [1] LBNL LUNE. U of Louisville U of Maryland U of Massachusetts, Amberst MIT U of Mississippi

Mount Holyoke College Northern Kentucky U U of Notre Dome ORNL/Y-12 U of Oregon U of Pennsylvania Prairie View A&M Princeton SLAC U of South Carolina Stanford U U of Tempessee U of Texas at Dallas. Vanderhilt U of Wiscensin Yale

9 Countries, 72 Institutions, 554 Physicists

1/3

The BABAR Detector

Silicon Vertex Tracker (SVT)

Drift Chamber (DCH)

Csl Calorimeter (EMC)

Superconducting Coil (1.5 Tesla)

Cherenkov Detector (DIRC)

Instrumented Flux Return (IFR)

The DCH

 \odot Average single-hit resolution ~125 μm

Tracking and Alignment

- Road-based track finding
 - ⊙ High-P tracks found in DCH, extrapolated in to SVT
 - ⊙ Low-P tracks are found in SVT, extrapolated out to DCH
- Ill tracks are finalized with a Kalman filter fit
 - Multiple scattering, dE/dx, Bfield inhomogeneity,...
- SVT and DCH are aligned ~1/hour (automatically)

The **DIRC**

BERKELEY LAB

The IFR

~65 cm Fe absorber ~4 (together with EMC + coil) Max 21 layers RPC

⊙ Hit pattern readout

Denvel ev L

The (Current) BABAR Data Sample

- PEP II Peak luminosity 3.3X10³³ cm⁻²s⁻¹
 - design = 3.0X10³³
- \odot ~21 fb⁻¹ integrated on (4S) peak
 - \odot ~3 fb⁻¹ below (4S)
- ◎ ~23M BB pairs detected in BABAR

A Fully-Reconstructed (4S) $B^0\overline{B}^0$ Event

Mixing and sin2 Experimental Issues

- Background suppression
- Signal extraction
- In the second second
- Time resolution
- Time-dependent rate fitting
 - \odot Use the data to constrain as much as possible
 - ⊙ Fit simultaneously to signal and control samples
- - Central values are hidden until cuts/algorithms are 'frozen'
 - ⊙ Optimize on MC, data consistency

29 March.

Background Suppression at the (4S)

- ◎ ~70% of (e⁺e⁻ hadrons) is non BB
 - Continuum events are 'jetty', B events are 'spherical'
- - **⊙** Fox-Wolfram moment
 - Fisher discriminant (CLEO)
 - measure energy in 9 co-axial cones
 - O (optimized) weighted sum
- B-candidate angle wrt 'event'
 - ⊙ B=flat distribution, continuum=peaked
 - ⊙ 'event' = thrust axis or sphericity axis

Kinematic Variables

- Select B candidates using E and m_{ES}
 - Essentially independent
 - Optimal resolution (using beam constraint)
 - ⊙ Bkg from sidebands and/or off-peak

$$m_{ES} = \sqrt{E^2_{beam} - P^2_B}\Big|_{CM}$$
$$\Delta E = E_B - E_{beam}\Big|_{CM}$$

Hadronic (non-CP) B⁰ Reconstruction

Flavor Tagging

t Resolution BABAR 400 $B^{(\ell)} \rightarrow D^{(\ell)} \pi^+, \rho^+, a_{\ell}$ UIT o SUUSO • Charm pseudo-particle • resolution ~70 µm \odot Z2 = vertex everything else • Remove outlyers (charm, ...) 0.02 0.01 0.03 0.04 σ_{Az} (cm) • resolution ~180 µm Value Parameter 1.1 ± 0.1 Resolution modeled with 3 Score S_{Tail} 3.8 ± 0.9 f_{Tail} (%) 11 ± 5 ⊙ Core, Tail, and Outliers 0.8 ± 0.5 f_{Outlier} (%) scaled to vertex error 0.08 ± 0.10 $\partial_{\text{Core,Lepton}}$ (ps) estimate (core and tail) 0.21 ± 0.05 $\delta_{\text{Core,Kaon}}$ (ps) ⊙ Shifts from 0 allowed (charm) 0.01 ± 0.10 $\delta_{\text{Core,NT1}}$ (ps) -0.18 ± 0.09 $\delta_{\text{Core, NT2}}$ (ps)

 δ_{Tail} (ps)

0

7/

 \odot Z = Z1 - Z2

Gaussians

David Nathan Brown

 \odot

С

 \odot Z1 = signal vertex

vertex flight)

