Mineral Sequestration Utilizing Industrial By-Products, Residues, and Minerals

> Daniel J. Fauth and Yee Soong U.S. Department of Energy National Energy Technology Laboratory Pittsburgh PA, 15236-0940

> > Mineral Sequestration Workshop National Energy Technology Laboratory August 8, 2001

Overview

Introduction

- Objective
- Goals
- NETL Facilities
- Effect of Solution Chemistry on Carbonation Efficiency
 - Buffered Solution + NaCl
 - Buffered Solution + MEA
- Effect of Pretreatment on Carbonation Efficiency
 - Thermal Treatments
 - Chemical Treatments
- Carbonation Reaction with Ultramafic Minerals
 - Serpentine
 - Olivine

Overview

Carbonation Reaction with Industrial By-products

- -Fly Ash
 - Freeman United Coal
 - Consol Energy Spray Dryer Ash
- -Dravo Lime Co (Carmeuse NA) By-product
 - Dravo By-product A
 - Dravo By-product B
 - Dravo By-product A & B + Olivine
 - Dravo By-product B + HT-Serpentine

Carbon Sequestration Science Focus Area

 DOE's Mineral Sequestration Program, managed by NETL, will provide a long-range options for drastically reducing CO₂ emissions from fossil-fuel-fired heat and power facilities. The Program encompasses research and field testing of a wide range of carbon sequestration options geologic, oceanic, terrestrial, and other innovative approaches (Mineral Sequestration). Successful deployment of these options will enable the continued use of low-cost and plentiful fossil energy resources and help stabilize the increased greenhouse gas concentrations in the atmosphere. Overall, this Program, of which the Carbon Sequestration Science Focus Area is a part, seeks to develop options for sequestering significant amounts of carbon by 2025.

Capturing Carbon Dioxide as Mineral Carbonates

Primary Focus: The ability to capture and store CO₂ emitted by fossil fuel-fired power stations and other industries could help maintain the uninterrupted use of U.S. fossil energy reservoirs well into the **21st century.** In the Mineral Carbonation Study Program, NETL has focused part of its research efforts on developing a longterm mitigation strategy for large-scale reduction of CO₂ as stable mineral carbonates. Developing a useful knowledge base of mineral sequestration is important to understand the potential impact and economic viability of carbon management related processes.

Mineral Sequestration - NETL Facilities

• NETL 1-Liter CSTR Facility

- Unit consists of four parts:
 - Hastelloy C-2000 pressure vessel
 - Electric furnace, external jacket type
 - MagneDrive II magnetically actuated rotary impeller system

• NETL 500-mL CSTR Facility

- Unit consists of six parts:
 - Hastelloy C-276 pressure vessel
 - Electric furnace, external jacket type
 - Low temperature electric furnace, O-ring sealed with water cooled jacket
 - Dyna/Mag magnetic drive mixer with gaspersator agitator
 - ISCO CO₂pump with controller and temperature jacket
 - Computer control and data acquisition system

Scanning electron micrograph for Olivine carbonation product - MgCO₃

Experimental Mineral reactants, olivine (Mg_2SiO_4) and serpentine $[Mg_3Si_2O_5(OH)_4]$ and their respective post-carbonation solid samples were characterized for their chemical composition and surface morphology using techniques such as ICP-AES, XRD, XPS, and SEM-EDX. Investigation into the carbonation characteristics of these mineral reactants under fixed conditions of pressure, temperature, bicarbonate solution chemistry, and pre-treatments were performed utilizing a continuous-stirred-tank-reactor (CSTR). Coal fly ashes was also investigated. Calculation of magnesium carbonate yields was based on the concentration of MgO within the starting reactants (olivine, serpentine) and the stoichiometry of reaction(s) listed below.

 $Mg_2SiO_4 + 2CO_2 \rightarrow 2MgCO_3 + SiO_2$

 $Mg_3Si_2O_5(OH)_4 + 3CO_2 \rightarrow 3 MgCO_3 + 2SiO_2 + 2H_2O$

X-ray diffraction pattern for Olivine carbonation product Pattern scheme: magnesite (Ms), forsterite (Fo), enstatite (Ec),

Result: Identification of magnesite $(MgCO_3)$ as the primary phase in the solid mineral carbonation reaction products.

