Land Indicators: Assessing the Effects Of Land Use on The Great Lakes Basin Ecosystem

Victoria Pebbles

Great Lakes Commission

Ecosystem Objectives

- Remove threats of contamination
 - Reduce persistent toxic substances and other Pollutants
- Non-degradation of soils, plants, water and air
- Biological community integrity and diversity

Ecosystem Objectives (continued)

- Protection of rare and endangered species
- Healthy aquatic and terrestrial plant and animal life
- Sustainable development

SOLEC '96 Findings

- Current land use is inefficient
- Land use has been destructive
- The health of the land by the lakes is degrading
- Planning and incentives are the keys to sustainability

State of the Ecosystem: Land Indicators

- Urban density
- Mass transportation
- Brownfields redevelopment
- Sustainable agriculture

Land Indicators

(continued)

- Extent of hardened shoreline
- Area, quality & protection of alvar communities
- Contaminants affecting the productivity of bald eagles

SOLEC 2000 Findings

New and ongoing policies and programs are needed to mitigate the negative impacts of land use even as we gather more data

Urban Density

Marked difference among Basin communities

Urban Density

- Varies depending on community size, age and type of planning
- Direct relationship to
 - Population density
 - Redevelopment
 - Mass transit
- State: inadequate data (deteriorating)

Urban Density Conclusions

- Higher densities appear to be a more efficient urban land use
- Policies are needed to promote greater urban densities

Commuters Using Alternate to Auto Transportation (1990-1996)

Mass Transportation

- Increased mass transportation depends on:
 - Urban density
 - Population density
 - Cost-effective transit
- Need better understanding of relationships among the three
- State: inadequate data

Brownfields Redevelopment

Brownfields Redevelopment

Reduce pressure for open space conversion

Brownfields Redevelopment

- Cleanup and redevelopment has risen dramatically since the mid-1990's
- State: good
- Offset by incentives for greenfield development
- More reliable tracking needed; requires state/local coordination

- 38 percent reduction in U.S. soil erosion
- Replenishment of organic content
- Increasing cooperation between farm community and water quality management programs

Conservation Systems Planned Total Acres - All Land Uses

Sustainable Agriculture

- Voluntary conservation programs provide incentives
- Urbanizing farmland may limit future options for sustainable agriculture
- Difficult to track due to changes in ownership and use
- State: mixed

Hardened Shoreline

More hardening in connecting channels

Hardened Shoreline

Lake Erie has most hardening of the Lakes

Lakes Huron and Superior have the least hardening

Hardened Shoreline

- State: mixed-deteriorating
- Generally irreversible
- Soft engineering and green infrastructure offer alternatives
- Continued pressures with higher lake levels and cyclical effects
- More recent data needed

Area, Quality and Protection of Alvar Communities

- "Naturally open habitats on flat limestone bedrock"
- All 15 globally imperiled or rare
- Most remaining in Ontario
- Mostly in nearshore areas

	Total in	Near-
	Basin	shore
# of Alvar sites	82	52
# of Community		
occurrences	204	138
Alvar acreage	28475	20009
Alvar acreage	28475	20009

Area, Quality and Protection of Alvar Communities

- State: mixed
- Less than one-fifth fully protected
- Over three-fifths at high risk
- Ongoing threats from development, recreation, and resource extraction

Protection Status Nearshore Alvar Acreage

Contaminants Affecting Bald Eagle Productivity

- Recovery from near extinction
- Levels in Michigan eagles stable or declining since 80s and early 90s
- No apparent contaminant trends basinwide
- Increase in developmental deformities basinwide
- Increase in population of young basinwide

Approximate Nesting Locations of Bald Eagles

Contaminants Affecting Bald Eagle Productivity

- State: mixed-improving
- Continued threats from toxic substances, nest disturbance and shoreline development
- Need improved sampling and monitoring for nesting, contaminant levels and productivity

Summary of Future Pressures

- Low-density urban fringe/suburban development
- Open space/farmland conversion
- Road and highway development
- Intensive nearshore recreation

Mitigation Measures Needed

- More compact development
- Disincentives/removal of incentives for low-density sprawl
- "Livable" cities and towns (improved urban infrastructure)
- Protection of high-risk farmland and ecologically important communities
- "Soft" engineering and planning for nearshore development

Summary of Indicators

- Valuable for ecosystem assessment
- Much indicator information incomplete
- Systematic, comparable, monitoring, surveys and other data collection for each indicator
- Information needed for other land/terrestrial indicators

Conclusions

Acknowledgements

- Urban Density and Mass Transit: Ray Rivers and John Barr
- Brownfields Redevelopment: Victoria Pebbles, Great Lakes Commission
- Sustainable Agricultural Practices: Roger Nanny, U.S. Department of Agriculture; Peter Roberts, Ontario Ministry of Agriculture, Food and Rural Affairs
- Extent Hardened Shoreline: John Schneider and Duane Heaton, U.S. EPA Great Lakes National Program Office; Harold Leadley, Environment Canada
- Area, Quality and Protection of Alvar Communities: Heather Potter, The Nature Conservancy; Ron Reid, Bobolink Enterprises
- Contaminants Affecting Bald Eagle Productivity
- William Bowerman, Clemson University; David Best, U.S. Fish and Wildlife Service; Michael Gilbertson, International Joint Commission; Peter Nye, NY Department of Environmental Conservation