 -0.46 ± 0.38

25

Time-dependent Rate Fits

- ③ 33-parameter maximum-likelihood fit
 - \odot_{B^0} fixed to PDG 2000 value
- Separate rates by tag flavor (decay flavor, CP eigenvalue)

Effect	#params	Sensitive Sample	
sin2	1	СР	Only in CP fit
M _d	1	Hadronic	Only in mixing
Mistag + Mistag	4+4	Hadronic)
t resolution	9	Hadronic + CP	
Bkg. Mistag	8	Sidebands	Biggest
Bkg. t	6	Sidebands	correlation
Bkg. t res.	3	Sidebands	J with sin2b
			(.6%

26

B⁰ B⁰ Mixing Result (Preliminary)

$B^0 \overline{B}^0$ Mixing Systematic Errors

- No single source dominates
- Improvements expected for most sources
 - ⊙ Better MC statistics and tuning
 - ⊙ Better SVT alignment
 - ⊙ Improved B⁰ lifetime measurement
 - $\bullet \ Eventual \ simultaneous \ fit \ with \ \ m_{B^0}$

Source	Δm [hps ⁻¹]
MC stats	0.004
MC correction	0.009
∆t outliers	0.002
Likelihood norm.	0.003
Background	0.005
B ⁰ lifetime	0.006
Z scale	<0.005
Z boost	0.005
SVT alignment	0.004
Beamspot	0.001
Total	0.016

Comparison with Other Results

BERKELEY LAD

More Mixing Results In Preparation

CP Sample Event Reconstruction

J/ K_s and B^0 \mathbf{R}^0

- © Other charmonium modes (_c) still under study

B^0 J/ K_L Reconstruction

© B^o mass used to determine K_I energy (no cut on m_{ES}) © 40% < Purity < 50%

 \odot Background from B^0 J/X

B^0	J/ K _L Sample Composition		
	Fraction(%)	EMC	IFR
	signal	40.3	50.7
MC	$J/K^{*0}(K_{L}^{0})$	9.1	9.9
e J/	$J/K^{*+}(K_{L}^{+})$	14.4	16.9
lusiv	$J/K_{s}(^{0})$	6.4	2.1
Inc	Other- J/	29.8	20.4
sidebands	Non- J/	6.3	4.4

J/

.....

BERKELEY LAB

lmì

CP Rates by Mode and Tag

$\sin(2) = 0.34 \pm 0.20 \pm 0.05$

PRL Mar.19 2001 Vol. 86, Issue 12, pp. 2515-2522 PRD in preparation (draft)

CP Asymmetry

BERKELEY

Sin2 Systematic Errors

Most errors come from fit parameters (='statistical')

\odot K⁰_I background is an exception

Systematic	$J\!/\psiK^0_S,\!\psi(2S)K^0_S$	$J\!/\!\psiK_L^0$	Full sample
Δt determination	0.04	0.04	0.04
$J/\psi K_{S}^{0}, \psi(2S)K_{S}^{0}$ back.	0.02		0.02
$J/\psi K_L^0$ back.	—	0.09	0.01
$J/\psi K_L^0$ Sig. fraction		0.10	0.01
$ au_{B^0}$	0.01	0.01	< 0.01
Δm_{B^0}	0.01	< 0.01	0.01
Other	0.01	0.01	0.01
Total	0.05	0.14	0.05

Sin2 Cross-Checks

- No significant differences are seen dividing sample by tagging mode, signal mode, decay mode, …
- No significant direct CP violation
 - ⊙ Explicit term for CP amplitude gives value consistent with 1.0
- No CP asymmetry in fits to non-CP eigenstate samples

MODE	APPARENT ASYMMETRY
B^+ $D^{(*)}$ /	0.00 ± 0.05
$B^0 D^{(*)} /$	0.00 ± 0.06
\mathbf{B}^+ J/ \mathbf{K}^+	0.06 ± 0.09
$\mathbf{B}^{0} \mathbf{J}/ \mathbf{K}^{*0} (\mathbf{K}^{+})$	0.28 ± 0.18

Comparison with Other Results

BERKELEY LAD

CKM Constraints

 $J/K^{*}(K^{*}K_{c}^{0})$ \mathbf{R}^0

⊙ Unknown CP decay amplitudes

 $OA_0 = 2/3 D - 1/3 S (CP even)$

$$\bullet A_{\parallel} = 1/3 D + 2/3 S (CP odd)$$

• A_{perp}= P (CP even)