Effect of Solution Chemistry on Carbonation Efficiency

Extent of Mineral Carbonation

Reactant: Olivine, Twin Sisters Range, Washington, USA Bicarbonate Solution: 0.5 M Na₂CO₃; 0.5 M NaHCO₃; XM NaCI Temperature = 185°C; Pressure = 115 atms.; Time = 30 minutes

Mineral Sequestration Workshop, U.S. Department of Energy, NETL, August 8, 2001

Serpentine Carbonation Efficiency -Effect of Thermal Pre-treatment

Extent of Mineral Carbonation

Reactant(s): Serpentine, Cedar Hills, PA/MD State Line District, USA . HT 650 Serpentine - Serpentine, Cedar Hills, PA/MD State Line District, USA thermally pre-treated @ 650° C for 2 hours. HT 400 Serpentine - Serpentine, Cedar Hills PA/MD State Line District, USA ; thermally pre-treated @ 400° C for 2 hours. Reaction Conditions: T = 155° C, P_T = 75 atm, Reaction Time = 0.5 hrs. Buffered Solution: 0.5 M Na₂CO₃, 0.5 M NaHCO₃, 1.0 M NaCl

HT 650 Serpentine Carbonation Efficiency Effect of MEA and Pressure

Extent of Mineral Carbonation

Carbonation Efficiency of Coal Fly Ash

Extent of Mineral Carbonation

Carbonation Efficiency of Olivine Effect of Dravo B

Extent of Mineral Carbonation

HT 650 Serpentine Carbonation Efficiency Effect of Dravo B

Extent of Mineral Carbonation

Reaction Conditions: T = 155° C, P_T = 75 atm, Reaction Time = 0.5 hrs. Buffered Solution: 0.5 M Na₂CO₃, 0.5 M NaHCO₃, 1.0 M NaCl

NETL Mineral Sequestration Test Summary

• Continuous-Stirred-Tank-Reactor (CSTR)

- Substrate: Freeman United Coal Mining Fly Ash (High in Mg and Ca) and Consol Energy Spray Dryer Ash
- Conditions: $P_{total} = 125 \text{ atm}$, Temperature = 185°C
 - Carbonation Solution: 0.5 M Na₂CO₃; 0.5 M NaHCO₃; 1.0 M NaCl
 - Carbonation Efficiency: 50% and 72% conversion to carbonates (CaCO₃, CaMg(CO₃)
- Observation: By-product conversion to valuable resource for CO₂ sequestration
- Substrate: Dravo A Dravo ThioClear® process by-product (High in Ca) and Olivine + Dravo A By-product
- Conditions: P_{total} = 75 & 125 atm, Temperature = 155 & 185°C
 - Carbonation Solution: 0.5 M Na₂CO₃; 0.5 M NaHCO₃; 1.0 M NaCl
 - Carbonation Efficiency: 10-52% conversion to carbonates (CaCO₃)
- Observation: Significant mineral dissolution. *In-situ* generation of sulfurous acid.

NETL Mineral Sequestration Test Summary

• Continuous-Stirred-Tank-Reactor (CSTR)

- Substrate: Chemically-treated Serpentine (Pennsylvania State University)
- Conditions: $P_{total} = 125 \text{ atm}$, Temperature = $185^{\circ}C$
 - Carbonation Solution: 0.5 M Na₂CO₃; 0.5 M NaHCO₃; 1.0 M NaCl
 - Carbonation Efficiency: No conversion observed.
- Observation: PSU-treated serpentine ~150 m²/g. (Raw serpentine~15m²/g) Significant % loss in MgO.
- Substrate: NaOH-treated Serpentine
- Conditions: $P_{total} = 125 \text{ atm}$, Temperature = 185°C
 - Carbonation Solution: 0.5 M Na₂CO₃; 0.5 M NaHCO₃; 1.0 M NaCl
 - Observation: Transformation of raw Serpentine to MgO

Effect of Solution Chemistry & Reactants on the Extent of Mineral Carbonation

Bicarbonate solution: 0.5 M Na₂CO₃; 0.5 M NaHCO₃; XM NaCl Temperature = 185°C; Pressure = 115 atms.; Time = 30mins.

Result: Modification of the bicarbonate solution chemistry has substantial impact on the mineral carbonation efficiency.

Summary of Carbonation Experiments

Reactant	HCO ₃ ⁻ Solution	Pct.Conv., MgCO ₃
Coal Fly Ash	Na ₂ CO ₃ /NaHCO ₃ /NaCl	55
Olivine	Na ₂ CO ₃ /NaHCO ₃ /NaCl	84
Dravo A	Na ₂ CO ₃ /NaHCO ₃ /NaCl	10
Serpentine	Na ₂ CO ₃ /NaHCO ₃ /NaCl	17

Conclusions: Successful conversion of mineral silicates to carbonates at temperatures of 185° C in high pressure aqueous CO₂ solutions, containing NaCl and Na₂CO₃ and NaHCO₃.

Coal fly ash identified as valuable resource in mineral CO_2 sequestration.

Future Work

• Future Work

- Chemical and Thermal pretreatment of Serpentine (M.M. Maroto-Valer, The Pennsylvania State University)
- Characterization of Reaction Products and Geochemical Modeling (Chen Zhu, University of Pittsburgh)

