### Carbon Dioxide Sequestration:

Aqueous Mineral Carbonation Studies Using Olivine and Serpentine

> W.K. O'Connor, D.C. Dahlin, D.N Nilsen, G.E. Rush, S.J. Gerdemann, R.P. Walters, and P.C. Turner

> > Albany Research Center Office of Fossil Energy, US DOE 1450 Queen Ave SW Albany, OR 97321

# Aqueous Mineral Carbonation

- DOE Mineral Carbonation Study Group
  - Albany Research Center
  - Arizona State University
  - Los Alamos National Laboratory
  - National Energy Technology Laboratory
  - Science Applications International Corp.



## Aqueous Mineral Carbonation

- Means to reduce greenhouse gas emissions from fossilfuel-fired power plants
- **Conversion of gaseous CO<sub>2</sub> to solid carbonate**
- Process occurs in nature
  - Chemical weathering
  - Biological activity
    - Corals
    - Coccoliths
- Several candidate minerals and/or waste materials
  - Magnesium silicates
  - Calcium silicates
  - Asbestos wastes
  - Iron and steel slags
  - Coal fly ash



## Aqueous Mineral Carbonation

- Only magnesium silicates (ultramafics) occur in sufficient supply to make significant impact
- Long term stability
  - Carbonates are thermodynamically favored
  - No legacy issues
  - Naturally occurring products
- Abundant supply of ultramafic rock
- Potential to produce value-added byproducts
- Utilization/remediation of wastes
- Compatible with advanced and current power systems



# Global Ultramafic Sequences



Pittsburgh, PA, August 8, 2001



### Global High Density Power Consumption



Pittsburgh, PA, August 8, 2001



### Materials Characterization

- Olivine: forsterite-fayalite series (Mg<sub>2</sub>SiO<sub>4</sub>- Fe<sub>2</sub>SiO<sub>4</sub>)
  - (MgO) = 45-50 wt pct (actual)
  - (Iron oxides) = 6-10 wt pct
     Fe<sup>+2</sup>: Fe<sup>+3</sup> = 2.0-2.5
  - Ore grade olivine may contain alteration products
    - Serpentine [Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>]
    - Talc [Mg<sub>3</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2</sub>]

- Serpentine: antigorite (below), lizardite, chrysotile (asbestos) [Mg<sub>3</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>]
  - (MgO) = 38-45 wt pct (actual)
  - (Iron oxides) = 5-8 wt pct
    - Fe<sup>+2</sup>: Fe<sup>+3</sup> = 1.5-2.0 (magnetite)
  - Olivine alteration (eq. 1a & 1b)
  - Heat pretreatment necessary to remove water (~13 wt pct)

 $4Mg_{2}SiO_{4} + 4H_{2}O + 2CO_{2} \rightarrow 2Mg_{3}Si_{2}O_{5}(OH)_{4} + 2MgCO_{3} (1a)$  $3Mg_{2}SiO_{4} + 4H_{2}O + SiO_{2} \rightarrow 2Mg_{3}Si_{2}O_{5}(OH)_{4}$ (1b)





# Active Olivine and Serpentine Quarries

#### Olivine a common industrial mineral

- Refractories
- Foundry sand
- Major deposits
  - Twin Sisters dunite, WA (below)
  - Norway
  - Japan

#### Massive local occurrences of unaltered dunite

- Twin Sisters estimated at 200 billion tons
- Global resource undetermined

#### Serpentine mines common

- Road base & asphalt (PA quarry below)
- Flux for iron ore sintering (Australia)
- Additional capacity necessary
- Scale consistent with requirements
  - 1 GW power plant 30-40 kt/day
- Mining cost estimates \$4-5/ton
- Work index [-200 mesh (75 µm)]
  - Serpentine 10.7 kWh/ton
  - Limestone 11.6 kWh/ton
- Must address chrysotile





# Magnesium Silicate Process Flow Diagram



Laboratory-Scale System



Solution Chemistry and Theoretical Reactions

### Carbonic Acid System

- Distilled water
  - pH from ~5.0 to 5.5
  - $(CO_2) = \langle 0.1 \text{ g/liter initially} \rangle$
- Carbonic acid formation and dissociation (eq. 2)
- H<sup>+</sup> ion hydrolyzes Mg silicate (eq. 3)
- Mg<sup>+2</sup> cation reacts with bicarbonate ion to form solid carbonate and H<sup>+</sup> ion (eq. 4)