 Amplitudes can be measured via angular analysis

• Measure CP 'dilution' from data

⊙ Test of factorization

• Expect phase differences of 0,

- Recent CDF result shows (2) deviation
- Can use all K* modes in angular analysis

Angular Analysis of B⁰ J/ K^{*}

- K* defines the coordinates
 - ⊙ Direction = x-axis
 - ⊙ K define x-y plane
 - \odot Z axis defined implicitly
- Three observable angles
 - $\mathbf{K}^* = \mathbf{K}$ angle WRT \mathbf{K}^*
 - $_{\rm tr} = J/$ polar angle
 - $\odot_{tr} = J/azimuthal angle$

29 March. 2001

Experimental Concerns

Detector angular acceptance is not uniform

● MC correction

© Contamination from B J/ K* with fake or poorly reconstructed ⁰

- ⊙ ~10% correction
- ⊙ Couples angular analysis with amplitudes (cross-feed)

- ⊙ 2 (3) magnitudes, 2 (3) phases
- \odot Sign of (some) phases depends on decay mode
 - **O**+1 for B⁺ and B⁰, -1 for B⁻ and \overline{B}^0
- ⊙ Only 4 are 'real'
 - Overall phase drops out
 - O Total rate is 'known'
- ⊙ Use Maximum likelihood method

B⁰ J/ K* Results

- Systematic errors dominated by (unknown) K*(1430) contamination
 - \odot Will measure in future
- O CP Dilution = 0.68±.1
 - ⊙ Useful mode for sin2

◎ _{||}~3 from

Quantity	Value
$ A_0 ^2$	$0.597 {\pm} 0.028 {\pm} 0.008$
$ A_{\perp} ^2$	$0.160{\pm}0.032{\pm}0.036$
$ A_{ } ^2$	$0.243 {\pm} 0.034 {\pm} 0.033$
$\phi_{\perp} = arg(A_{\perp}/A_0)$	$-0.17 \pm 0.16 \pm 0.06$
$\phi_{ } = arg(A_{ }/A_0)$	$2.50{\pm}0.20{\pm}0.07$

Double Charm Decays

- - \odot A large rate could help resolve B D_s/B I discrepancy
- OP eigenstates can be used to measure angle
 - \odot B⁰ D⁽⁾⁺D⁽⁾⁻K_s sensitive to cos2
 - \odot B⁰ D ⁺D ⁻ can be combined with other sin2 modes

• Requires angular analysis like B⁰ J/ K^{*}

B D()D()K

B^0 D + D -, B^0 D⁽⁾+D⁽⁾-K_S

B⁰ D + D

- ⊙ Nsignal = 31.8 ± 6 Events
- ⊙ NBkg = 6.2 Events

• Estimated from sideband in E and M_{ES}

- ⊙ Br(B^0 D^+D^-) = (8.0 ± 1.6 ± 1.2) × 10^{-4}
- B⁰ D⁽⁾⁺D⁽⁾⁻K_s
 - ⊙ NSignal = 10.1 ± 3.7 Events
 - ⊙ NBkg. = 3.4

 \odot Prob. of bkg fluctuation: 1.4 \times 10 $^{-5}$

We will start using these modes for measuring in 2001

Charmless B decays

 \odot Search for direct CP violation

Denverey

B⁰ h⁺h^{'-} Analysis

Select events based on event shape, mass, …

- \odot 26404 candidate events, _{MC} 0.45
- Maximum likelihood fit to observables

Parameters

- ⊙ N number of B⁰
- \odot N_K number of B⁰ K^{+ -}
- ⊙ N_{KK} number of B⁰ K⁺K[−]
- \odot A_K asymm. in B⁰ K^{+ -}
- ⊙ N_b background
- \odot N_{bK} background K
- ⊙ N_{bKK} background KK
- \odot A_{bK} asymm in bkg. K

- Observables
 - $\odot m_{ES}$
 - E
 - **⊙** Fisher output
 - Cherenkov angles for positive + negative tracks

Determination of PDF's

- ⊙ Signal measured from B⁻ D⁰ ⁻ (D⁰ K⁻ +)
- Background from E sideband
 - checked with offpeak data and MC

◎ E

- \odot Signal estimated from tracking resolution
- Background from E sideband

Fisher

С

- ⊙ Signal from MC, cross-check using B⁻ D⁰ ⁻
- \odot Background from m_{ES} sideband

0

• ,K shapes taken from D^{++} + $D^{0}(D^{0} K^{-})$

B⁰ h⁺h^{'-} Fit Result

- Systematic errors were estimated by varying PDFs Within statistical errors and data-MC differences
- © Cross-checked with a "cut and count" analysis (gives a compatible result)

BaBar Preliminary

Decay Mode	Naignal 2 Satat & Sugar	BR BaBar ($\times 10^{-6}$)	BR CLEO (×10-6)
$\pi^{\pm}\pi^{+}$	41 ± 10 ± 7	- 4.1 ± 1.0 ± 0.7	4.3 恋: (清金0.5
$K^{\pm}\pi^{+}$	169 太 17計2	16.7 金 1.6計算	$17.2^{+2.5}_{-2.4} \pm 1.2$
K^+K^-	$8.2^{\pm7.8}_{-6.4}\pm3.3$	< 2.5 (90% CE)	< 1.9 (90 % CL)

B⁰ K***0**

- Photon candidate selection
 - ⊙ High-energy EMC cluster
 - ⊙ inconsistent with ⁰ or e
- K* candidate selection
 - ⊙ PID on K* daughters
 - ⊙ Helicity cut on K⁺
 - Mass cut
- Fit M_{ES} distribution
 - Signal as free gaussian
 - Background shape from off-peak data

B⁰ K^{*0} BR and Asymmetry

 \odot = 0.209 ± 0.013_{syst}

Syst. errors dominated by efficiency corrections

 \odot Will improve with statistics, better detector modeling

 \odot Efficiency corrections drop out

BR(B⁰ K^{*0}) = $(4.39 \pm 0.41 \pm 0.27)$ X10⁻⁵ A_{cp} = -0.035 ± 0.094 ± 0.022

BERKELEY LAB

B⁰ X Searches

- © Event selection based on event shape,m_{ES}, E, ...
- selection
 - K Cherenkov angle
 - Angle WRT event (thrust)
 Background peaks at 0,
- Maximum Likelihood fit
- PDFs as in B⁰ h⁺h^{'-} plus:
 - mass
 - ⊙ Helicity
 - Signal cos²(_H)
 - Bkg. From sidebands

PERVELE

Results (Preliminary)

Systematic errors small compared to statistical

Mode	Signal	Signific.	BR $\times 10^{-6}$
ϕK^-	$31.4^{+6.7}_{-5.9}$	10.5σ	$7.7^{+1.6}_{-1.4}$
ϕK^0	$10.8^{+4.1}_{-3.3}$	6.4σ	$8.1^{+3.1}_{-2.5}$
ϕK^{*-}	$7.0^{+4.3}_{-3.4}/4.5^{+2.7}_{-2.0}$	4.5σ	$9.6^{\pm 4.1}_{-3.3}$
$\phi\pi^-$	$0.9^{+2.1}_{-0.9}$	0.6σ	< 1.3

BERKELEY LAB

Other Charmless B Results

Based on Summer 2000 data sample (7.7 fb-1). Preliminary results, to be updated soon!

Decay Mode	BR BaBar ($\times 10^{-6}$)	Method
$egin{array}{ccc} & K^{*0} \pi^{+} & & \ & ho^{0} K^{+} & & \ & K^{+} \pi^{+} \pi^{+} & & \ & ho^{0} \pi^{+} & & \ & ho^{0} \pi^{+} & & \ & \ & \ & \ & \ & \ & \ & \ & \ $	< 28 (90% CL) < 29 (90% CL) < 54 (96% CL) < 39 (96% CL) < 22 (96% CL)	cut & count cut & count cut & count cut & count cut & count
$\rho^{\pm}\pi^{\psi}$	< 22 (96% CD) $49 \pm 13^{+6}_{-5}$	cut & count
$egin{array}{llllllllllllllllllllllllllllllllllll$		cut & count cut & count cut & count cut & count

Conclusions

- BaBar has recorded 23M BB decays in 1999-2000
- Most precise single measurement of sin2
 - ⊙ PRL submitted, PRD in preparation
 - ⊙ Additional modes are being prepared
- ◎ Searches for direct CP, angles + have begun
 - Accumulating statistics (and techniques)
 - ⊙ First Observations of some B decay modes
- BaBar is running again since February 1

⊙ Low intial luminosity (new beamtune)

PEPII Luminosity Projections

- We expect 30fb⁻¹ more data by Aug2001
- ◎ sin2 ~0.15
- Lots more rare modes and precision to come

DERVELEY I