$$CO_{2} + H_{2}O \rightarrow H_{2}CO_{3} \rightarrow H^{+} + HCO_{3}^{-} (2)$$

$$Mg_{2}SiO_{4} + 4H^{+} \rightarrow 2Mg^{+2} + H_{4}SiO_{4} (3)$$

$$Mg^{+2} + HCO_{3}^{-} \rightarrow MgCO_{3} + H^{+} (4)$$

Pittsburgh, PA, August 8, 2001



### Modified Solution Chemistry and Theoretical Reactions

### Bicarbonate/Salt System

- 0.64 M NaHCO<sub>3</sub>, 1 M NaCl
  - ph from ~7.8-8.0 (in situ pH?)
  - (CO<sub>2</sub>) = ~22 g/liter initially
  - (Na) = ~33 g/liter
  - (Cl) = ~34 g/liter
- Modified reaction sequence (eq. 5)
- Regeneration of bicarbonate (eq. 6)
- Complexing ions may = increased solubility (eq. 7)

$$Mg_{2}SiO_{4} + 2HCO_{3}^{-} \rightarrow 2MgCO_{3} + SiO_{2} + 2OH^{-}$$
(5)  

$$CO_{2} + OH^{-} \rightarrow HCO_{3}^{-}$$
(6)  

$$Mg^{+2} + 2Cl^{-} \rightarrow MgCl_{2} \text{ or } MgCl_{3}^{-} \text{ or } MgCl_{4}^{-2} \text{ etc. } (7)$$

Pittsburgh, PA, August 8, 2001



Mineral Carbonation: Reaction Kinetics

### Time series on 3 minerals

- Heat treated antigorite
- Heat treated lizardite
- Foundry grade olivine

### Constant conditions

- T=155°C; P<sub>CO2</sub>=150 atm; 15° solids; 1,000 rpm
- Times: 0, 0.5, 1, 3, 6, 12 hr

### Olivine reactivity much lower







## Mineral Carbonation: Reactivity

#### Relative surface areas

Antigorite (-75 µm): 8.5 m²/g; heat treated: 18.7 m²/g

- Lizardite (-75 μm): 32.3 m<sup>2</sup>/g; heat treated: 10.8 m<sup>2</sup>/g
- Olivine (-75 µm): 4.6 m²/g
- Reaction rates (best results for 1 hour carbonation tests)
  - Antigorite (heat treated): 0.012 g/m<sup>2</sup>/h
  - Lizardite (heat treated): 0.011 g/m<sup>2</sup>/h
  - Olivine (reground in 1 M NaOH, 1 M NaCl): 0.013 g/m<sup>2</sup>/h
- Enhanced olivine reactivity (1 h, 155°C, P<sub>CO2</sub>=150 atm)
  - Olivine only: 0% conversion
  - Olivine spiked with 5% Fe<sub>3</sub>O<sub>4</sub>: 3% conversion
  - Olivine spiked with 5% MgO: 17% conversion (of olivine)
  - Olivine reground in 1 M NaOH, 1 M NaCl: 20% conversion
    - Chemical pretreatment during size reduction shows promise





# Mineral Carbonation: Reactivity

- Effects of Mg<sup>2+</sup> concentration
  - Additions of MgCl<sub>2</sub> to bicarbonate solution
    - 0.12 M MgCl<sub>2</sub>
      - 15% increase on heat-treated serpentine
      - Limited improvement on olivine
  - Recycled carbonation solutions
    - Poor results for short-term carbonation tests
    - Fully successful long-term tests (12-24 hours)
- Additions of highly soluble Mg (solid MgO) appear more effective than solution modifications (for olivine)
  - Surface phenomenon?
    - Surfactants
    - Metal catalysts (Co, Ni)





# Mineral Carbonation: Low $P_{CO2}$ (20 atm) Tests

#### Antigorite (heat treated)

- ~39% carbonated (1 h, 155°C)
- ~22% carbonated (1 h, 50°C)
- Lizardite (heat treated)
  - ~51% carbonated (1 h, 155°C)
  - ~39% carbonated (1 h, 50°C)
- Olivine
  - Temperature series, 6 hours (see graph)





## Serpentine Heat Treatment

#### Thermal Analysis (antigorite)

- Three separate endotherms
  - Desorption of adsorbed water at 160C
  - Evolution of water of crystallization (dehydration) at 374C (brucite?)
  - Dehydroxylation (evolution of constitutional water) at 614C
  - Exotherm above 700C forsterite crystallization
- Must remove chemically bound water to promote carbonation
- Serpentine converted to forsterite and a metastable silicate
- Oxidation of iron appears to passivate the serpentine
  - Nonoxidizing atmosphere
  - Magnetic separation





Pittsburgh, PA, August 8, 2001

### Serpentine Heat Treatment

#### Weight loss directly related to carbonation

- ~12% weight loss optimal for this ore
- Carbonation near constant above 650 C – formation of forsterite
- Optimal heat treatment temperature 600-650°C (metastable silicate)
- Energy cost: ~200
   kW· h/ton
  - Potential for energy recovery
  - Feasibility unlikely
  - Investigating alternate routes to activate serpentine
  - Re-emphasis on olivine





## Serpentine Heat Treatment

- Residual combined water
  - Impacts carbonation
  - Linear relationship
- Must remove water from serpentine
- Loss on Ignition (LOI)
  - Indicator for reactivity
  - Normalized results







General Characteristics: Solid Products

### **Olivine carbonation**

- Tests with ~80% conversion to the carbonate
  - (CO<sub>2</sub>) = ~30 wt pct
  - (free SiO<sub>2</sub>) = 25-30 wt pct
  - (MgO) = ~35 wt pct
  - (MgCO<sub>3</sub>) = ~65 wt pct (calculated)
- XRD analyses
  - Magnesite (MgCO<sub>3</sub>)
  - No silica pattern (amorphous SiO<sub>2</sub>)
  - Residual olivine (forsterite) and enstatite

### Heat treated serpentine carbonation

- Tests with ~80% conversion to the carbonate
  - (CO<sub>2</sub>) = ~30 wt pct
  - (free SiO<sub>2</sub>) = 25-30 wt pct
  - (MgO) = ~35 wt pct
  - (MgCO<sub>3</sub>) = ~65 wt pct (calculated)
- XRD analyses
  - Magnesite (MgCO<sub>3</sub>)
  - No silica pattern (amorphous SiO<sub>2</sub>)
  - Residual olivine (forsterite)
  - No chrysotile



## Solid Product Characterization

#### Several key questions

- Solid-state vs aqueous?
- Surface controlled?
- Diffusion limited?
- Passive layers or coatings?
- Fate of silica?
- Morphology of magnesite product?
- Toxicity of magnesite product?

#### Typical particle size analysis

- Some size reduction apparent
- -25 micron fraction: 27 wt pct CO<sub>2</sub>
  - 98% of all CO<sub>2</sub> in total product
- Recent analyses suggest magnesite occurs as -10 micron agglomerates





Pittsburgh, PA, August 8, 2001

## Solid Product Characterization

- Calculated phase concentrations by size fraction
- Assumptions
  - All CO<sub>2</sub> occurs as MgCO<sub>3</sub>
  - Excess MgO occurs as Mg<sub>2</sub>SiO<sub>4</sub>
  - Excess SiO<sub>2</sub> occurs as free silica
- Potential for coarse silicate recycle by hydrocylcone separation of product
- Increase attritioning to remove silica-rich rims







# Heat Treated Serpentine Reaction Products



Pittsburgh, PA, August 8, 2001



### Serpentine Reaction Products



Pittsburgh, PA, August 8, 2001



## Solid Product Characterization

- Apparent two stage reaction path
  - Dissolution into aqueous phase
  - Carbonate precipitation (not solid-state)
- Dissolution is likely surface controlled
  - Particle size tests
    - Extent of reaction increases with decrease in particle size
    - -200 mesh (75 microns) target size
    - -400 mesh (37 microns) slightly better
- Silica enriched zones
  - May form passive layer on partially reacted silicate
  - Reaction may be diffusion limited



### **Olivine Reaction Products**





### **Olivine Reaction Products**



Pittsburgh, PA, August 8, 2001



### **Olivine Reaction Products**



|       | Atomic percent |    |    |       |  |  |  |
|-------|----------------|----|----|-------|--|--|--|
| Point | С              | Mg | Si | Mg/Si |  |  |  |
| 1     | 3              | 20 | 13 | 1.5   |  |  |  |
| 2     | 26             | 17 | 1  | 17    |  |  |  |
| 3     | 3              | 25 | 12 | 2.1   |  |  |  |
| 4     | 6              | 1  | 26 | 0.04  |  |  |  |

Pittsburgh, PA, August 8, 2001

Minus 10 micron particles include:
(1) high silica fragments - attrition of Mg depleted grains (?)
(2) rounded particles (primarily magnesium carbonate) - agglomerates of much finer nuclei (precipitate)



## Solid Product Characterization

### Silica-rich particles in minus 10 micron fraction

- Silicate particles become silica enriched with Mg<sup>2+</sup> removal
- Fines formed by attrition or exfoliation of coarser particles
- Means to encourage silica nucleation

Magnesium carbonate particles in minus 10 micron fraction

- Apparent precipitation product
- Agglomerates of much finer particles
- 10 microns appears to be upper size limit
  - Particle size appears independent of test time
  - Agitation phenomena (?)

### Solid product passes EPA TCLP

Pittsburgh, PA, August 8, 2001



# General Characteristics: Product Solutions

- Carbonic Acid System (H<sub>2</sub>CO<sub>3</sub>)
  - Tests with ~80% conversion to the carbonate (24 h)
    - pH increases to ~6.8 to 7.2
    - (CO<sub>2</sub>) = 0.5-1.0 g/liter
    - (Mg) = ~0.1 g/liter
    - (Si) = ~0.2 g/liter
- Lower (CO<sub>2</sub>), thus lower
   [CO<sub>2</sub>] retards the reaction rate

- Bicarbonate System (NaHCO<sub>3</sub> & NaCl)
  - Tests with ~80% conversion to the carbonate (0.5 - 3 h)
    - pH increases slightly to ~7.9 to 8.1
    - (CO<sub>2</sub>) = 19-22 g/liter
    - (Mg) = ~0.05 g/liter
    - (Si) = ~0.02 g/liter
    - (Na) = ~32 g/liter
    - (Cl) = ~35 g/liter
- Buffered solution

   recyclable with make-up

Bicarbonate CO<sub>2</sub> carrier



# Summary and Conclusions

#### Both olivine and serpentine are amenable to direct carbonation

- Reaction time reduced from >24 hours to  $\sim1$  hour
- Conversion of the Mg silicate to the Mg carbonate:
  - Up to ~80% efficiency achieved in 1 hour @  $P_{CO_2} = 150$  atm, T = 155°C Up to ~50% efficiency achieved in 1 hour @  $P_{CO_2} = 20$  atm, T = 155°C Up to ~40% efficiency achieved in 1 hour @  $P_{CO_2} = 20$  atm, T = 50°C

#### Heat pretreatment activates serpentine (meta-stable silicate?)

- Removal of water:
  - Creates defects in crystal lattice (pseudo-amorphous)
  - Increases dissolution rate by decreasing activation energy?

### Heat pretreatment/carbonation appears to destroy chrysotile

- Solid product non-hazardous based on EPA TCLP
- **Process improvements** 
  - Potential carbonation conditions: 20 atm @ 50°C (heat-treated serpentine)
  - Solids concentration to 30% demonstrated
  - Particle size increased to -200 mesh (-75 µm)



# **Continuing Studies**

- Feasibility study, including engineering and economic evaluations of flow-type reactors
- Bench and pilot-scale testing
- Development of geochemical model (LANL)
- Investigate mineral pretreatment options
- Investigate by-products and beneficial product uses
  - Iron concentrates
  - Liming agents
  - Hydrophilic silica
- Apply ex-situ studies to in-situ (geologic) sequestration
  - CO<sub>2</sub> injection into deep brine aquifers in ultramafic sequences
    - Abundant mineral reactant (contrary to sedimentary sequences)
    - Columbia River Basalt Group



# Geologic Sequestration: CRBG

- Columbia River Basalt Group
  - Area: ~200,000 km<sup>2</sup>
  - Mass: over 300,000 km<sup>3</sup>
  - Total thickness: over 1 km in places
  - Numerous flows
    - Unique opportunity for gas injection
- Fossil-fuel-fired power plants (near geographic center)
  - 0.5 GW coal-fired plant
  - 0.8 GW natural gas plants (two 0.5 GW plants under construction)
    - ~2.3 GW generating capacity
    - ~35 ktons/day CO<sub>2</sub> emissions



Approximate area of CRBG (GSA Bulletin, 97, 11, November, 1986).



Pittsburgh, PA, August 8, 2001

# CRBG

- Stratigraphic column (GSA Bulletin, 97,11, November, 1986)
- Erosional unconformities at interflow contacts
  - High porosity zones
    - Shallow fresh water aquifers
    - Deep brine aquifers
      - CO<sub>2</sub> injection
  - Basalt mineralogy
    - High mineral trapping potential
    - Up to 25 wt pct combined CaO, FeO and MgO

| Se            | ries           | Group  | Sub-<br>group         | Formation                     | Member                        | K-Ar age<br>(m. y.)                   | Magnetic polarity   |
|---------------|----------------|--------|-----------------------|-------------------------------|-------------------------------|---------------------------------------|---------------------|
| Upper Miocene |                |        |                       |                               | Lower Monumental Member       | 6 <sup>2</sup>                        | N                   |
|               | 9              |        |                       |                               | Erosional unconformity        |                                       |                     |
|               | Leo L          |        |                       | Saddle<br>Mountains<br>Basalt | Ice Harbor, Member            |                                       |                     |
|               | Mio            |        |                       |                               | Basalt of Goose Island        | 8.5 <sup>2</sup>                      | N                   |
|               |                |        |                       |                               | Basalt of Martindale          | 8.5 <sup>2</sup>                      | R                   |
|               | er             |        |                       |                               | Basalt of Basin City          | 8.5 <sup>2</sup>                      | N                   |
|               | bp             |        | ٩                     |                               | Erosional unconformity        |                                       |                     |
|               | 5              | Basalt | Yakima Basalt Subgrou |                               | Buford Member                 |                                       | R                   |
|               |                |        |                       |                               | Elephant Mountain Member      | 10.5 <sup>2</sup>                     | Ν, Τ                |
|               |                |        |                       |                               | Erosional unconformity        |                                       |                     |
|               |                |        |                       |                               | Pomona Member                 | 122                                   | R                   |
|               |                |        |                       |                               | Erosional unconformity        |                                       |                     |
|               |                |        |                       |                               | Esquatzel Member              |                                       |                     |
|               |                |        |                       |                               | Erosional unconformity        |                                       |                     |
|               |                |        |                       |                               | Weissenfels Ridge Member      |                                       |                     |
|               | Middle Miocene |        |                       |                               | Basalt of Slippery Creek      |                                       | N                   |
| N             |                |        |                       | Wanapum<br>Basalt             | Basalt of Lewiston Orchards   |                                       | N                   |
|               |                |        |                       |                               | Asotin Member                 |                                       | N                   |
|               |                |        |                       |                               | Local erosional unconformity  |                                       |                     |
|               |                |        |                       |                               | Wilbur Creek Member           | · · · · · · · · · · · · · · · · · · · | N                   |
| m             |                |        |                       |                               | Umatilla Member               |                                       | N                   |
| 0<br>0        |                |        |                       |                               | Local erosional unconformity  |                                       |                     |
|               |                |        |                       |                               | Priest Rapids Member          |                                       | R <sub>3</sub>      |
| _             |                |        |                       |                               | Roza Member                   |                                       | R <sub>3</sub><br>T |
| -             |                |        |                       |                               | Frenchman Springs Member      |                                       | N                   |
| 2             |                |        |                       |                               | Eckler Mountain Member        |                                       | Na                  |
|               |                | ver    |                       |                               | Basalt of Shumaker Creek      |                                       | 182                 |
|               |                | R.     |                       |                               | Basalt of Dodge               |                                       | N <sub>2</sub>      |
|               |                | (r     |                       |                               | Basalt of Robinette Mountain  |                                       | N <sub>2</sub>      |
|               |                |        |                       | Cranda                        |                               | 14-16.5 <sup>3</sup>                  | N <sub>2</sub>      |
|               |                | .º     |                       | Ronde                         |                               |                                       |                     |
| ene           | e              | qu     | Basalt                |                               | $\beta_{asalt of Dayville}$   | 1                                     | R                   |
|               | 6              | Colu   |                       | Picture                       | (Basalt of Monument Mountain) |                                       |                     |
| 00            |                |        |                       | Gorge                         | \Basalt of Twickenham /       | (14.6-                                | N,                  |
|               | ×              | 1      |                       | -?-?-                         |                               | 15.8) <sup>1,3</sup>                  |                     |
|               | L              |        |                       |                               |                               |                                       | R,                  |
|               | Ň              |        |                       |                               |                               |                                       |                     |
|               | Ľ              | a      |                       | Imnaha                        |                               | RI                                    |                     |
|               |                |        |                       | Basali                        |                               | 12                                    | Ro ?                |
|               |                |        |                       |                               | ð                             |                                       |                     |



# CRBG

- Idealized cross section through flow in CRBG (GSA Bulletin, 97, 11, November, 1986)
- Vesicular top (formed by gas evolution during emplacement)
  - "Flow-top breccia"
    - High porosity (~30%, compared to ~12% for typical sandstone aquifer)
    - High permeability (20 darcy compared to 100 millidarcy for typical oil reservoir)
- Pillow basalts at base of section
  - Add to "porous zone"
- Basal colonnade of low porosity/permeability ("cap")

